alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@906
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@2391
|
5 |
* Copyright (C) 2003-2007
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
8 |
*
|
alpar@906
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
12 |
*
|
alpar@906
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
15 |
* purpose.
|
alpar@906
|
16 |
*
|
alpar@906
|
17 |
*/
|
alpar@906
|
18 |
|
alpar@921
|
19 |
#ifndef LEMON_DFS_H
|
alpar@921
|
20 |
#define LEMON_DFS_H
|
alpar@780
|
21 |
|
deba@2376
|
22 |
///\ingroup search
|
alpar@780
|
23 |
///\file
|
alpar@1218
|
24 |
///\brief Dfs algorithm.
|
alpar@780
|
25 |
|
alpar@1218
|
26 |
#include <lemon/list_graph.h>
|
klao@946
|
27 |
#include <lemon/graph_utils.h>
|
deba@2335
|
28 |
#include <lemon/bits/path_dump.h>
|
deba@1993
|
29 |
#include <lemon/bits/invalid.h>
|
alpar@1218
|
30 |
#include <lemon/error.h>
|
alpar@1218
|
31 |
#include <lemon/maps.h>
|
alpar@780
|
32 |
|
deba@1749
|
33 |
#include <lemon/concept_check.h>
|
deba@1749
|
34 |
|
alpar@921
|
35 |
namespace lemon {
|
alpar@780
|
36 |
|
alpar@1218
|
37 |
|
alpar@1218
|
38 |
///Default traits class of Dfs class.
|
alpar@1218
|
39 |
|
alpar@1218
|
40 |
///Default traits class of Dfs class.
|
alpar@1218
|
41 |
///\param GR Graph type.
|
alpar@1218
|
42 |
template<class GR>
|
alpar@1218
|
43 |
struct DfsDefaultTraits
|
alpar@1218
|
44 |
{
|
alpar@1218
|
45 |
///The graph type the algorithm runs on.
|
alpar@1218
|
46 |
typedef GR Graph;
|
alpar@1218
|
47 |
///\brief The type of the map that stores the last
|
alpar@1218
|
48 |
///edges of the %DFS paths.
|
alpar@1218
|
49 |
///
|
alpar@1218
|
50 |
///The type of the map that stores the last
|
alpar@1218
|
51 |
///edges of the %DFS paths.
|
alpar@2260
|
52 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
53 |
///
|
alpar@1218
|
54 |
typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
|
alpar@1218
|
55 |
///Instantiates a PredMap.
|
alpar@1218
|
56 |
|
alpar@1218
|
57 |
///This function instantiates a \ref PredMap.
|
alpar@1218
|
58 |
///\param G is the graph, to which we would like to define the PredMap.
|
alpar@1218
|
59 |
///\todo The graph alone may be insufficient to initialize
|
alpar@1218
|
60 |
static PredMap *createPredMap(const GR &G)
|
alpar@1218
|
61 |
{
|
alpar@1218
|
62 |
return new PredMap(G);
|
alpar@1218
|
63 |
}
|
alpar@1218
|
64 |
|
alpar@1218
|
65 |
///The type of the map that indicates which nodes are processed.
|
alpar@1218
|
66 |
|
alpar@1218
|
67 |
///The type of the map that indicates which nodes are processed.
|
alpar@2260
|
68 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
69 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
70 |
typedef NullMap<typename Graph::Node,bool> ProcessedMap;
|
alpar@1218
|
71 |
///Instantiates a ProcessedMap.
|
alpar@1218
|
72 |
|
alpar@1218
|
73 |
///This function instantiates a \ref ProcessedMap.
|
alpar@1536
|
74 |
///\param g is the graph, to which
|
alpar@1218
|
75 |
///we would like to define the \ref ProcessedMap
|
alpar@1536
|
76 |
#ifdef DOXYGEN
|
alpar@1536
|
77 |
static ProcessedMap *createProcessedMap(const GR &g)
|
alpar@1536
|
78 |
#else
|
alpar@1367
|
79 |
static ProcessedMap *createProcessedMap(const GR &)
|
alpar@1536
|
80 |
#endif
|
alpar@1218
|
81 |
{
|
alpar@1218
|
82 |
return new ProcessedMap();
|
alpar@1218
|
83 |
}
|
alpar@1218
|
84 |
///The type of the map that indicates which nodes are reached.
|
alpar@1218
|
85 |
|
alpar@1218
|
86 |
///The type of the map that indicates which nodes are reached.
|
alpar@2260
|
87 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
88 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
89 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
alpar@1218
|
90 |
///Instantiates a ReachedMap.
|
alpar@1218
|
91 |
|
alpar@1218
|
92 |
///This function instantiates a \ref ReachedMap.
|
alpar@1218
|
93 |
///\param G is the graph, to which
|
alpar@1218
|
94 |
///we would like to define the \ref ReachedMap.
|
alpar@1218
|
95 |
static ReachedMap *createReachedMap(const GR &G)
|
alpar@1218
|
96 |
{
|
alpar@1218
|
97 |
return new ReachedMap(G);
|
alpar@1218
|
98 |
}
|
alpar@1218
|
99 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
100 |
|
alpar@1218
|
101 |
///The type of the map that stores the dists of the nodes.
|
alpar@2260
|
102 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
103 |
///
|
alpar@1218
|
104 |
typedef typename Graph::template NodeMap<int> DistMap;
|
alpar@1218
|
105 |
///Instantiates a DistMap.
|
alpar@1218
|
106 |
|
alpar@1218
|
107 |
///This function instantiates a \ref DistMap.
|
alpar@1218
|
108 |
///\param G is the graph, to which we would like to define the \ref DistMap
|
alpar@1218
|
109 |
static DistMap *createDistMap(const GR &G)
|
alpar@1218
|
110 |
{
|
alpar@1218
|
111 |
return new DistMap(G);
|
alpar@1218
|
112 |
}
|
alpar@1218
|
113 |
};
|
alpar@1218
|
114 |
|
alpar@781
|
115 |
///%DFS algorithm class.
|
alpar@1218
|
116 |
|
deba@2376
|
117 |
///\ingroup search
|
alpar@1218
|
118 |
///This class provides an efficient implementation of the %DFS algorithm.
|
alpar@780
|
119 |
///
|
alpar@1218
|
120 |
///\param GR The graph type the algorithm runs on. The default value is
|
alpar@1218
|
121 |
///\ref ListGraph. The value of GR is not used directly by Dfs, it
|
alpar@1218
|
122 |
///is only passed to \ref DfsDefaultTraits.
|
alpar@1218
|
123 |
///\param TR Traits class to set various data types used by the algorithm.
|
alpar@1218
|
124 |
///The default traits class is
|
alpar@1218
|
125 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
|
alpar@1218
|
126 |
///See \ref DfsDefaultTraits for the documentation of
|
alpar@1218
|
127 |
///a Dfs traits class.
|
alpar@780
|
128 |
///
|
alpar@1218
|
129 |
///\author Jacint Szabo and Alpar Juttner
|
alpar@780
|
130 |
#ifdef DOXYGEN
|
alpar@1218
|
131 |
template <typename GR,
|
alpar@1218
|
132 |
typename TR>
|
alpar@780
|
133 |
#else
|
alpar@1218
|
134 |
template <typename GR=ListGraph,
|
alpar@1218
|
135 |
typename TR=DfsDefaultTraits<GR> >
|
alpar@780
|
136 |
#endif
|
alpar@1218
|
137 |
class Dfs {
|
alpar@780
|
138 |
public:
|
alpar@1218
|
139 |
/**
|
alpar@1218
|
140 |
* \brief \ref Exception for uninitialized parameters.
|
alpar@1218
|
141 |
*
|
alpar@1218
|
142 |
* This error represents problems in the initialization
|
alpar@1218
|
143 |
* of the parameters of the algorithms.
|
alpar@1218
|
144 |
*/
|
alpar@1218
|
145 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
alpar@1218
|
146 |
public:
|
alpar@2151
|
147 |
virtual const char* what() const throw() {
|
alpar@1218
|
148 |
return "lemon::Dfs::UninitializedParameter";
|
alpar@1218
|
149 |
}
|
alpar@1218
|
150 |
};
|
alpar@1218
|
151 |
|
alpar@1218
|
152 |
typedef TR Traits;
|
alpar@780
|
153 |
///The type of the underlying graph.
|
alpar@1218
|
154 |
typedef typename TR::Graph Graph;
|
alpar@911
|
155 |
///\e
|
alpar@780
|
156 |
typedef typename Graph::Node Node;
|
alpar@911
|
157 |
///\e
|
alpar@780
|
158 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@911
|
159 |
///\e
|
alpar@780
|
160 |
typedef typename Graph::Edge Edge;
|
alpar@911
|
161 |
///\e
|
alpar@780
|
162 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@780
|
163 |
|
alpar@780
|
164 |
///\brief The type of the map that stores the last
|
alpar@1218
|
165 |
///edges of the %DFS paths.
|
alpar@1218
|
166 |
typedef typename TR::PredMap PredMap;
|
alpar@1218
|
167 |
///The type of the map indicating which nodes are reached.
|
alpar@1218
|
168 |
typedef typename TR::ReachedMap ReachedMap;
|
alpar@1218
|
169 |
///The type of the map indicating which nodes are processed.
|
alpar@1218
|
170 |
typedef typename TR::ProcessedMap ProcessedMap;
|
alpar@1218
|
171 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
172 |
typedef typename TR::DistMap DistMap;
|
alpar@780
|
173 |
private:
|
alpar@802
|
174 |
/// Pointer to the underlying graph.
|
alpar@780
|
175 |
const Graph *G;
|
alpar@802
|
176 |
///Pointer to the map of predecessors edges.
|
alpar@1218
|
177 |
PredMap *_pred;
|
alpar@1218
|
178 |
///Indicates if \ref _pred is locally allocated (\c true) or not.
|
alpar@1218
|
179 |
bool local_pred;
|
alpar@802
|
180 |
///Pointer to the map of distances.
|
alpar@1218
|
181 |
DistMap *_dist;
|
alpar@1218
|
182 |
///Indicates if \ref _dist is locally allocated (\c true) or not.
|
alpar@1218
|
183 |
bool local_dist;
|
alpar@1218
|
184 |
///Pointer to the map of reached status of the nodes.
|
alpar@1218
|
185 |
ReachedMap *_reached;
|
alpar@1218
|
186 |
///Indicates if \ref _reached is locally allocated (\c true) or not.
|
alpar@1218
|
187 |
bool local_reached;
|
alpar@1218
|
188 |
///Pointer to the map of processed status of the nodes.
|
alpar@1218
|
189 |
ProcessedMap *_processed;
|
alpar@1218
|
190 |
///Indicates if \ref _processed is locally allocated (\c true) or not.
|
alpar@1218
|
191 |
bool local_processed;
|
alpar@780
|
192 |
|
alpar@1218
|
193 |
std::vector<typename Graph::OutEdgeIt> _stack;
|
alpar@1218
|
194 |
int _stack_head;
|
alpar@780
|
195 |
|
alpar@1218
|
196 |
///Creates the maps if necessary.
|
alpar@1218
|
197 |
|
alpar@1218
|
198 |
///\todo Better memory allocation (instead of new).
|
alpar@1218
|
199 |
void create_maps()
|
alpar@780
|
200 |
{
|
alpar@1218
|
201 |
if(!_pred) {
|
alpar@1218
|
202 |
local_pred = true;
|
alpar@1218
|
203 |
_pred = Traits::createPredMap(*G);
|
alpar@780
|
204 |
}
|
alpar@1218
|
205 |
if(!_dist) {
|
alpar@1218
|
206 |
local_dist = true;
|
alpar@1218
|
207 |
_dist = Traits::createDistMap(*G);
|
alpar@780
|
208 |
}
|
alpar@1218
|
209 |
if(!_reached) {
|
alpar@1218
|
210 |
local_reached = true;
|
alpar@1218
|
211 |
_reached = Traits::createReachedMap(*G);
|
alpar@1218
|
212 |
}
|
alpar@1218
|
213 |
if(!_processed) {
|
alpar@1218
|
214 |
local_processed = true;
|
alpar@1218
|
215 |
_processed = Traits::createProcessedMap(*G);
|
alpar@780
|
216 |
}
|
alpar@780
|
217 |
}
|
deba@1710
|
218 |
|
deba@1710
|
219 |
protected:
|
deba@1710
|
220 |
|
deba@1710
|
221 |
Dfs() {}
|
alpar@780
|
222 |
|
deba@1710
|
223 |
public:
|
deba@1709
|
224 |
|
deba@1709
|
225 |
typedef Dfs Create;
|
deba@1709
|
226 |
|
alpar@1218
|
227 |
///\name Named template parameters
|
alpar@1218
|
228 |
|
alpar@1218
|
229 |
///@{
|
alpar@1218
|
230 |
|
alpar@1218
|
231 |
template <class T>
|
alpar@1218
|
232 |
struct DefPredMapTraits : public Traits {
|
alpar@1218
|
233 |
typedef T PredMap;
|
alpar@1218
|
234 |
static PredMap *createPredMap(const Graph &G)
|
alpar@1218
|
235 |
{
|
alpar@1218
|
236 |
throw UninitializedParameter();
|
alpar@1218
|
237 |
}
|
alpar@1218
|
238 |
};
|
alpar@1218
|
239 |
///\ref named-templ-param "Named parameter" for setting PredMap type
|
alpar@1218
|
240 |
|
alpar@1218
|
241 |
///\ref named-templ-param "Named parameter" for setting PredMap type
|
alpar@1218
|
242 |
///
|
alpar@1218
|
243 |
template <class T>
|
deba@1709
|
244 |
struct DefPredMap : public Dfs<Graph, DefPredMapTraits<T> > {
|
deba@1709
|
245 |
typedef Dfs<Graph, DefPredMapTraits<T> > Create;
|
deba@1709
|
246 |
};
|
alpar@1218
|
247 |
|
alpar@1218
|
248 |
|
alpar@1218
|
249 |
template <class T>
|
alpar@1218
|
250 |
struct DefDistMapTraits : public Traits {
|
alpar@1218
|
251 |
typedef T DistMap;
|
deba@2092
|
252 |
static DistMap *createDistMap(const Graph &)
|
alpar@1218
|
253 |
{
|
alpar@1218
|
254 |
throw UninitializedParameter();
|
alpar@1218
|
255 |
}
|
alpar@1218
|
256 |
};
|
alpar@1218
|
257 |
///\ref named-templ-param "Named parameter" for setting DistMap type
|
alpar@1218
|
258 |
|
alpar@1218
|
259 |
///\ref named-templ-param "Named parameter" for setting DistMap type
|
alpar@1218
|
260 |
///
|
alpar@1218
|
261 |
template <class T>
|
deba@1709
|
262 |
struct DefDistMap {
|
deba@1709
|
263 |
typedef Dfs<Graph, DefDistMapTraits<T> > Create;
|
deba@1709
|
264 |
};
|
alpar@1218
|
265 |
|
alpar@1218
|
266 |
template <class T>
|
alpar@1218
|
267 |
struct DefReachedMapTraits : public Traits {
|
alpar@1218
|
268 |
typedef T ReachedMap;
|
deba@2092
|
269 |
static ReachedMap *createReachedMap(const Graph &)
|
alpar@1218
|
270 |
{
|
alpar@1218
|
271 |
throw UninitializedParameter();
|
alpar@1218
|
272 |
}
|
alpar@1218
|
273 |
};
|
alpar@1218
|
274 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type
|
alpar@1218
|
275 |
|
alpar@1218
|
276 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type
|
alpar@1218
|
277 |
///
|
alpar@1218
|
278 |
template <class T>
|
deba@1749
|
279 |
struct DefReachedMap : public Dfs< Graph, DefReachedMapTraits<T> > {
|
deba@1709
|
280 |
typedef Dfs< Graph, DefReachedMapTraits<T> > Create;
|
alpar@1218
|
281 |
};
|
deba@1709
|
282 |
|
alpar@1218
|
283 |
template <class T>
|
alpar@1218
|
284 |
struct DefProcessedMapTraits : public Traits {
|
alpar@1218
|
285 |
typedef T ProcessedMap;
|
deba@2092
|
286 |
static ProcessedMap *createProcessedMap(const Graph &)
|
alpar@1218
|
287 |
{
|
alpar@1218
|
288 |
throw UninitializedParameter();
|
alpar@1218
|
289 |
}
|
alpar@1218
|
290 |
};
|
alpar@1218
|
291 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type
|
alpar@1218
|
292 |
|
alpar@1218
|
293 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type
|
alpar@1218
|
294 |
///
|
alpar@1218
|
295 |
template <class T>
|
deba@1694
|
296 |
struct DefProcessedMap : public Dfs< Graph, DefProcessedMapTraits<T> > {
|
deba@1709
|
297 |
typedef Dfs< Graph, DefProcessedMapTraits<T> > Create;
|
deba@1694
|
298 |
};
|
alpar@1218
|
299 |
|
alpar@1218
|
300 |
struct DefGraphProcessedMapTraits : public Traits {
|
alpar@1218
|
301 |
typedef typename Graph::template NodeMap<bool> ProcessedMap;
|
alpar@1218
|
302 |
static ProcessedMap *createProcessedMap(const Graph &G)
|
alpar@1218
|
303 |
{
|
alpar@1218
|
304 |
return new ProcessedMap(G);
|
alpar@1218
|
305 |
}
|
alpar@1218
|
306 |
};
|
alpar@1218
|
307 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
308 |
///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
|
alpar@1218
|
309 |
///
|
alpar@1218
|
310 |
///\ref named-templ-param "Named parameter"
|
alpar@1218
|
311 |
///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
|
alpar@1218
|
312 |
///If you don't set it explicitely, it will be automatically allocated.
|
alpar@1218
|
313 |
template <class T>
|
alpar@1218
|
314 |
class DefProcessedMapToBeDefaultMap :
|
deba@1709
|
315 |
public Dfs< Graph, DefGraphProcessedMapTraits> {
|
deba@1709
|
316 |
typedef Dfs< Graph, DefGraphProcessedMapTraits> Create;
|
deba@1709
|
317 |
};
|
alpar@1218
|
318 |
|
alpar@1218
|
319 |
///@}
|
alpar@1218
|
320 |
|
alpar@1218
|
321 |
public:
|
alpar@1218
|
322 |
|
alpar@802
|
323 |
///Constructor.
|
alpar@802
|
324 |
|
alpar@802
|
325 |
///\param _G the graph the algorithm will run on.
|
alpar@911
|
326 |
///
|
alpar@780
|
327 |
Dfs(const Graph& _G) :
|
alpar@780
|
328 |
G(&_G),
|
alpar@1218
|
329 |
_pred(NULL), local_pred(false),
|
alpar@1218
|
330 |
_dist(NULL), local_dist(false),
|
alpar@1218
|
331 |
_reached(NULL), local_reached(false),
|
alpar@1218
|
332 |
_processed(NULL), local_processed(false)
|
alpar@780
|
333 |
{ }
|
alpar@780
|
334 |
|
alpar@802
|
335 |
///Destructor.
|
alpar@780
|
336 |
~Dfs()
|
alpar@780
|
337 |
{
|
alpar@1218
|
338 |
if(local_pred) delete _pred;
|
alpar@1218
|
339 |
if(local_dist) delete _dist;
|
alpar@1218
|
340 |
if(local_reached) delete _reached;
|
alpar@1218
|
341 |
if(local_processed) delete _processed;
|
alpar@780
|
342 |
}
|
alpar@780
|
343 |
|
alpar@780
|
344 |
///Sets the map storing the predecessor edges.
|
alpar@780
|
345 |
|
alpar@780
|
346 |
///Sets the map storing the predecessor edges.
|
alpar@780
|
347 |
///If you don't use this function before calling \ref run(),
|
alpar@780
|
348 |
///it will allocate one. The destuctor deallocates this
|
alpar@780
|
349 |
///automatically allocated map, of course.
|
alpar@780
|
350 |
///\return <tt> (*this) </tt>
|
alpar@1218
|
351 |
Dfs &predMap(PredMap &m)
|
alpar@780
|
352 |
{
|
alpar@1218
|
353 |
if(local_pred) {
|
alpar@1218
|
354 |
delete _pred;
|
alpar@1218
|
355 |
local_pred=false;
|
alpar@780
|
356 |
}
|
alpar@1218
|
357 |
_pred = &m;
|
alpar@780
|
358 |
return *this;
|
alpar@780
|
359 |
}
|
alpar@780
|
360 |
|
alpar@780
|
361 |
///Sets the map storing the distances calculated by the algorithm.
|
alpar@780
|
362 |
|
alpar@780
|
363 |
///Sets the map storing the distances calculated by the algorithm.
|
alpar@780
|
364 |
///If you don't use this function before calling \ref run(),
|
alpar@780
|
365 |
///it will allocate one. The destuctor deallocates this
|
alpar@780
|
366 |
///automatically allocated map, of course.
|
alpar@780
|
367 |
///\return <tt> (*this) </tt>
|
alpar@1218
|
368 |
Dfs &distMap(DistMap &m)
|
alpar@780
|
369 |
{
|
alpar@1218
|
370 |
if(local_dist) {
|
alpar@1218
|
371 |
delete _dist;
|
alpar@1218
|
372 |
local_dist=false;
|
alpar@780
|
373 |
}
|
alpar@1218
|
374 |
_dist = &m;
|
alpar@780
|
375 |
return *this;
|
alpar@780
|
376 |
}
|
alpar@780
|
377 |
|
alpar@1220
|
378 |
///Sets the map indicating if a node is reached.
|
alpar@1220
|
379 |
|
alpar@1220
|
380 |
///Sets the map indicating if a node is reached.
|
alpar@1220
|
381 |
///If you don't use this function before calling \ref run(),
|
alpar@1220
|
382 |
///it will allocate one. The destuctor deallocates this
|
alpar@1220
|
383 |
///automatically allocated map, of course.
|
alpar@1220
|
384 |
///\return <tt> (*this) </tt>
|
alpar@1220
|
385 |
Dfs &reachedMap(ReachedMap &m)
|
alpar@1220
|
386 |
{
|
alpar@1220
|
387 |
if(local_reached) {
|
alpar@1220
|
388 |
delete _reached;
|
alpar@1220
|
389 |
local_reached=false;
|
alpar@1220
|
390 |
}
|
alpar@1220
|
391 |
_reached = &m;
|
alpar@1220
|
392 |
return *this;
|
alpar@1220
|
393 |
}
|
alpar@1220
|
394 |
|
alpar@1220
|
395 |
///Sets the map indicating if a node is processed.
|
alpar@1220
|
396 |
|
alpar@1220
|
397 |
///Sets the map indicating if a node is processed.
|
alpar@1220
|
398 |
///If you don't use this function before calling \ref run(),
|
alpar@1220
|
399 |
///it will allocate one. The destuctor deallocates this
|
alpar@1220
|
400 |
///automatically allocated map, of course.
|
alpar@1220
|
401 |
///\return <tt> (*this) </tt>
|
alpar@1220
|
402 |
Dfs &processedMap(ProcessedMap &m)
|
alpar@1220
|
403 |
{
|
alpar@1220
|
404 |
if(local_processed) {
|
alpar@1220
|
405 |
delete _processed;
|
alpar@1220
|
406 |
local_processed=false;
|
alpar@1220
|
407 |
}
|
alpar@1220
|
408 |
_processed = &m;
|
alpar@1220
|
409 |
return *this;
|
alpar@1220
|
410 |
}
|
alpar@1220
|
411 |
|
alpar@1218
|
412 |
public:
|
alpar@1218
|
413 |
///\name Execution control
|
alpar@1218
|
414 |
///The simplest way to execute the algorithm is to use
|
alpar@1218
|
415 |
///one of the member functions called \c run(...).
|
alpar@1218
|
416 |
///\n
|
alpar@1218
|
417 |
///If you need more control on the execution,
|
deba@1761
|
418 |
///first you must call \ref init(), then you can add a source node
|
alpar@1218
|
419 |
///with \ref addSource().
|
alpar@1218
|
420 |
///Finally \ref start() will perform the actual path
|
alpar@1218
|
421 |
///computation.
|
alpar@1218
|
422 |
|
alpar@1218
|
423 |
///@{
|
alpar@1218
|
424 |
|
alpar@1218
|
425 |
///Initializes the internal data structures.
|
alpar@1218
|
426 |
|
alpar@1218
|
427 |
///Initializes the internal data structures.
|
alpar@1218
|
428 |
///
|
alpar@1218
|
429 |
void init()
|
alpar@1218
|
430 |
{
|
alpar@1218
|
431 |
create_maps();
|
alpar@1218
|
432 |
_stack.resize(countNodes(*G));
|
alpar@1218
|
433 |
_stack_head=-1;
|
alpar@780
|
434 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
alpar@1218
|
435 |
_pred->set(u,INVALID);
|
alpar@1218
|
436 |
// _predNode->set(u,INVALID);
|
alpar@1218
|
437 |
_reached->set(u,false);
|
alpar@1218
|
438 |
_processed->set(u,false);
|
alpar@780
|
439 |
}
|
alpar@780
|
440 |
}
|
alpar@780
|
441 |
|
alpar@1218
|
442 |
///Adds a new source node.
|
alpar@780
|
443 |
|
alpar@1218
|
444 |
///Adds a new source node to the set of nodes to be processed.
|
alpar@1218
|
445 |
///
|
alpar@1874
|
446 |
///\warning dists are wrong (or at least strange)
|
alpar@1874
|
447 |
///in case of multiple sources.
|
alpar@1218
|
448 |
void addSource(Node s)
|
alpar@1218
|
449 |
{
|
alpar@1218
|
450 |
if(!(*_reached)[s])
|
alpar@1218
|
451 |
{
|
alpar@1218
|
452 |
_reached->set(s,true);
|
alpar@1218
|
453 |
_pred->set(s,INVALID);
|
alpar@1664
|
454 |
OutEdgeIt e(*G,s);
|
alpar@1666
|
455 |
if(e!=INVALID) {
|
alpar@1666
|
456 |
_stack[++_stack_head]=e;
|
alpar@1666
|
457 |
_dist->set(s,_stack_head);
|
alpar@1666
|
458 |
}
|
alpar@1666
|
459 |
else {
|
alpar@1666
|
460 |
_processed->set(s,true);
|
alpar@1666
|
461 |
_dist->set(s,0);
|
alpar@1666
|
462 |
}
|
alpar@1218
|
463 |
}
|
alpar@1218
|
464 |
}
|
alpar@1218
|
465 |
|
deba@1529
|
466 |
///Processes the next edge.
|
alpar@1218
|
467 |
|
deba@1529
|
468 |
///Processes the next edge.
|
alpar@1218
|
469 |
///
|
alpar@1516
|
470 |
///\return The processed edge.
|
alpar@1516
|
471 |
///
|
athos@1443
|
472 |
///\pre The stack must not be empty!
|
alpar@1516
|
473 |
Edge processNextEdge()
|
alpar@1218
|
474 |
{
|
alpar@1218
|
475 |
Node m;
|
alpar@1218
|
476 |
Edge e=_stack[_stack_head];
|
alpar@1218
|
477 |
if(!(*_reached)[m=G->target(e)]) {
|
alpar@1218
|
478 |
_pred->set(m,e);
|
alpar@1218
|
479 |
_reached->set(m,true);
|
alpar@1233
|
480 |
++_stack_head;
|
alpar@1233
|
481 |
_stack[_stack_head] = OutEdgeIt(*G, m);
|
alpar@1218
|
482 |
_dist->set(m,_stack_head);
|
alpar@1218
|
483 |
}
|
alpar@1218
|
484 |
else {
|
alpar@1663
|
485 |
m=G->source(e);
|
alpar@1663
|
486 |
++_stack[_stack_head];
|
alpar@1663
|
487 |
}
|
alpar@1663
|
488 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
alpar@1663
|
489 |
_processed->set(m,true);
|
alpar@1663
|
490 |
--_stack_head;
|
alpar@1663
|
491 |
if(_stack_head>=0) {
|
alpar@1663
|
492 |
m=G->source(_stack[_stack_head]);
|
alpar@1663
|
493 |
++_stack[_stack_head];
|
alpar@1663
|
494 |
}
|
alpar@1218
|
495 |
}
|
alpar@1516
|
496 |
return e;
|
alpar@1218
|
497 |
}
|
alpar@1665
|
498 |
///Next edge to be processed.
|
alpar@1665
|
499 |
|
alpar@1665
|
500 |
///Next edge to be processed.
|
alpar@1665
|
501 |
///
|
alpar@1665
|
502 |
///\return The next edge to be processed or INVALID if the stack is
|
alpar@1665
|
503 |
/// empty.
|
deba@1694
|
504 |
OutEdgeIt nextEdge()
|
alpar@1665
|
505 |
{
|
alpar@1665
|
506 |
return _stack_head>=0?_stack[_stack_head]:INVALID;
|
alpar@1665
|
507 |
}
|
deba@1694
|
508 |
|
alpar@1218
|
509 |
///\brief Returns \c false if there are nodes
|
alpar@1218
|
510 |
///to be processed in the queue
|
alpar@1218
|
511 |
///
|
alpar@1218
|
512 |
///Returns \c false if there are nodes
|
alpar@1218
|
513 |
///to be processed in the queue
|
alpar@1218
|
514 |
bool emptyQueue() { return _stack_head<0; }
|
alpar@1218
|
515 |
///Returns the number of the nodes to be processed.
|
alpar@1218
|
516 |
|
alpar@1218
|
517 |
///Returns the number of the nodes to be processed in the queue.
|
alpar@1218
|
518 |
int queueSize() { return _stack_head+1; }
|
alpar@1218
|
519 |
|
alpar@1218
|
520 |
///Executes the algorithm.
|
alpar@1218
|
521 |
|
alpar@1218
|
522 |
///Executes the algorithm.
|
alpar@1218
|
523 |
///
|
alpar@1218
|
524 |
///\pre init() must be called and at least one node should be added
|
alpar@1218
|
525 |
///with addSource() before using this function.
|
alpar@1218
|
526 |
///
|
alpar@1218
|
527 |
///This method runs the %DFS algorithm from the root node(s)
|
alpar@1218
|
528 |
///in order to
|
alpar@1218
|
529 |
///compute the
|
alpar@1218
|
530 |
///%DFS path to each node. The algorithm computes
|
alpar@1218
|
531 |
///- The %DFS tree.
|
athos@1443
|
532 |
///- The distance of each node from the root(s) in the %DFS tree.
|
alpar@1218
|
533 |
///
|
alpar@1218
|
534 |
void start()
|
alpar@1218
|
535 |
{
|
alpar@1218
|
536 |
while ( !emptyQueue() ) processNextEdge();
|
alpar@1218
|
537 |
}
|
alpar@1218
|
538 |
|
alpar@1218
|
539 |
///Executes the algorithm until \c dest is reached.
|
alpar@1218
|
540 |
|
alpar@1218
|
541 |
///Executes the algorithm until \c dest is reached.
|
alpar@1218
|
542 |
///
|
alpar@1218
|
543 |
///\pre init() must be called and at least one node should be added
|
alpar@1218
|
544 |
///with addSource() before using this function.
|
alpar@1218
|
545 |
///
|
alpar@1218
|
546 |
///This method runs the %DFS algorithm from the root node(s)
|
alpar@1218
|
547 |
///in order to
|
alpar@1218
|
548 |
///compute the
|
alpar@1218
|
549 |
///%DFS path to \c dest. The algorithm computes
|
alpar@1218
|
550 |
///- The %DFS path to \c dest.
|
athos@1443
|
551 |
///- The distance of \c dest from the root(s) in the %DFS tree.
|
alpar@1218
|
552 |
///
|
alpar@1218
|
553 |
void start(Node dest)
|
alpar@1218
|
554 |
{
|
alpar@1233
|
555 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest )
|
alpar@1233
|
556 |
processNextEdge();
|
alpar@1218
|
557 |
}
|
alpar@1218
|
558 |
|
alpar@1218
|
559 |
///Executes the algorithm until a condition is met.
|
alpar@1218
|
560 |
|
alpar@1218
|
561 |
///Executes the algorithm until a condition is met.
|
alpar@1218
|
562 |
///
|
alpar@1218
|
563 |
///\pre init() must be called and at least one node should be added
|
alpar@1218
|
564 |
///with addSource() before using this function.
|
alpar@1218
|
565 |
///
|
deba@1865
|
566 |
///\param em must be a bool (or convertible) edge map. The algorithm
|
deba@1865
|
567 |
///will stop when it reaches an edge \c e with \code em[e]==true \endcode.
|
athos@1443
|
568 |
///
|
deba@1749
|
569 |
///\warning Contrary to \ref Dfs and \ref Dijkstra, \c em is an edge map,
|
alpar@1233
|
570 |
///not a node map.
|
deba@1749
|
571 |
template<class EM>
|
deba@1749
|
572 |
void start(const EM &em)
|
deba@1749
|
573 |
{
|
deba@1749
|
574 |
while ( !emptyQueue() && !em[_stack[_stack_head]] ) processNextEdge();
|
deba@1749
|
575 |
}
|
deba@1749
|
576 |
|
deba@1981
|
577 |
///Runs %DFS algorithm to visit all nodes in the graph.
|
deba@1981
|
578 |
|
deba@1981
|
579 |
///This method runs the %DFS algorithm in order to
|
deba@1981
|
580 |
///compute the
|
deba@1981
|
581 |
///%DFS path to each node. The algorithm computes
|
deba@1981
|
582 |
///- The %DFS tree.
|
deba@1981
|
583 |
///- The distance of each node from the root in the %DFS tree.
|
deba@1981
|
584 |
///
|
deba@1981
|
585 |
///\note d.run() is just a shortcut of the following code.
|
deba@1981
|
586 |
///\code
|
deba@1981
|
587 |
/// d.init();
|
deba@1981
|
588 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1981
|
589 |
/// if (!d.reached(it)) {
|
deba@1981
|
590 |
/// d.addSource(it);
|
deba@1981
|
591 |
/// d.start();
|
deba@1981
|
592 |
/// }
|
deba@1981
|
593 |
/// }
|
deba@1981
|
594 |
///\endcode
|
deba@1981
|
595 |
void run() {
|
deba@1981
|
596 |
init();
|
deba@1981
|
597 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
deba@1981
|
598 |
if (!reached(it)) {
|
deba@1981
|
599 |
addSource(it);
|
deba@1981
|
600 |
start();
|
deba@1981
|
601 |
}
|
deba@1981
|
602 |
}
|
deba@1981
|
603 |
}
|
deba@1981
|
604 |
|
alpar@1218
|
605 |
///Runs %DFS algorithm from node \c s.
|
alpar@1218
|
606 |
|
alpar@1218
|
607 |
///This method runs the %DFS algorithm from a root node \c s
|
alpar@1218
|
608 |
///in order to
|
alpar@1218
|
609 |
///compute the
|
alpar@1218
|
610 |
///%DFS path to each node. The algorithm computes
|
alpar@1218
|
611 |
///- The %DFS tree.
|
athos@1443
|
612 |
///- The distance of each node from the root in the %DFS tree.
|
alpar@1218
|
613 |
///
|
alpar@1218
|
614 |
///\note d.run(s) is just a shortcut of the following code.
|
alpar@1218
|
615 |
///\code
|
alpar@1218
|
616 |
/// d.init();
|
alpar@1218
|
617 |
/// d.addSource(s);
|
alpar@1218
|
618 |
/// d.start();
|
alpar@1218
|
619 |
///\endcode
|
alpar@1218
|
620 |
void run(Node s) {
|
alpar@1218
|
621 |
init();
|
alpar@1218
|
622 |
addSource(s);
|
alpar@1218
|
623 |
start();
|
alpar@1218
|
624 |
}
|
alpar@1218
|
625 |
|
alpar@1218
|
626 |
///Finds the %DFS path between \c s and \c t.
|
alpar@1218
|
627 |
|
alpar@1218
|
628 |
///Finds the %DFS path between \c s and \c t.
|
alpar@1218
|
629 |
///
|
alpar@1218
|
630 |
///\return The length of the %DFS s---t path if there exists one,
|
alpar@1218
|
631 |
///0 otherwise.
|
athos@1540
|
632 |
///\note Apart from the return value, d.run(s,t) is
|
alpar@1218
|
633 |
///just a shortcut of the following code.
|
alpar@1218
|
634 |
///\code
|
alpar@1218
|
635 |
/// d.init();
|
alpar@1218
|
636 |
/// d.addSource(s);
|
alpar@1218
|
637 |
/// d.start(t);
|
alpar@1218
|
638 |
///\endcode
|
alpar@1218
|
639 |
int run(Node s,Node t) {
|
alpar@1218
|
640 |
init();
|
alpar@1218
|
641 |
addSource(s);
|
alpar@1218
|
642 |
start(t);
|
alpar@1233
|
643 |
return reached(t)?_stack_head+1:0;
|
alpar@1218
|
644 |
}
|
alpar@1218
|
645 |
|
alpar@1218
|
646 |
///@}
|
alpar@1218
|
647 |
|
alpar@1218
|
648 |
///\name Query Functions
|
alpar@1218
|
649 |
///The result of the %DFS algorithm can be obtained using these
|
alpar@1218
|
650 |
///functions.\n
|
alpar@1218
|
651 |
///Before the use of these functions,
|
alpar@1218
|
652 |
///either run() or start() must be called.
|
alpar@1218
|
653 |
|
alpar@1218
|
654 |
///@{
|
alpar@1218
|
655 |
|
deba@2335
|
656 |
typedef PredMapPath<Graph, PredMap> Path;
|
deba@2335
|
657 |
|
deba@2335
|
658 |
///Gives back the shortest path.
|
alpar@1283
|
659 |
|
deba@2335
|
660 |
///Gives back the shortest path.
|
deba@2335
|
661 |
///\pre The \c t should be reachable from the source.
|
deba@2335
|
662 |
Path path(Node t)
|
alpar@1283
|
663 |
{
|
deba@2335
|
664 |
return Path(*G, *_pred, t);
|
alpar@1283
|
665 |
}
|
alpar@1283
|
666 |
|
alpar@1218
|
667 |
///The distance of a node from the root(s).
|
alpar@1218
|
668 |
|
alpar@1218
|
669 |
///Returns the distance of a node from the root(s).
|
alpar@780
|
670 |
///\pre \ref run() must be called before using this function.
|
deba@1981
|
671 |
///\warning If node \c v is unreachable from the root(s) then the return
|
deba@1981
|
672 |
///value of this funcion is undefined.
|
alpar@1218
|
673 |
int dist(Node v) const { return (*_dist)[v]; }
|
alpar@780
|
674 |
|
alpar@1218
|
675 |
///Returns the 'previous edge' of the %DFS tree.
|
alpar@780
|
676 |
|
alpar@1218
|
677 |
///For a node \c v it returns the 'previous edge'
|
alpar@1218
|
678 |
///of the %DFS path,
|
alpar@1218
|
679 |
///i.e. it returns the last edge of a %DFS path from the root(s) to \c
|
alpar@780
|
680 |
///v. It is \ref INVALID
|
alpar@1218
|
681 |
///if \c v is unreachable from the root(s) or \c v is a root. The
|
alpar@781
|
682 |
///%DFS tree used here is equal to the %DFS tree used in
|
alpar@1631
|
683 |
///\ref predNode().
|
alpar@1218
|
684 |
///\pre Either \ref run() or \ref start() must be called before using
|
alpar@780
|
685 |
///this function.
|
deba@1763
|
686 |
Edge predEdge(Node v) const { return (*_pred)[v];}
|
alpar@780
|
687 |
|
alpar@781
|
688 |
///Returns the 'previous node' of the %DFS tree.
|
alpar@780
|
689 |
|
alpar@1218
|
690 |
///For a node \c v it returns the 'previous node'
|
alpar@1218
|
691 |
///of the %DFS tree,
|
alpar@1218
|
692 |
///i.e. it returns the last but one node from a %DFS path from the
|
alpar@2156
|
693 |
///root(s) to \c v.
|
alpar@1218
|
694 |
///It is INVALID if \c v is unreachable from the root(s) or
|
alpar@1218
|
695 |
///if \c v itself a root.
|
alpar@1218
|
696 |
///The %DFS tree used here is equal to the %DFS
|
deba@1763
|
697 |
///tree used in \ref predEdge().
|
alpar@1218
|
698 |
///\pre Either \ref run() or \ref start() must be called before
|
alpar@780
|
699 |
///using this function.
|
alpar@1218
|
700 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
alpar@1218
|
701 |
G->source((*_pred)[v]); }
|
alpar@780
|
702 |
|
alpar@1218
|
703 |
///Returns a reference to the NodeMap of distances.
|
alpar@1218
|
704 |
|
alpar@1218
|
705 |
///Returns a reference to the NodeMap of distances.
|
alpar@1218
|
706 |
///\pre Either \ref run() or \ref init() must
|
alpar@780
|
707 |
///be called before using this function.
|
alpar@1218
|
708 |
const DistMap &distMap() const { return *_dist;}
|
alpar@780
|
709 |
|
alpar@1218
|
710 |
///Returns a reference to the %DFS edge-tree map.
|
alpar@780
|
711 |
|
alpar@780
|
712 |
///Returns a reference to the NodeMap of the edges of the
|
alpar@781
|
713 |
///%DFS tree.
|
alpar@1218
|
714 |
///\pre Either \ref run() or \ref init()
|
alpar@1218
|
715 |
///must be called before using this function.
|
alpar@1218
|
716 |
const PredMap &predMap() const { return *_pred;}
|
alpar@780
|
717 |
|
alpar@780
|
718 |
///Checks if a node is reachable from the root.
|
alpar@780
|
719 |
|
athos@1438
|
720 |
///Returns \c true if \c v is reachable from the root(s).
|
athos@1438
|
721 |
///\warning The source nodes are inditated as unreachable.
|
alpar@1218
|
722 |
///\pre Either \ref run() or \ref start()
|
alpar@1218
|
723 |
///must be called before using this function.
|
alpar@780
|
724 |
///
|
alpar@1218
|
725 |
bool reached(Node v) { return (*_reached)[v]; }
|
alpar@1218
|
726 |
|
alpar@1218
|
727 |
///@}
|
alpar@1218
|
728 |
};
|
alpar@1218
|
729 |
|
alpar@1218
|
730 |
///Default traits class of Dfs function.
|
alpar@1218
|
731 |
|
alpar@1218
|
732 |
///Default traits class of Dfs function.
|
alpar@1218
|
733 |
///\param GR Graph type.
|
alpar@1218
|
734 |
template<class GR>
|
alpar@1218
|
735 |
struct DfsWizardDefaultTraits
|
alpar@1218
|
736 |
{
|
alpar@1218
|
737 |
///The graph type the algorithm runs on.
|
alpar@1218
|
738 |
typedef GR Graph;
|
alpar@1218
|
739 |
///\brief The type of the map that stores the last
|
alpar@1218
|
740 |
///edges of the %DFS paths.
|
alpar@1218
|
741 |
///
|
alpar@1218
|
742 |
///The type of the map that stores the last
|
alpar@1218
|
743 |
///edges of the %DFS paths.
|
alpar@2260
|
744 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@780
|
745 |
///
|
alpar@1218
|
746 |
typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
|
alpar@1218
|
747 |
///Instantiates a PredMap.
|
alpar@1218
|
748 |
|
alpar@1218
|
749 |
///This function instantiates a \ref PredMap.
|
alpar@1536
|
750 |
///\param g is the graph, to which we would like to define the PredMap.
|
alpar@1218
|
751 |
///\todo The graph alone may be insufficient to initialize
|
alpar@1536
|
752 |
#ifdef DOXYGEN
|
alpar@1536
|
753 |
static PredMap *createPredMap(const GR &g)
|
alpar@1536
|
754 |
#else
|
alpar@1367
|
755 |
static PredMap *createPredMap(const GR &)
|
alpar@1536
|
756 |
#endif
|
alpar@1218
|
757 |
{
|
alpar@1218
|
758 |
return new PredMap();
|
alpar@1218
|
759 |
}
|
alpar@1218
|
760 |
|
alpar@1218
|
761 |
///The type of the map that indicates which nodes are processed.
|
alpar@1218
|
762 |
|
alpar@1218
|
763 |
///The type of the map that indicates which nodes are processed.
|
alpar@2260
|
764 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
765 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
766 |
typedef NullMap<typename Graph::Node,bool> ProcessedMap;
|
alpar@1218
|
767 |
///Instantiates a ProcessedMap.
|
alpar@1218
|
768 |
|
alpar@1218
|
769 |
///This function instantiates a \ref ProcessedMap.
|
alpar@1536
|
770 |
///\param g is the graph, to which
|
alpar@1218
|
771 |
///we would like to define the \ref ProcessedMap
|
alpar@1536
|
772 |
#ifdef DOXYGEN
|
alpar@1536
|
773 |
static ProcessedMap *createProcessedMap(const GR &g)
|
alpar@1536
|
774 |
#else
|
alpar@1367
|
775 |
static ProcessedMap *createProcessedMap(const GR &)
|
alpar@1536
|
776 |
#endif
|
alpar@1218
|
777 |
{
|
alpar@1218
|
778 |
return new ProcessedMap();
|
alpar@1218
|
779 |
}
|
alpar@1218
|
780 |
///The type of the map that indicates which nodes are reached.
|
alpar@1218
|
781 |
|
alpar@1218
|
782 |
///The type of the map that indicates which nodes are reached.
|
alpar@2260
|
783 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
784 |
///\todo named parameter to set this type, function to read and write.
|
alpar@1218
|
785 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
alpar@1218
|
786 |
///Instantiates a ReachedMap.
|
alpar@1218
|
787 |
|
alpar@1218
|
788 |
///This function instantiates a \ref ReachedMap.
|
alpar@1218
|
789 |
///\param G is the graph, to which
|
alpar@1218
|
790 |
///we would like to define the \ref ReachedMap.
|
alpar@1218
|
791 |
static ReachedMap *createReachedMap(const GR &G)
|
alpar@1218
|
792 |
{
|
alpar@1218
|
793 |
return new ReachedMap(G);
|
alpar@1218
|
794 |
}
|
alpar@1218
|
795 |
///The type of the map that stores the dists of the nodes.
|
alpar@1218
|
796 |
|
alpar@1218
|
797 |
///The type of the map that stores the dists of the nodes.
|
alpar@2260
|
798 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
alpar@1218
|
799 |
///
|
alpar@1218
|
800 |
typedef NullMap<typename Graph::Node,int> DistMap;
|
alpar@1218
|
801 |
///Instantiates a DistMap.
|
alpar@1218
|
802 |
|
alpar@1218
|
803 |
///This function instantiates a \ref DistMap.
|
alpar@1536
|
804 |
///\param g is the graph, to which we would like to define the \ref DistMap
|
alpar@1536
|
805 |
#ifdef DOXYGEN
|
alpar@1536
|
806 |
static DistMap *createDistMap(const GR &g)
|
alpar@1536
|
807 |
#else
|
alpar@1367
|
808 |
static DistMap *createDistMap(const GR &)
|
alpar@1536
|
809 |
#endif
|
alpar@1218
|
810 |
{
|
alpar@1218
|
811 |
return new DistMap();
|
alpar@1218
|
812 |
}
|
alpar@1218
|
813 |
};
|
alpar@1218
|
814 |
|
alpar@1218
|
815 |
/// Default traits used by \ref DfsWizard
|
alpar@1218
|
816 |
|
alpar@1218
|
817 |
/// To make it easier to use Dfs algorithm
|
alpar@1218
|
818 |
///we have created a wizard class.
|
alpar@1218
|
819 |
/// This \ref DfsWizard class needs default traits,
|
alpar@1218
|
820 |
///as well as the \ref Dfs class.
|
alpar@1218
|
821 |
/// The \ref DfsWizardBase is a class to be the default traits of the
|
alpar@1218
|
822 |
/// \ref DfsWizard class.
|
alpar@1218
|
823 |
template<class GR>
|
alpar@1218
|
824 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR>
|
alpar@1218
|
825 |
{
|
alpar@1218
|
826 |
|
alpar@1218
|
827 |
typedef DfsWizardDefaultTraits<GR> Base;
|
alpar@1218
|
828 |
protected:
|
alpar@1218
|
829 |
/// Type of the nodes in the graph.
|
alpar@1218
|
830 |
typedef typename Base::Graph::Node Node;
|
alpar@1218
|
831 |
|
alpar@1218
|
832 |
/// Pointer to the underlying graph.
|
alpar@1218
|
833 |
void *_g;
|
alpar@1218
|
834 |
///Pointer to the map of reached nodes.
|
alpar@1218
|
835 |
void *_reached;
|
alpar@1218
|
836 |
///Pointer to the map of processed nodes.
|
alpar@1218
|
837 |
void *_processed;
|
alpar@1218
|
838 |
///Pointer to the map of predecessors edges.
|
alpar@1218
|
839 |
void *_pred;
|
alpar@1218
|
840 |
///Pointer to the map of distances.
|
alpar@1218
|
841 |
void *_dist;
|
alpar@1218
|
842 |
///Pointer to the source node.
|
alpar@1218
|
843 |
Node _source;
|
alpar@1218
|
844 |
|
alpar@1218
|
845 |
public:
|
alpar@1218
|
846 |
/// Constructor.
|
alpar@1218
|
847 |
|
alpar@1218
|
848 |
/// This constructor does not require parameters, therefore it initiates
|
alpar@1218
|
849 |
/// all of the attributes to default values (0, INVALID).
|
alpar@1218
|
850 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
|
alpar@1218
|
851 |
_dist(0), _source(INVALID) {}
|
alpar@1218
|
852 |
|
alpar@1218
|
853 |
/// Constructor.
|
alpar@1218
|
854 |
|
alpar@1218
|
855 |
/// This constructor requires some parameters,
|
alpar@1218
|
856 |
/// listed in the parameters list.
|
alpar@1218
|
857 |
/// Others are initiated to 0.
|
alpar@1218
|
858 |
/// \param g is the initial value of \ref _g
|
alpar@1218
|
859 |
/// \param s is the initial value of \ref _source
|
alpar@1218
|
860 |
DfsWizardBase(const GR &g, Node s=INVALID) :
|
deba@2386
|
861 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
|
deba@2386
|
862 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
|
alpar@1218
|
863 |
|
alpar@1218
|
864 |
};
|
alpar@1218
|
865 |
|
athos@1443
|
866 |
/// A class to make the usage of the Dfs algorithm easier
|
alpar@1218
|
867 |
|
athos@1443
|
868 |
/// This class is created to make it easier to use the Dfs algorithm.
|
alpar@1218
|
869 |
/// It uses the functions and features of the plain \ref Dfs,
|
alpar@1218
|
870 |
/// but it is much simpler to use it.
|
alpar@1218
|
871 |
///
|
alpar@1218
|
872 |
/// Simplicity means that the way to change the types defined
|
alpar@1218
|
873 |
/// in the traits class is based on functions that returns the new class
|
alpar@1218
|
874 |
/// and not on templatable built-in classes.
|
alpar@1218
|
875 |
/// When using the plain \ref Dfs
|
alpar@1218
|
876 |
/// the new class with the modified type comes from
|
alpar@1218
|
877 |
/// the original class by using the ::
|
alpar@1218
|
878 |
/// operator. In the case of \ref DfsWizard only
|
alpar@1218
|
879 |
/// a function have to be called and it will
|
alpar@1218
|
880 |
/// return the needed class.
|
alpar@1218
|
881 |
///
|
alpar@1218
|
882 |
/// It does not have own \ref run method. When its \ref run method is called
|
athos@1438
|
883 |
/// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run
|
alpar@1218
|
884 |
/// method of it.
|
alpar@1218
|
885 |
template<class TR>
|
alpar@1218
|
886 |
class DfsWizard : public TR
|
alpar@1218
|
887 |
{
|
alpar@1218
|
888 |
typedef TR Base;
|
alpar@1218
|
889 |
|
alpar@1218
|
890 |
///The type of the underlying graph.
|
alpar@1218
|
891 |
typedef typename TR::Graph Graph;
|
alpar@1218
|
892 |
//\e
|
alpar@1218
|
893 |
typedef typename Graph::Node Node;
|
alpar@1218
|
894 |
//\e
|
alpar@1218
|
895 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@1218
|
896 |
//\e
|
alpar@1218
|
897 |
typedef typename Graph::Edge Edge;
|
alpar@1218
|
898 |
//\e
|
alpar@1218
|
899 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@1218
|
900 |
|
alpar@1218
|
901 |
///\brief The type of the map that stores
|
alpar@1218
|
902 |
///the reached nodes
|
alpar@1218
|
903 |
typedef typename TR::ReachedMap ReachedMap;
|
alpar@1218
|
904 |
///\brief The type of the map that stores
|
alpar@1218
|
905 |
///the processed nodes
|
alpar@1218
|
906 |
typedef typename TR::ProcessedMap ProcessedMap;
|
alpar@1218
|
907 |
///\brief The type of the map that stores the last
|
alpar@1218
|
908 |
///edges of the %DFS paths.
|
alpar@1218
|
909 |
typedef typename TR::PredMap PredMap;
|
athos@1443
|
910 |
///The type of the map that stores the distances of the nodes.
|
alpar@1218
|
911 |
typedef typename TR::DistMap DistMap;
|
alpar@1218
|
912 |
|
deba@2019
|
913 |
public:
|
alpar@1218
|
914 |
/// Constructor.
|
alpar@1218
|
915 |
DfsWizard() : TR() {}
|
alpar@1218
|
916 |
|
alpar@1218
|
917 |
/// Constructor that requires parameters.
|
alpar@1218
|
918 |
|
alpar@1218
|
919 |
/// Constructor that requires parameters.
|
alpar@1218
|
920 |
/// These parameters will be the default values for the traits class.
|
alpar@1218
|
921 |
DfsWizard(const Graph &g, Node s=INVALID) :
|
alpar@1218
|
922 |
TR(g,s) {}
|
alpar@1218
|
923 |
|
alpar@1218
|
924 |
///Copy constructor
|
alpar@1218
|
925 |
DfsWizard(const TR &b) : TR(b) {}
|
alpar@1218
|
926 |
|
alpar@1218
|
927 |
~DfsWizard() {}
|
alpar@1218
|
928 |
|
alpar@1218
|
929 |
///Runs Dfs algorithm from a given node.
|
alpar@1218
|
930 |
|
alpar@1218
|
931 |
///Runs Dfs algorithm from a given node.
|
alpar@1218
|
932 |
///The node can be given by the \ref source function.
|
alpar@1218
|
933 |
void run()
|
alpar@1218
|
934 |
{
|
alpar@1218
|
935 |
if(Base::_source==INVALID) throw UninitializedParameter();
|
deba@2386
|
936 |
Dfs<Graph,TR> alg(*reinterpret_cast<const Graph*>(Base::_g));
|
deba@2386
|
937 |
if(Base::_reached)
|
deba@2386
|
938 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
|
deba@2386
|
939 |
if(Base::_processed)
|
deba@2386
|
940 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
|
deba@2386
|
941 |
if(Base::_pred)
|
deba@2386
|
942 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
|
deba@2386
|
943 |
if(Base::_dist)
|
deba@2386
|
944 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
|
alpar@1218
|
945 |
alg.run(Base::_source);
|
alpar@1218
|
946 |
}
|
alpar@1218
|
947 |
|
alpar@1218
|
948 |
///Runs Dfs algorithm from the given node.
|
alpar@1218
|
949 |
|
alpar@1218
|
950 |
///Runs Dfs algorithm from the given node.
|
alpar@1218
|
951 |
///\param s is the given source.
|
alpar@1218
|
952 |
void run(Node s)
|
alpar@1218
|
953 |
{
|
alpar@1218
|
954 |
Base::_source=s;
|
alpar@1218
|
955 |
run();
|
alpar@1218
|
956 |
}
|
alpar@1218
|
957 |
|
alpar@1218
|
958 |
template<class T>
|
alpar@1218
|
959 |
struct DefPredMapBase : public Base {
|
alpar@1218
|
960 |
typedef T PredMap;
|
alpar@1367
|
961 |
static PredMap *createPredMap(const Graph &) { return 0; };
|
alpar@1236
|
962 |
DefPredMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
963 |
};
|
alpar@1218
|
964 |
|
alpar@1218
|
965 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
966 |
///function for setting PredMap type
|
alpar@1218
|
967 |
///
|
alpar@1218
|
968 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
969 |
///function for setting PredMap type
|
alpar@1218
|
970 |
///
|
alpar@1218
|
971 |
template<class T>
|
alpar@1218
|
972 |
DfsWizard<DefPredMapBase<T> > predMap(const T &t)
|
alpar@1218
|
973 |
{
|
deba@2386
|
974 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
|
alpar@1218
|
975 |
return DfsWizard<DefPredMapBase<T> >(*this);
|
alpar@1218
|
976 |
}
|
alpar@1218
|
977 |
|
alpar@1218
|
978 |
|
alpar@1218
|
979 |
template<class T>
|
alpar@1218
|
980 |
struct DefReachedMapBase : public Base {
|
alpar@1218
|
981 |
typedef T ReachedMap;
|
alpar@1367
|
982 |
static ReachedMap *createReachedMap(const Graph &) { return 0; };
|
alpar@1236
|
983 |
DefReachedMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
984 |
};
|
alpar@1218
|
985 |
|
alpar@1218
|
986 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
987 |
///function for setting ReachedMap
|
alpar@1218
|
988 |
///
|
alpar@1218
|
989 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
990 |
///function for setting ReachedMap
|
alpar@1218
|
991 |
///
|
alpar@1218
|
992 |
template<class T>
|
alpar@1218
|
993 |
DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t)
|
alpar@1218
|
994 |
{
|
deba@2386
|
995 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
|
alpar@1218
|
996 |
return DfsWizard<DefReachedMapBase<T> >(*this);
|
alpar@1218
|
997 |
}
|
alpar@1218
|
998 |
|
alpar@1218
|
999 |
|
alpar@1218
|
1000 |
template<class T>
|
alpar@1218
|
1001 |
struct DefProcessedMapBase : public Base {
|
alpar@1218
|
1002 |
typedef T ProcessedMap;
|
alpar@1367
|
1003 |
static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
|
alpar@1236
|
1004 |
DefProcessedMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
1005 |
};
|
alpar@1218
|
1006 |
|
alpar@1218
|
1007 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
1008 |
///function for setting ProcessedMap
|
alpar@1218
|
1009 |
///
|
alpar@1218
|
1010 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
1011 |
///function for setting ProcessedMap
|
alpar@1218
|
1012 |
///
|
alpar@1218
|
1013 |
template<class T>
|
alpar@1218
|
1014 |
DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t)
|
alpar@1218
|
1015 |
{
|
deba@2386
|
1016 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
|
alpar@1218
|
1017 |
return DfsWizard<DefProcessedMapBase<T> >(*this);
|
alpar@1218
|
1018 |
}
|
alpar@1218
|
1019 |
|
alpar@1218
|
1020 |
template<class T>
|
alpar@1218
|
1021 |
struct DefDistMapBase : public Base {
|
alpar@1218
|
1022 |
typedef T DistMap;
|
alpar@1367
|
1023 |
static DistMap *createDistMap(const Graph &) { return 0; };
|
alpar@1236
|
1024 |
DefDistMapBase(const TR &b) : TR(b) {}
|
alpar@1218
|
1025 |
};
|
alpar@1218
|
1026 |
|
alpar@1218
|
1027 |
///\brief \ref named-templ-param "Named parameter"
|
alpar@1218
|
1028 |
///function for setting DistMap type
|
alpar@1218
|
1029 |
///
|
alpar@1218
|
1030 |
/// \ref named-templ-param "Named parameter"
|
alpar@1218
|
1031 |
///function for setting DistMap type
|
alpar@1218
|
1032 |
///
|
alpar@1218
|
1033 |
template<class T>
|
alpar@1218
|
1034 |
DfsWizard<DefDistMapBase<T> > distMap(const T &t)
|
alpar@1218
|
1035 |
{
|
deba@2386
|
1036 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
|
alpar@1218
|
1037 |
return DfsWizard<DefDistMapBase<T> >(*this);
|
alpar@1218
|
1038 |
}
|
alpar@1218
|
1039 |
|
alpar@1218
|
1040 |
/// Sets the source node, from which the Dfs algorithm runs.
|
alpar@1218
|
1041 |
|
alpar@1218
|
1042 |
/// Sets the source node, from which the Dfs algorithm runs.
|
alpar@1218
|
1043 |
/// \param s is the source node.
|
alpar@1218
|
1044 |
DfsWizard<TR> &source(Node s)
|
alpar@1218
|
1045 |
{
|
alpar@1218
|
1046 |
Base::_source=s;
|
alpar@1218
|
1047 |
return *this;
|
alpar@1218
|
1048 |
}
|
alpar@780
|
1049 |
|
alpar@780
|
1050 |
};
|
alpar@780
|
1051 |
|
alpar@1218
|
1052 |
///Function type interface for Dfs algorithm.
|
alpar@1218
|
1053 |
|
deba@2376
|
1054 |
///\ingroup search
|
alpar@1218
|
1055 |
///Function type interface for Dfs algorithm.
|
alpar@1218
|
1056 |
///
|
alpar@1218
|
1057 |
///This function also has several
|
alpar@1218
|
1058 |
///\ref named-templ-func-param "named parameters",
|
alpar@1218
|
1059 |
///they are declared as the members of class \ref DfsWizard.
|
alpar@1218
|
1060 |
///The following
|
alpar@1218
|
1061 |
///example shows how to use these parameters.
|
alpar@1218
|
1062 |
///\code
|
alpar@1218
|
1063 |
/// dfs(g,source).predMap(preds).run();
|
alpar@1218
|
1064 |
///\endcode
|
alpar@1218
|
1065 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()"
|
alpar@1218
|
1066 |
///to the end of the parameter list.
|
alpar@1218
|
1067 |
///\sa DfsWizard
|
alpar@1218
|
1068 |
///\sa Dfs
|
alpar@1218
|
1069 |
template<class GR>
|
alpar@1218
|
1070 |
DfsWizard<DfsWizardBase<GR> >
|
alpar@1218
|
1071 |
dfs(const GR &g,typename GR::Node s=INVALID)
|
alpar@1218
|
1072 |
{
|
alpar@1218
|
1073 |
return DfsWizard<DfsWizardBase<GR> >(g,s);
|
alpar@1218
|
1074 |
}
|
alpar@1218
|
1075 |
|
deba@1799
|
1076 |
#ifdef DOXYGEN
|
deba@1749
|
1077 |
/// \brief Visitor class for dfs.
|
deba@1749
|
1078 |
///
|
deba@1749
|
1079 |
/// It gives a simple interface for a functional interface for dfs
|
deba@1749
|
1080 |
/// traversal. The traversal on a linear data structure.
|
deba@1749
|
1081 |
template <typename _Graph>
|
deba@1749
|
1082 |
struct DfsVisitor {
|
deba@1749
|
1083 |
typedef _Graph Graph;
|
deba@1749
|
1084 |
typedef typename Graph::Edge Edge;
|
deba@1749
|
1085 |
typedef typename Graph::Node Node;
|
deba@1749
|
1086 |
/// \brief Called when the edge reach a node.
|
deba@1749
|
1087 |
///
|
deba@1749
|
1088 |
/// It is called when the dfs find an edge which target is not
|
deba@1749
|
1089 |
/// reached yet.
|
deba@1749
|
1090 |
void discover(const Edge& edge) {}
|
deba@1749
|
1091 |
/// \brief Called when the node reached first time.
|
deba@1749
|
1092 |
///
|
deba@1749
|
1093 |
/// It is Called when the node reached first time.
|
deba@1749
|
1094 |
void reach(const Node& node) {}
|
deba@1749
|
1095 |
/// \brief Called when we step back on an edge.
|
deba@1749
|
1096 |
///
|
deba@1749
|
1097 |
/// It is called when the dfs should step back on the edge.
|
deba@1749
|
1098 |
void backtrack(const Edge& edge) {}
|
deba@1749
|
1099 |
/// \brief Called when we step back from the node.
|
deba@1749
|
1100 |
///
|
deba@1749
|
1101 |
/// It is called when we step back from the node.
|
deba@1749
|
1102 |
void leave(const Node& node) {}
|
deba@1749
|
1103 |
/// \brief Called when the edge examined but target of the edge
|
deba@1749
|
1104 |
/// already discovered.
|
deba@1749
|
1105 |
///
|
deba@1749
|
1106 |
/// It called when the edge examined but the target of the edge
|
deba@1749
|
1107 |
/// already discovered.
|
deba@1749
|
1108 |
void examine(const Edge& edge) {}
|
deba@1749
|
1109 |
/// \brief Called for the source node of the dfs.
|
deba@1749
|
1110 |
///
|
deba@1749
|
1111 |
/// It is called for the source node of the dfs.
|
deba@1799
|
1112 |
void start(const Node& node) {}
|
deba@1749
|
1113 |
/// \brief Called when we leave the source node of the dfs.
|
deba@1749
|
1114 |
///
|
deba@1749
|
1115 |
/// It is called when we leave the source node of the dfs.
|
deba@1799
|
1116 |
void stop(const Node& node) {}
|
deba@1799
|
1117 |
|
deba@1799
|
1118 |
};
|
deba@1799
|
1119 |
#else
|
deba@1799
|
1120 |
template <typename _Graph>
|
deba@1799
|
1121 |
struct DfsVisitor {
|
deba@1799
|
1122 |
typedef _Graph Graph;
|
deba@1799
|
1123 |
typedef typename Graph::Edge Edge;
|
deba@1799
|
1124 |
typedef typename Graph::Node Node;
|
deba@1799
|
1125 |
void discover(const Edge&) {}
|
deba@1799
|
1126 |
void reach(const Node&) {}
|
deba@1799
|
1127 |
void backtrack(const Edge&) {}
|
deba@1799
|
1128 |
void leave(const Node&) {}
|
deba@1799
|
1129 |
void examine(const Edge&) {}
|
deba@1799
|
1130 |
void start(const Node&) {}
|
deba@1749
|
1131 |
void stop(const Node&) {}
|
deba@1749
|
1132 |
|
deba@1749
|
1133 |
template <typename _Visitor>
|
deba@1749
|
1134 |
struct Constraints {
|
deba@1749
|
1135 |
void constraints() {
|
deba@1749
|
1136 |
Edge edge;
|
deba@1749
|
1137 |
Node node;
|
deba@1749
|
1138 |
visitor.discover(edge);
|
deba@1749
|
1139 |
visitor.reach(node);
|
deba@1749
|
1140 |
visitor.backtrack(edge);
|
deba@1749
|
1141 |
visitor.leave(node);
|
deba@1749
|
1142 |
visitor.examine(edge);
|
deba@1749
|
1143 |
visitor.start(node);
|
deba@1749
|
1144 |
visitor.stop(edge);
|
deba@1749
|
1145 |
}
|
deba@1749
|
1146 |
_Visitor& visitor;
|
deba@1749
|
1147 |
};
|
deba@1749
|
1148 |
};
|
deba@1799
|
1149 |
#endif
|
deba@1749
|
1150 |
|
deba@1749
|
1151 |
/// \brief Default traits class of DfsVisit class.
|
deba@1749
|
1152 |
///
|
deba@1749
|
1153 |
/// Default traits class of DfsVisit class.
|
deba@1749
|
1154 |
/// \param _Graph Graph type.
|
deba@1749
|
1155 |
template<class _Graph>
|
deba@1749
|
1156 |
struct DfsVisitDefaultTraits {
|
deba@1749
|
1157 |
|
deba@1749
|
1158 |
/// \brief The graph type the algorithm runs on.
|
deba@1749
|
1159 |
typedef _Graph Graph;
|
deba@1749
|
1160 |
|
deba@1749
|
1161 |
/// \brief The type of the map that indicates which nodes are reached.
|
deba@1749
|
1162 |
///
|
deba@1749
|
1163 |
/// The type of the map that indicates which nodes are reached.
|
alpar@2260
|
1164 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1749
|
1165 |
/// \todo named parameter to set this type, function to read and write.
|
deba@1749
|
1166 |
typedef typename Graph::template NodeMap<bool> ReachedMap;
|
deba@1749
|
1167 |
|
deba@1749
|
1168 |
/// \brief Instantiates a ReachedMap.
|
deba@1749
|
1169 |
///
|
deba@1749
|
1170 |
/// This function instantiates a \ref ReachedMap.
|
deba@1865
|
1171 |
/// \param graph is the graph, to which
|
deba@1749
|
1172 |
/// we would like to define the \ref ReachedMap.
|
deba@1749
|
1173 |
static ReachedMap *createReachedMap(const Graph &graph) {
|
deba@1749
|
1174 |
return new ReachedMap(graph);
|
deba@1749
|
1175 |
}
|
deba@1749
|
1176 |
|
deba@1749
|
1177 |
};
|
deba@1749
|
1178 |
|
deba@1749
|
1179 |
/// %DFS Visit algorithm class.
|
deba@1749
|
1180 |
|
deba@2376
|
1181 |
/// \ingroup search
|
deba@1749
|
1182 |
/// This class provides an efficient implementation of the %DFS algorithm
|
deba@1749
|
1183 |
/// with visitor interface.
|
deba@1749
|
1184 |
///
|
deba@1749
|
1185 |
/// The %DfsVisit class provides an alternative interface to the Dfs
|
deba@1749
|
1186 |
/// class. It works with callback mechanism, the DfsVisit object calls
|
deba@1749
|
1187 |
/// on every dfs event the \c Visitor class member functions.
|
deba@1749
|
1188 |
///
|
deba@1749
|
1189 |
/// \param _Graph The graph type the algorithm runs on. The default value is
|
deba@1749
|
1190 |
/// \ref ListGraph. The value of _Graph is not used directly by Dfs, it
|
deba@1749
|
1191 |
/// is only passed to \ref DfsDefaultTraits.
|
deba@1749
|
1192 |
/// \param _Visitor The Visitor object for the algorithm. The
|
deba@1749
|
1193 |
/// \ref DfsVisitor "DfsVisitor<_Graph>" is an empty Visitor which
|
deba@1749
|
1194 |
/// does not observe the Dfs events. If you want to observe the dfs
|
deba@1749
|
1195 |
/// events you should implement your own Visitor class.
|
deba@1749
|
1196 |
/// \param _Traits Traits class to set various data types used by the
|
deba@1749
|
1197 |
/// algorithm. The default traits class is
|
deba@1749
|
1198 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Graph>".
|
deba@1749
|
1199 |
/// See \ref DfsVisitDefaultTraits for the documentation of
|
deba@1749
|
1200 |
/// a Dfs visit traits class.
|
deba@1749
|
1201 |
///
|
deba@1749
|
1202 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso
|
deba@1749
|
1203 |
#ifdef DOXYGEN
|
deba@1749
|
1204 |
template <typename _Graph, typename _Visitor, typename _Traits>
|
deba@1749
|
1205 |
#else
|
deba@1749
|
1206 |
template <typename _Graph = ListGraph,
|
deba@1749
|
1207 |
typename _Visitor = DfsVisitor<_Graph>,
|
deba@1749
|
1208 |
typename _Traits = DfsDefaultTraits<_Graph> >
|
deba@1749
|
1209 |
#endif
|
deba@1749
|
1210 |
class DfsVisit {
|
deba@1749
|
1211 |
public:
|
deba@1749
|
1212 |
|
deba@1749
|
1213 |
/// \brief \ref Exception for uninitialized parameters.
|
deba@1749
|
1214 |
///
|
deba@1749
|
1215 |
/// This error represents problems in the initialization
|
deba@1749
|
1216 |
/// of the parameters of the algorithms.
|
deba@1749
|
1217 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
deba@1749
|
1218 |
public:
|
alpar@2151
|
1219 |
virtual const char* what() const throw()
|
alpar@2152
|
1220 |
{
|
deba@1749
|
1221 |
return "lemon::DfsVisit::UninitializedParameter";
|
deba@1749
|
1222 |
}
|
deba@1749
|
1223 |
};
|
deba@1749
|
1224 |
|
deba@1749
|
1225 |
typedef _Traits Traits;
|
deba@1749
|
1226 |
|
deba@1749
|
1227 |
typedef typename Traits::Graph Graph;
|
deba@1749
|
1228 |
|
deba@1749
|
1229 |
typedef _Visitor Visitor;
|
deba@1749
|
1230 |
|
deba@1749
|
1231 |
///The type of the map indicating which nodes are reached.
|
deba@1749
|
1232 |
typedef typename Traits::ReachedMap ReachedMap;
|
deba@1749
|
1233 |
|
deba@1749
|
1234 |
private:
|
deba@1749
|
1235 |
|
deba@1749
|
1236 |
typedef typename Graph::Node Node;
|
deba@1749
|
1237 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1749
|
1238 |
typedef typename Graph::Edge Edge;
|
deba@1749
|
1239 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
deba@1749
|
1240 |
|
deba@1749
|
1241 |
/// Pointer to the underlying graph.
|
deba@1749
|
1242 |
const Graph *_graph;
|
deba@1749
|
1243 |
/// Pointer to the visitor object.
|
deba@1749
|
1244 |
Visitor *_visitor;
|
deba@1749
|
1245 |
///Pointer to the map of reached status of the nodes.
|
deba@1749
|
1246 |
ReachedMap *_reached;
|
deba@1749
|
1247 |
///Indicates if \ref _reached is locally allocated (\c true) or not.
|
deba@1749
|
1248 |
bool local_reached;
|
deba@1749
|
1249 |
|
deba@1749
|
1250 |
std::vector<typename Graph::Edge> _stack;
|
deba@1749
|
1251 |
int _stack_head;
|
deba@1749
|
1252 |
|
deba@1749
|
1253 |
/// \brief Creates the maps if necessary.
|
deba@1749
|
1254 |
///
|
deba@1749
|
1255 |
/// Creates the maps if necessary.
|
deba@1749
|
1256 |
void create_maps() {
|
deba@1749
|
1257 |
if(!_reached) {
|
deba@1749
|
1258 |
local_reached = true;
|
deba@1749
|
1259 |
_reached = Traits::createReachedMap(*_graph);
|
deba@1749
|
1260 |
}
|
deba@1749
|
1261 |
}
|
deba@1749
|
1262 |
|
deba@1749
|
1263 |
protected:
|
deba@1749
|
1264 |
|
deba@1749
|
1265 |
DfsVisit() {}
|
deba@1749
|
1266 |
|
deba@1749
|
1267 |
public:
|
deba@1749
|
1268 |
|
deba@1749
|
1269 |
typedef DfsVisit Create;
|
deba@1749
|
1270 |
|
deba@1749
|
1271 |
/// \name Named template parameters
|
deba@1749
|
1272 |
|
deba@1749
|
1273 |
///@{
|
deba@1749
|
1274 |
template <class T>
|
deba@1749
|
1275 |
struct DefReachedMapTraits : public Traits {
|
deba@1749
|
1276 |
typedef T ReachedMap;
|
deba@1749
|
1277 |
static ReachedMap *createReachedMap(const Graph &graph) {
|
deba@1749
|
1278 |
throw UninitializedParameter();
|
deba@1749
|
1279 |
}
|
deba@1749
|
1280 |
};
|
deba@1749
|
1281 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
deba@1749
|
1282 |
/// ReachedMap type
|
deba@1749
|
1283 |
///
|
deba@1749
|
1284 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type
|
deba@1749
|
1285 |
template <class T>
|
alpar@1773
|
1286 |
struct DefReachedMap : public DfsVisit< Graph, Visitor,
|
alpar@1773
|
1287 |
DefReachedMapTraits<T> > {
|
alpar@1773
|
1288 |
typedef DfsVisit< Graph, Visitor, DefReachedMapTraits<T> > Create;
|
deba@1749
|
1289 |
};
|
deba@1749
|
1290 |
///@}
|
deba@1749
|
1291 |
|
deba@1749
|
1292 |
public:
|
deba@1749
|
1293 |
|
deba@1749
|
1294 |
/// \brief Constructor.
|
deba@1749
|
1295 |
///
|
deba@1749
|
1296 |
/// Constructor.
|
deba@1749
|
1297 |
///
|
deba@1749
|
1298 |
/// \param graph the graph the algorithm will run on.
|
deba@1749
|
1299 |
/// \param visitor The visitor of the algorithm.
|
deba@1749
|
1300 |
///
|
deba@1749
|
1301 |
DfsVisit(const Graph& graph, Visitor& visitor)
|
deba@1749
|
1302 |
: _graph(&graph), _visitor(&visitor),
|
deba@1749
|
1303 |
_reached(0), local_reached(false) {}
|
deba@1749
|
1304 |
|
deba@1749
|
1305 |
/// \brief Destructor.
|
deba@1749
|
1306 |
///
|
deba@1749
|
1307 |
/// Destructor.
|
deba@1749
|
1308 |
~DfsVisit() {
|
deba@1749
|
1309 |
if(local_reached) delete _reached;
|
deba@1749
|
1310 |
}
|
deba@1749
|
1311 |
|
deba@1749
|
1312 |
/// \brief Sets the map indicating if a node is reached.
|
deba@1749
|
1313 |
///
|
deba@1749
|
1314 |
/// Sets the map indicating if a node is reached.
|
deba@1749
|
1315 |
/// If you don't use this function before calling \ref run(),
|
deba@1749
|
1316 |
/// it will allocate one. The destuctor deallocates this
|
deba@1749
|
1317 |
/// automatically allocated map, of course.
|
deba@1749
|
1318 |
/// \return <tt> (*this) </tt>
|
deba@1749
|
1319 |
DfsVisit &reachedMap(ReachedMap &m) {
|
deba@1749
|
1320 |
if(local_reached) {
|
deba@1749
|
1321 |
delete _reached;
|
deba@1749
|
1322 |
local_reached=false;
|
deba@1749
|
1323 |
}
|
deba@1749
|
1324 |
_reached = &m;
|
deba@1749
|
1325 |
return *this;
|
deba@1749
|
1326 |
}
|
deba@1749
|
1327 |
|
deba@1749
|
1328 |
public:
|
deba@1749
|
1329 |
/// \name Execution control
|
deba@1749
|
1330 |
/// The simplest way to execute the algorithm is to use
|
deba@1749
|
1331 |
/// one of the member functions called \c run(...).
|
deba@1749
|
1332 |
/// \n
|
deba@1749
|
1333 |
/// If you need more control on the execution,
|
deba@1761
|
1334 |
/// first you must call \ref init(), then you can adda source node
|
deba@1749
|
1335 |
/// with \ref addSource().
|
deba@1749
|
1336 |
/// Finally \ref start() will perform the actual path
|
deba@1749
|
1337 |
/// computation.
|
deba@1749
|
1338 |
|
deba@1749
|
1339 |
/// @{
|
deba@1749
|
1340 |
/// \brief Initializes the internal data structures.
|
deba@1749
|
1341 |
///
|
deba@1749
|
1342 |
/// Initializes the internal data structures.
|
deba@1749
|
1343 |
///
|
deba@1749
|
1344 |
void init() {
|
deba@1749
|
1345 |
create_maps();
|
deba@1749
|
1346 |
_stack.resize(countNodes(*_graph));
|
deba@1749
|
1347 |
_stack_head = -1;
|
deba@1749
|
1348 |
for (NodeIt u(*_graph) ; u != INVALID ; ++u) {
|
deba@1749
|
1349 |
_reached->set(u, false);
|
deba@1749
|
1350 |
}
|
deba@1749
|
1351 |
}
|
deba@1749
|
1352 |
|
deba@1749
|
1353 |
/// \brief Adds a new source node.
|
deba@1749
|
1354 |
///
|
deba@1749
|
1355 |
/// Adds a new source node to the set of nodes to be processed.
|
deba@1749
|
1356 |
void addSource(Node s) {
|
deba@1749
|
1357 |
if(!(*_reached)[s]) {
|
deba@1749
|
1358 |
_reached->set(s,true);
|
deba@1749
|
1359 |
_visitor->start(s);
|
deba@1749
|
1360 |
_visitor->reach(s);
|
deba@1749
|
1361 |
Edge e;
|
deba@1749
|
1362 |
_graph->firstOut(e, s);
|
deba@1749
|
1363 |
if (e != INVALID) {
|
deba@1749
|
1364 |
_stack[++_stack_head] = e;
|
deba@1749
|
1365 |
} else {
|
deba@1749
|
1366 |
_visitor->leave(s);
|
deba@1749
|
1367 |
}
|
deba@1749
|
1368 |
}
|
deba@1749
|
1369 |
}
|
deba@1749
|
1370 |
|
deba@1749
|
1371 |
/// \brief Processes the next edge.
|
deba@1749
|
1372 |
///
|
deba@1749
|
1373 |
/// Processes the next edge.
|
deba@1749
|
1374 |
///
|
deba@1749
|
1375 |
/// \return The processed edge.
|
deba@1749
|
1376 |
///
|
deba@1749
|
1377 |
/// \pre The stack must not be empty!
|
deba@1749
|
1378 |
Edge processNextEdge() {
|
deba@1749
|
1379 |
Edge e = _stack[_stack_head];
|
deba@1749
|
1380 |
Node m = _graph->target(e);
|
deba@1749
|
1381 |
if(!(*_reached)[m]) {
|
deba@1749
|
1382 |
_visitor->discover(e);
|
deba@1749
|
1383 |
_visitor->reach(m);
|
deba@1749
|
1384 |
_reached->set(m, true);
|
deba@1749
|
1385 |
_graph->firstOut(_stack[++_stack_head], m);
|
deba@1749
|
1386 |
} else {
|
deba@1749
|
1387 |
_visitor->examine(e);
|
deba@1749
|
1388 |
m = _graph->source(e);
|
deba@1749
|
1389 |
_graph->nextOut(_stack[_stack_head]);
|
deba@1749
|
1390 |
}
|
deba@1749
|
1391 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
deba@1749
|
1392 |
_visitor->leave(m);
|
deba@1749
|
1393 |
--_stack_head;
|
deba@1749
|
1394 |
if (_stack_head >= 0) {
|
deba@1749
|
1395 |
_visitor->backtrack(_stack[_stack_head]);
|
deba@1749
|
1396 |
m = _graph->source(_stack[_stack_head]);
|
deba@1749
|
1397 |
_graph->nextOut(_stack[_stack_head]);
|
deba@1749
|
1398 |
} else {
|
deba@1749
|
1399 |
_visitor->stop(m);
|
deba@1749
|
1400 |
}
|
deba@1749
|
1401 |
}
|
deba@1749
|
1402 |
return e;
|
deba@1749
|
1403 |
}
|
deba@1749
|
1404 |
|
deba@1749
|
1405 |
/// \brief Next edge to be processed.
|
deba@1749
|
1406 |
///
|
deba@1749
|
1407 |
/// Next edge to be processed.
|
deba@1749
|
1408 |
///
|
deba@1749
|
1409 |
/// \return The next edge to be processed or INVALID if the stack is
|
deba@1749
|
1410 |
/// empty.
|
deba@1749
|
1411 |
Edge nextEdge() {
|
deba@1749
|
1412 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
|
deba@1749
|
1413 |
}
|
deba@1749
|
1414 |
|
deba@1749
|
1415 |
/// \brief Returns \c false if there are nodes
|
deba@1749
|
1416 |
/// to be processed in the queue
|
deba@1749
|
1417 |
///
|
deba@1749
|
1418 |
/// Returns \c false if there are nodes
|
deba@1749
|
1419 |
/// to be processed in the queue
|
deba@1749
|
1420 |
bool emptyQueue() { return _stack_head < 0; }
|
deba@1749
|
1421 |
|
deba@1749
|
1422 |
/// \brief Returns the number of the nodes to be processed.
|
deba@1749
|
1423 |
///
|
deba@1749
|
1424 |
/// Returns the number of the nodes to be processed in the queue.
|
deba@1749
|
1425 |
int queueSize() { return _stack_head + 1; }
|
deba@1749
|
1426 |
|
deba@1749
|
1427 |
/// \brief Executes the algorithm.
|
deba@1749
|
1428 |
///
|
deba@1749
|
1429 |
/// Executes the algorithm.
|
deba@1749
|
1430 |
///
|
deba@1749
|
1431 |
/// \pre init() must be called and at least one node should be added
|
deba@1749
|
1432 |
/// with addSource() before using this function.
|
deba@1749
|
1433 |
void start() {
|
deba@1749
|
1434 |
while ( !emptyQueue() ) processNextEdge();
|
deba@1749
|
1435 |
}
|
deba@1749
|
1436 |
|
deba@1749
|
1437 |
/// \brief Executes the algorithm until \c dest is reached.
|
deba@1749
|
1438 |
///
|
deba@1749
|
1439 |
/// Executes the algorithm until \c dest is reached.
|
deba@1749
|
1440 |
///
|
deba@1749
|
1441 |
/// \pre init() must be called and at least one node should be added
|
deba@1749
|
1442 |
/// with addSource() before using this function.
|
deba@1749
|
1443 |
void start(Node dest) {
|
deba@1749
|
1444 |
while ( !emptyQueue() && _graph->target(_stack[_stack_head]) != dest)
|
deba@1749
|
1445 |
processNextEdge();
|
deba@1749
|
1446 |
}
|
deba@1749
|
1447 |
|
deba@1749
|
1448 |
/// \brief Executes the algorithm until a condition is met.
|
deba@1749
|
1449 |
///
|
deba@1749
|
1450 |
/// Executes the algorithm until a condition is met.
|
deba@1749
|
1451 |
///
|
deba@1749
|
1452 |
/// \pre init() must be called and at least one node should be added
|
deba@1749
|
1453 |
/// with addSource() before using this function.
|
deba@1749
|
1454 |
///
|
deba@1865
|
1455 |
/// \param em must be a bool (or convertible) edge map. The algorithm
|
deba@1865
|
1456 |
/// will stop when it reaches an edge \c e with \code nm[e]==true \endcode.
|
deba@1749
|
1457 |
///
|
deba@1749
|
1458 |
/// \warning Contrary to \ref Dfs and \ref Dijkstra, \c em is an edge map,
|
deba@1749
|
1459 |
/// not a node map.
|
deba@1749
|
1460 |
template <typename EM>
|
deba@1749
|
1461 |
void start(const EM &em) {
|
deba@1749
|
1462 |
while (!emptyQueue() && !em[_stack[_stack_head]]) processNextEdge();
|
deba@1749
|
1463 |
}
|
deba@1749
|
1464 |
|
deba@1981
|
1465 |
/// \brief Runs %DFSVisit algorithm from node \c s.
|
deba@1749
|
1466 |
///
|
deba@1749
|
1467 |
/// This method runs the %DFS algorithm from a root node \c s.
|
deba@1749
|
1468 |
/// \note d.run(s) is just a shortcut of the following code.
|
alpar@1946
|
1469 |
///\code
|
deba@1749
|
1470 |
/// d.init();
|
deba@1749
|
1471 |
/// d.addSource(s);
|
deba@1749
|
1472 |
/// d.start();
|
alpar@1946
|
1473 |
///\endcode
|
deba@1749
|
1474 |
void run(Node s) {
|
deba@1749
|
1475 |
init();
|
deba@1749
|
1476 |
addSource(s);
|
deba@1749
|
1477 |
start();
|
deba@1749
|
1478 |
}
|
deba@1981
|
1479 |
|
deba@1981
|
1480 |
/// \brief Runs %DFSVisit algorithm to visit all nodes in the graph.
|
deba@1981
|
1481 |
|
deba@1981
|
1482 |
/// This method runs the %DFS algorithm in order to
|
deba@1981
|
1483 |
/// compute the %DFS path to each node. The algorithm computes
|
deba@1981
|
1484 |
/// - The %DFS tree.
|
deba@1981
|
1485 |
/// - The distance of each node from the root in the %DFS tree.
|
deba@1981
|
1486 |
///
|
deba@1981
|
1487 |
///\note d.run() is just a shortcut of the following code.
|
deba@1981
|
1488 |
///\code
|
deba@1981
|
1489 |
/// d.init();
|
deba@1981
|
1490 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
deba@1981
|
1491 |
/// if (!d.reached(it)) {
|
deba@1981
|
1492 |
/// d.addSource(it);
|
deba@1981
|
1493 |
/// d.start();
|
deba@1981
|
1494 |
/// }
|
deba@1981
|
1495 |
/// }
|
deba@1981
|
1496 |
///\endcode
|
deba@1981
|
1497 |
void run() {
|
deba@1981
|
1498 |
init();
|
deba@1981
|
1499 |
for (NodeIt it(*_graph); it != INVALID; ++it) {
|
deba@1981
|
1500 |
if (!reached(it)) {
|
deba@1981
|
1501 |
addSource(it);
|
deba@1981
|
1502 |
start();
|
deba@1981
|
1503 |
}
|
deba@1981
|
1504 |
}
|
deba@1981
|
1505 |
}
|
deba@1749
|
1506 |
///@}
|
deba@1749
|
1507 |
|
deba@1749
|
1508 |
/// \name Query Functions
|
deba@1749
|
1509 |
/// The result of the %DFS algorithm can be obtained using these
|
deba@1749
|
1510 |
/// functions.\n
|
deba@1749
|
1511 |
/// Before the use of these functions,
|
deba@1749
|
1512 |
/// either run() or start() must be called.
|
deba@1749
|
1513 |
///@{
|
deba@1749
|
1514 |
/// \brief Checks if a node is reachable from the root.
|
deba@1749
|
1515 |
///
|
deba@1749
|
1516 |
/// Returns \c true if \c v is reachable from the root(s).
|
deba@1749
|
1517 |
/// \warning The source nodes are inditated as unreachable.
|
deba@1749
|
1518 |
/// \pre Either \ref run() or \ref start()
|
deba@1749
|
1519 |
/// must be called before using this function.
|
deba@1749
|
1520 |
///
|
deba@1749
|
1521 |
bool reached(Node v) { return (*_reached)[v]; }
|
deba@1749
|
1522 |
///@}
|
deba@1749
|
1523 |
};
|
deba@1749
|
1524 |
|
deba@1749
|
1525 |
|
alpar@921
|
1526 |
} //END OF NAMESPACE LEMON
|
alpar@780
|
1527 |
|
alpar@780
|
1528 |
#endif
|
alpar@780
|
1529 |
|