athos@1560
|
1 |
/* -*- C++ -*-
|
athos@1560
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
athos@1560
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
athos@1560
|
8 |
*
|
athos@1560
|
9 |
* Permission to use, modify and distribute this software is granted
|
athos@1560
|
10 |
* provided that this copyright notice appears in all copies. For
|
athos@1560
|
11 |
* precise terms see the accompanying LICENSE file.
|
athos@1560
|
12 |
*
|
athos@1560
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
athos@1560
|
14 |
* express or implied, and with no claim as to its suitability for any
|
athos@1560
|
15 |
* purpose.
|
athos@1560
|
16 |
*
|
athos@1560
|
17 |
*/
|
athos@1560
|
18 |
|
athos@1560
|
19 |
///\ingroup demos
|
athos@1560
|
20 |
///\file
|
athos@1560
|
21 |
///\brief Max flow problem solved with an LP solver (demo).
|
athos@1560
|
22 |
///
|
athos@1583
|
23 |
/// This demo program shows how to solve a maximum (or maximal) flow
|
athos@1583
|
24 |
/// problem using the LEMON LP solver interface. We would like to lay
|
athos@1583
|
25 |
/// the emphasis on the simplicity of the way one can formulate LP
|
athos@1583
|
26 |
/// constraints that arise in graph theory in our library LEMON .
|
alpar@1641
|
27 |
///
|
alpar@1641
|
28 |
/// \include lp_maxflow_demo.cc
|
athos@1560
|
29 |
|
alpar@1361
|
30 |
#include<lemon/graph_reader.h>
|
alpar@1361
|
31 |
#include<lemon/list_graph.h>
|
alpar@1610
|
32 |
#include <lemon/lp.h>
|
alpar@1361
|
33 |
|
athos@1560
|
34 |
#include <fstream>
|
athos@1560
|
35 |
#include <iostream>
|
athos@1560
|
36 |
|
alpar@1381
|
37 |
|
alpar@1381
|
38 |
|
alpar@1361
|
39 |
using namespace lemon;
|
alpar@1361
|
40 |
|
alpar@1361
|
41 |
template<class G,class C>
|
alpar@1361
|
42 |
double maxFlow(const G &g,const C &cap,typename G::Node s,typename G::Node t)
|
alpar@1361
|
43 |
{
|
alpar@1610
|
44 |
Lp lp;
|
alpar@1361
|
45 |
|
alpar@1361
|
46 |
typedef G Graph;
|
alpar@1361
|
47 |
typedef typename G::Node Node;
|
alpar@1361
|
48 |
typedef typename G::NodeIt NodeIt;
|
alpar@1361
|
49 |
typedef typename G::Edge Edge;
|
alpar@1361
|
50 |
typedef typename G::EdgeIt EdgeIt;
|
alpar@1361
|
51 |
typedef typename G::OutEdgeIt OutEdgeIt;
|
alpar@1361
|
52 |
typedef typename G::InEdgeIt InEdgeIt;
|
alpar@1361
|
53 |
|
athos@1518
|
54 |
//Define a map on the edges for the variables of the LP problem
|
alpar@1610
|
55 |
typename G::template EdgeMap<Lp::Col> x(g);
|
alpar@1361
|
56 |
lp.addColSet(x);
|
alpar@1361
|
57 |
|
athos@1518
|
58 |
//Nonnegativity and capacity constraints
|
alpar@1361
|
59 |
for(EdgeIt e(g);e!=INVALID;++e) {
|
alpar@1361
|
60 |
lp.colUpperBound(x[e],cap[e]);
|
alpar@1361
|
61 |
lp.colLowerBound(x[e],0);
|
alpar@1361
|
62 |
}
|
alpar@1361
|
63 |
|
athos@1518
|
64 |
|
athos@1518
|
65 |
//Flow conservation constraints for the nodes (except for 's' and 't')
|
alpar@1361
|
66 |
for(NodeIt n(g);n!=INVALID;++n) if(n!=s&&n!=t) {
|
alpar@1610
|
67 |
Lp::Expr ex;
|
alpar@1361
|
68 |
for(InEdgeIt e(g,n);e!=INVALID;++e) ex+=x[e];
|
alpar@1361
|
69 |
for(OutEdgeIt e(g,n);e!=INVALID;++e) ex-=x[e];
|
alpar@1361
|
70 |
lp.addRow(ex==0);
|
alpar@1361
|
71 |
}
|
athos@1518
|
72 |
|
athos@1518
|
73 |
//Objective function: the flow value entering 't'
|
alpar@1610
|
74 |
Lp::Expr obj;
|
alpar@1571
|
75 |
for(InEdgeIt e(g,t);e!=INVALID;++e) obj+=x[e];
|
alpar@1571
|
76 |
for(OutEdgeIt e(g,t);e!=INVALID;++e) obj-=x[e];
|
deba@2369
|
77 |
lp.obj(obj);
|
alpar@1571
|
78 |
|
athos@1518
|
79 |
|
athos@1518
|
80 |
//Maximization
|
alpar@1361
|
81 |
lp.max();
|
alpar@1361
|
82 |
|
alpar@1610
|
83 |
#if DEFAULT_LP==GLPK
|
alpar@1361
|
84 |
lp.presolver(true);
|
alpar@1361
|
85 |
lp.messageLevel(3);
|
alpar@1381
|
86 |
#endif
|
alpar@1361
|
87 |
|
athos@1577
|
88 |
std::cout<<"Solver used: "<<default_solver_name<<std::endl;
|
athos@1577
|
89 |
|
athos@1518
|
90 |
//Solve with the underlying solver
|
alpar@1361
|
91 |
lp.solve();
|
alpar@1361
|
92 |
|
alpar@1361
|
93 |
return lp.primalValue();
|
alpar@1361
|
94 |
}
|
alpar@1361
|
95 |
|
athos@1560
|
96 |
int main(int argc, char *argv[])
|
alpar@1361
|
97 |
{
|
athos@1560
|
98 |
if(argc<2)
|
athos@1560
|
99 |
{
|
athos@1577
|
100 |
std::cerr << " USAGE: lp_maxflow_demo input_file.lgf" << std::endl;
|
alpar@1561
|
101 |
std::cerr << " The file 'input_file.lgf' has to contain a max "
|
alpar@1561
|
102 |
<< "flow instance in\n"
|
alpar@1561
|
103 |
<< " LEMON format (e.g. sample.lgf is such a file)."
|
alpar@1561
|
104 |
<< std::endl;
|
athos@1560
|
105 |
return 0;
|
athos@1560
|
106 |
}
|
athos@1560
|
107 |
|
athos@1560
|
108 |
|
athos@1560
|
109 |
//input stream to read the graph from
|
athos@1560
|
110 |
std::ifstream is(argv[1]);
|
athos@1560
|
111 |
|
athos@1560
|
112 |
|
alpar@1361
|
113 |
ListGraph g;
|
alpar@1361
|
114 |
ListGraph::Node s;
|
alpar@1361
|
115 |
ListGraph::Node t;
|
alpar@1361
|
116 |
|
alpar@1361
|
117 |
ListGraph::EdgeMap<double> cap(g);
|
alpar@1361
|
118 |
|
athos@1560
|
119 |
GraphReader<ListGraph> reader(is,g);
|
deba@1394
|
120 |
reader.readNode("source",s).readNode("target",t)
|
deba@1394
|
121 |
.readEdgeMap("capacity",cap).run();
|
alpar@1361
|
122 |
|
alpar@1361
|
123 |
std::cout << "Max flow value = " << maxFlow(g,cap,s,t) << std::endl;
|
alpar@1361
|
124 |
|
alpar@1361
|
125 |
}
|