alpar@255
|
1 |
// -*- C++ -*-
|
alpar@255
|
2 |
|
jacint@373
|
3 |
#ifndef HUGO_FIB_HEAP_H
|
jacint@373
|
4 |
#define HUGO_FIB_HEAP_H
|
alpar@255
|
5 |
|
alpar@255
|
6 |
///\file
|
alpar@255
|
7 |
///\brief Fibonacci Heap implementation.
|
alpar@255
|
8 |
|
alpar@255
|
9 |
#include <vector>
|
alpar@255
|
10 |
#include <functional>
|
alpar@255
|
11 |
#include <math.h>
|
alpar@255
|
12 |
|
alpar@255
|
13 |
namespace hugo {
|
alpar@255
|
14 |
|
jacint@373
|
15 |
/// An implementation of the Fibonacci Heap.
|
jacint@373
|
16 |
|
jacint@373
|
17 |
/**
|
jacint@373
|
18 |
This class implements the \e Fibonacci \e heap data structure. A \e
|
jacint@373
|
19 |
heap is a data structure for storing items with specified priorities,
|
jacint@373
|
20 |
such that finding the item with minimum priority is efficient. In a
|
jacint@373
|
21 |
heap one can change the priority of an item, and to add or erase an
|
jacint@373
|
22 |
item.
|
jacint@373
|
23 |
|
jacint@373
|
24 |
The methods \ref increase and \ref erase are not efficient, in
|
jacint@373
|
25 |
case of many calls to these operations, it is better to use
|
jacint@373
|
26 |
a binary heap.
|
jacint@373
|
27 |
|
jacint@373
|
28 |
/param Item The type of the items to be stored.
|
jacint@373
|
29 |
/param Prio The type of the priority of the items.
|
jacint@373
|
30 |
/param ItemIntMap A read and writable Item int map, for the usage of
|
jacint@373
|
31 |
the heap.
|
jacint@373
|
32 |
/param Compare A class for the comparison of the priorities. The
|
jacint@373
|
33 |
default is \c std::less<Prio>.
|
jacint@373
|
34 |
|
jacint@373
|
35 |
*/
|
jacint@373
|
36 |
|
jacint@373
|
37 |
#ifdef DOXYGEN
|
jacint@373
|
38 |
template <typename Item,
|
jacint@373
|
39 |
typename Prio,
|
jacint@373
|
40 |
typename ItemIntMap,
|
jacint@373
|
41 |
typename Compare>
|
jacint@373
|
42 |
#else
|
jacint@373
|
43 |
template <typename Item,
|
jacint@373
|
44 |
typename Prio,
|
jacint@373
|
45 |
typename ItemIntMap,
|
alpar@255
|
46 |
typename Compare = std::less<Prio> >
|
jacint@373
|
47 |
#endif
|
alpar@255
|
48 |
class FibHeap {
|
jacint@373
|
49 |
public:
|
alpar@255
|
50 |
typedef Prio PrioType;
|
alpar@255
|
51 |
|
jacint@373
|
52 |
private:
|
alpar@255
|
53 |
class store;
|
alpar@255
|
54 |
|
alpar@255
|
55 |
std::vector<store> container;
|
alpar@255
|
56 |
int minimum;
|
alpar@255
|
57 |
ItemIntMap &iimap;
|
alpar@255
|
58 |
Compare comp;
|
alpar@255
|
59 |
int num_items;
|
jacint@373
|
60 |
|
alpar@255
|
61 |
///\todo It is use nowhere
|
alpar@255
|
62 |
///\todo It doesn't conform to the naming conventions.
|
alpar@255
|
63 |
public:
|
alpar@255
|
64 |
enum state_enum {
|
alpar@255
|
65 |
IN_HEAP = 0,
|
alpar@255
|
66 |
PRE_HEAP = -1,
|
alpar@255
|
67 |
POST_HEAP = -2
|
alpar@255
|
68 |
};
|
alpar@255
|
69 |
|
alpar@255
|
70 |
public :
|
alpar@255
|
71 |
|
jacint@373
|
72 |
FibHeap(ItemIntMap &_iimap) : minimum(0), iimap(_iimap), num_items() {}
|
jacint@373
|
73 |
FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0),
|
alpar@255
|
74 |
iimap(_iimap), comp(_comp), num_items() {}
|
alpar@255
|
75 |
|
jacint@373
|
76 |
///The number of items stored in the heap.
|
jacint@373
|
77 |
|
jacint@373
|
78 |
/**
|
jacint@373
|
79 |
Returns the number of items stored in the heap.
|
jacint@373
|
80 |
*/
|
jacint@373
|
81 |
int size() const { return num_items; }
|
jacint@373
|
82 |
|
jacint@373
|
83 |
///Checks if the heap stores no items.
|
alpar@255
|
84 |
|
jacint@373
|
85 |
/**
|
jacint@373
|
86 |
Returns true iff the heap stores no items.
|
jacint@373
|
87 |
*/
|
jacint@373
|
88 |
bool empty() const { return num_items==0; }
|
jacint@373
|
89 |
|
jacint@373
|
90 |
///Item \c item gets to the heap with priority \c value independently if \c item was already there.
|
jacint@373
|
91 |
|
jacint@373
|
92 |
/**
|
jacint@373
|
93 |
This method calls \ref push(item, value) if \c item is not
|
jacint@373
|
94 |
stored in the heap, and it calls \ref decrease(it, \c value) or
|
jacint@373
|
95 |
\ref increase(it, \c value) otherwise.
|
jacint@373
|
96 |
*/
|
jacint@373
|
97 |
void set (Item const item, PrioType const value); //vigyazat: az implementacioban it van
|
jacint@373
|
98 |
|
jacint@373
|
99 |
///Adds \c item to the heap with priority \c value.
|
jacint@373
|
100 |
|
jacint@373
|
101 |
/**
|
jacint@373
|
102 |
Adds \c item to the heap with priority \c value.
|
jacint@373
|
103 |
\pre \c item must not be stored in the heap.
|
jacint@373
|
104 |
*/
|
jacint@373
|
105 |
void push (Item const it, PrioType const value); /*vigyazat: az implementacioban it van*/
|
jacint@373
|
106 |
|
jacint@373
|
107 |
|
jacint@373
|
108 |
///Returns the item having the minimum priority w.r.t. Compare.
|
jacint@373
|
109 |
|
jacint@373
|
110 |
/**
|
jacint@373
|
111 |
This method returns the item having the minimum priority w.r.t. Compare.
|
jacint@373
|
112 |
\pre The heap must be nonempty.
|
jacint@373
|
113 |
*/
|
jacint@373
|
114 |
Item top() const { return container[minimum].name; }
|
jacint@373
|
115 |
|
jacint@373
|
116 |
|
jacint@373
|
117 |
///Returns the minimum priority w.r.t. Compare.
|
jacint@373
|
118 |
|
jacint@373
|
119 |
/**
|
jacint@373
|
120 |
It returns the minimum priority w.r.t. Compare.
|
jacint@373
|
121 |
\pre The heap must be nonempty.
|
jacint@373
|
122 |
*/
|
jacint@373
|
123 |
PrioType prio() const { return container[minimum].prio; }
|
jacint@373
|
124 |
|
jacint@373
|
125 |
|
jacint@373
|
126 |
///Returns the priority of \c item.
|
jacint@373
|
127 |
|
jacint@373
|
128 |
/**
|
jacint@373
|
129 |
It returns the priority of \c item.
|
jacint@373
|
130 |
\pre \c item must be in the heap.
|
jacint@373
|
131 |
*/
|
jacint@373
|
132 |
PrioType& operator[](const Item& it) { return container[iimap[it]].prio; }
|
jacint@373
|
133 |
|
jacint@373
|
134 |
///Returns the priority of \c item.
|
jacint@373
|
135 |
|
jacint@373
|
136 |
/**
|
jacint@373
|
137 |
It returns the priority of \c item.
|
jacint@373
|
138 |
\pre \c item must be in the heap.
|
jacint@373
|
139 |
*/
|
jacint@373
|
140 |
const PrioType& operator[](const Item& it) const {
|
jacint@373
|
141 |
return container[iimap[it]].prio;
|
alpar@255
|
142 |
}
|
alpar@255
|
143 |
|
alpar@255
|
144 |
|
jacint@373
|
145 |
///Deletes the item with minimum priority w.r.t. Compare.
|
alpar@255
|
146 |
|
jacint@373
|
147 |
/**
|
jacint@373
|
148 |
This method deletes the item with minimum priority w.r.t.
|
jacint@373
|
149 |
Compare from the heap.
|
jacint@373
|
150 |
\pre The heap must be non-empty.
|
jacint@373
|
151 |
*/
|
jacint@373
|
152 |
void pop();
|
jacint@373
|
153 |
|
jacint@373
|
154 |
///Deletes \c item from the heap.
|
jacint@373
|
155 |
|
jacint@373
|
156 |
/**
|
jacint@373
|
157 |
This method deletes \c item from the heap, if \c item was already
|
jacint@373
|
158 |
stored in the heap. It is quite inefficient in Fibonacci heaps.
|
jacint@373
|
159 |
*/
|
jacint@373
|
160 |
void erase (const Item& item); /*vigyazat: az implementacioban it van*/
|
jacint@373
|
161 |
|
jacint@373
|
162 |
///Decreases the priority of \c item to \c value.
|
jacint@373
|
163 |
|
jacint@373
|
164 |
/**
|
jacint@373
|
165 |
This method decreases the priority of \c item to \c value.
|
jacint@373
|
166 |
\pre \c item must be stored in the heap with priority at least \c
|
jacint@373
|
167 |
value w.r.t. Compare.
|
jacint@373
|
168 |
*/
|
jacint@373
|
169 |
void decrease (Item item, PrioType const value); /*vigyazat: az implementacioban it van*/
|
jacint@373
|
170 |
|
jacint@373
|
171 |
|
jacint@373
|
172 |
///Increases the priority of \c item to \c value.
|
jacint@373
|
173 |
|
jacint@373
|
174 |
/**
|
jacint@373
|
175 |
This method sets the priority of \c item to \c value. Though
|
jacint@373
|
176 |
there is no precondition on the priority of \c item, this
|
jacint@373
|
177 |
method should be used only if one wants to \e increase
|
jacint@373
|
178 |
(w.r.t. Compare) the priority of \c item, because this
|
jacint@373
|
179 |
method is inefficient.
|
jacint@373
|
180 |
*/
|
jacint@373
|
181 |
void increase (Item it, PrioType const value) {
|
jacint@373
|
182 |
erase(it);
|
jacint@373
|
183 |
push(it, value);
|
jacint@373
|
184 |
}
|
jacint@373
|
185 |
|
jacint@373
|
186 |
|
jacint@373
|
187 |
///Tells if \c item is in, was in, or has not been in the heap.
|
jacint@373
|
188 |
|
jacint@373
|
189 |
/**
|
jacint@373
|
190 |
This method returns PRE_HEAP if \c item has never been in the
|
jacint@373
|
191 |
heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
|
jacint@373
|
192 |
otherwise. In the latter case it is possible that \c item will
|
jacint@373
|
193 |
get back to the heap again.
|
jacint@373
|
194 |
*/
|
jacint@373
|
195 |
state_enum state(const Item &it); /*vigyazat: az implementacioban it van*/
|
jacint@373
|
196 |
|
jacint@373
|
197 |
|
jacint@373
|
198 |
|
jacint@373
|
199 |
// **********************************************************************
|
jacint@373
|
200 |
// IMPLEMENTATIONS
|
jacint@373
|
201 |
// **********************************************************************
|
jacint@373
|
202 |
|
alpar@255
|
203 |
|
alpar@255
|
204 |
void set (Item const it, PrioType const value) {
|
alpar@255
|
205 |
int i=iimap[it];
|
alpar@255
|
206 |
if ( i >= 0 && container[i].in ) {
|
alpar@255
|
207 |
if ( comp(value, container[i].prio) ) decrease(it, value);
|
alpar@255
|
208 |
if ( comp(container[i].prio, value) ) increase(it, value);
|
alpar@255
|
209 |
} else push(it, value);
|
alpar@255
|
210 |
}
|
alpar@255
|
211 |
|
alpar@255
|
212 |
|
alpar@255
|
213 |
void push (Item const it, PrioType const value) {
|
alpar@255
|
214 |
int i=iimap[it];
|
alpar@255
|
215 |
if ( i < 0 ) {
|
alpar@255
|
216 |
int s=container.size();
|
alpar@255
|
217 |
iimap.set( it, s );
|
alpar@255
|
218 |
store st;
|
alpar@255
|
219 |
st.name=it;
|
alpar@255
|
220 |
container.push_back(st);
|
alpar@255
|
221 |
i=s;
|
alpar@255
|
222 |
} else {
|
alpar@255
|
223 |
container[i].parent=container[i].child=-1;
|
alpar@255
|
224 |
container[i].degree=0;
|
alpar@255
|
225 |
container[i].in=true;
|
alpar@255
|
226 |
container[i].marked=false;
|
alpar@255
|
227 |
}
|
alpar@255
|
228 |
|
alpar@255
|
229 |
if ( num_items ) {
|
alpar@255
|
230 |
container[container[minimum].right_neighbor].left_neighbor=i;
|
alpar@255
|
231 |
container[i].right_neighbor=container[minimum].right_neighbor;
|
alpar@255
|
232 |
container[minimum].right_neighbor=i;
|
alpar@255
|
233 |
container[i].left_neighbor=minimum;
|
alpar@255
|
234 |
if ( comp( value, container[minimum].prio) ) minimum=i;
|
alpar@255
|
235 |
} else {
|
alpar@255
|
236 |
container[i].right_neighbor=container[i].left_neighbor=i;
|
alpar@255
|
237 |
minimum=i;
|
alpar@255
|
238 |
}
|
alpar@255
|
239 |
container[i].prio=value;
|
alpar@255
|
240 |
++num_items;
|
alpar@255
|
241 |
}
|
alpar@255
|
242 |
|
alpar@255
|
243 |
|
alpar@255
|
244 |
void pop() {
|
alpar@255
|
245 |
/*The first case is that there are only one root.*/
|
alpar@255
|
246 |
if ( container[minimum].left_neighbor==minimum ) {
|
alpar@255
|
247 |
container[minimum].in=false;
|
alpar@255
|
248 |
if ( container[minimum].degree!=0 ) {
|
alpar@255
|
249 |
makeroot(container[minimum].child);
|
alpar@255
|
250 |
minimum=container[minimum].child;
|
alpar@255
|
251 |
balance();
|
alpar@255
|
252 |
}
|
alpar@255
|
253 |
} else {
|
alpar@255
|
254 |
int right=container[minimum].right_neighbor;
|
alpar@255
|
255 |
unlace(minimum);
|
alpar@255
|
256 |
container[minimum].in=false;
|
alpar@255
|
257 |
if ( container[minimum].degree > 0 ) {
|
alpar@255
|
258 |
int left=container[minimum].left_neighbor;
|
alpar@255
|
259 |
int child=container[minimum].child;
|
alpar@255
|
260 |
int last_child=container[child].left_neighbor;
|
alpar@255
|
261 |
|
alpar@255
|
262 |
makeroot(child);
|
alpar@255
|
263 |
|
alpar@255
|
264 |
container[left].right_neighbor=child;
|
alpar@255
|
265 |
container[child].left_neighbor=left;
|
alpar@255
|
266 |
container[right].left_neighbor=last_child;
|
alpar@255
|
267 |
container[last_child].right_neighbor=right;
|
alpar@255
|
268 |
}
|
alpar@255
|
269 |
minimum=right;
|
alpar@255
|
270 |
balance();
|
alpar@255
|
271 |
} // the case where there are more roots
|
alpar@255
|
272 |
--num_items;
|
alpar@255
|
273 |
}
|
alpar@255
|
274 |
|
alpar@255
|
275 |
|
alpar@255
|
276 |
void erase (const Item& it) {
|
alpar@255
|
277 |
int i=iimap[it];
|
alpar@255
|
278 |
|
alpar@255
|
279 |
if ( i >= 0 && container[i].in ) {
|
alpar@255
|
280 |
if ( container[i].parent!=-1 ) {
|
alpar@255
|
281 |
int p=container[i].parent;
|
alpar@255
|
282 |
cut(i,p);
|
alpar@255
|
283 |
cascade(p);
|
alpar@255
|
284 |
}
|
alpar@255
|
285 |
minimum=i; //As if its prio would be -infinity
|
alpar@255
|
286 |
pop();
|
alpar@255
|
287 |
}
|
alpar@255
|
288 |
}
|
alpar@255
|
289 |
|
alpar@255
|
290 |
|
alpar@255
|
291 |
void decrease (Item it, PrioType const value) {
|
alpar@255
|
292 |
int i=iimap[it];
|
alpar@255
|
293 |
container[i].prio=value;
|
alpar@255
|
294 |
int p=container[i].parent;
|
alpar@255
|
295 |
|
alpar@255
|
296 |
if ( p!=-1 && comp(value, container[p].prio) ) {
|
alpar@255
|
297 |
cut(i,p);
|
alpar@255
|
298 |
cascade(p);
|
alpar@255
|
299 |
}
|
alpar@255
|
300 |
if ( comp(value, container[minimum].prio) ) minimum=i;
|
alpar@255
|
301 |
}
|
alpar@255
|
302 |
|
alpar@255
|
303 |
|
alpar@255
|
304 |
state_enum state(const Item &it) const {
|
alpar@255
|
305 |
int i=iimap[it];
|
alpar@255
|
306 |
if( i>=0 ) {
|
alpar@255
|
307 |
if ( container[i].in ) i=0;
|
alpar@255
|
308 |
else i=-2;
|
alpar@255
|
309 |
}
|
alpar@255
|
310 |
return state_enum(i);
|
alpar@255
|
311 |
}
|
alpar@255
|
312 |
|
alpar@255
|
313 |
|
alpar@255
|
314 |
private:
|
alpar@255
|
315 |
|
alpar@255
|
316 |
void balance() {
|
alpar@255
|
317 |
|
alpar@255
|
318 |
int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
|
alpar@255
|
319 |
|
alpar@255
|
320 |
std::vector<int> A(maxdeg,-1);
|
alpar@255
|
321 |
|
alpar@255
|
322 |
/*
|
alpar@255
|
323 |
*Recall that now minimum does not point to the minimum prio element.
|
alpar@255
|
324 |
*We set minimum to this during balance().
|
alpar@255
|
325 |
*/
|
alpar@255
|
326 |
int anchor=container[minimum].left_neighbor;
|
alpar@255
|
327 |
int next=minimum;
|
alpar@255
|
328 |
bool end=false;
|
alpar@255
|
329 |
|
alpar@255
|
330 |
do {
|
alpar@255
|
331 |
int active=next;
|
alpar@255
|
332 |
if ( anchor==active ) end=true;
|
alpar@255
|
333 |
int d=container[active].degree;
|
alpar@255
|
334 |
next=container[active].right_neighbor;
|
alpar@255
|
335 |
|
alpar@255
|
336 |
while (A[d]!=-1) {
|
alpar@255
|
337 |
if( comp(container[active].prio, container[A[d]].prio) ) {
|
alpar@255
|
338 |
fuse(active,A[d]);
|
alpar@255
|
339 |
} else {
|
alpar@255
|
340 |
fuse(A[d],active);
|
alpar@255
|
341 |
active=A[d];
|
alpar@255
|
342 |
}
|
alpar@255
|
343 |
A[d]=-1;
|
alpar@255
|
344 |
++d;
|
alpar@255
|
345 |
}
|
alpar@255
|
346 |
A[d]=active;
|
alpar@255
|
347 |
} while ( !end );
|
alpar@255
|
348 |
|
alpar@255
|
349 |
|
alpar@255
|
350 |
while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
|
alpar@255
|
351 |
int s=minimum;
|
alpar@255
|
352 |
int m=minimum;
|
alpar@255
|
353 |
do {
|
alpar@255
|
354 |
if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
|
alpar@255
|
355 |
s=container[s].right_neighbor;
|
alpar@255
|
356 |
} while ( s != m );
|
alpar@255
|
357 |
}
|
alpar@255
|
358 |
|
alpar@255
|
359 |
|
alpar@255
|
360 |
void makeroot (int c) {
|
alpar@255
|
361 |
int s=c;
|
alpar@255
|
362 |
do {
|
alpar@255
|
363 |
container[s].parent=-1;
|
alpar@255
|
364 |
s=container[s].right_neighbor;
|
alpar@255
|
365 |
} while ( s != c );
|
alpar@255
|
366 |
}
|
alpar@255
|
367 |
|
alpar@255
|
368 |
|
alpar@255
|
369 |
void cut (int a, int b) {
|
alpar@255
|
370 |
/*
|
alpar@255
|
371 |
*Replacing a from the children of b.
|
alpar@255
|
372 |
*/
|
alpar@255
|
373 |
--container[b].degree;
|
alpar@255
|
374 |
|
alpar@255
|
375 |
if ( container[b].degree !=0 ) {
|
alpar@255
|
376 |
int child=container[b].child;
|
alpar@255
|
377 |
if ( child==a )
|
alpar@255
|
378 |
container[b].child=container[child].right_neighbor;
|
alpar@255
|
379 |
unlace(a);
|
alpar@255
|
380 |
}
|
alpar@255
|
381 |
|
alpar@255
|
382 |
|
alpar@255
|
383 |
/*Lacing a to the roots.*/
|
alpar@255
|
384 |
int right=container[minimum].right_neighbor;
|
alpar@255
|
385 |
container[minimum].right_neighbor=a;
|
alpar@255
|
386 |
container[a].left_neighbor=minimum;
|
alpar@255
|
387 |
container[a].right_neighbor=right;
|
alpar@255
|
388 |
container[right].left_neighbor=a;
|
alpar@255
|
389 |
|
alpar@255
|
390 |
container[a].parent=-1;
|
alpar@255
|
391 |
container[a].marked=false;
|
alpar@255
|
392 |
}
|
alpar@255
|
393 |
|
alpar@255
|
394 |
|
alpar@255
|
395 |
void cascade (int a)
|
alpar@255
|
396 |
{
|
alpar@255
|
397 |
if ( container[a].parent!=-1 ) {
|
alpar@255
|
398 |
int p=container[a].parent;
|
alpar@255
|
399 |
|
alpar@255
|
400 |
if ( container[a].marked==false ) container[a].marked=true;
|
alpar@255
|
401 |
else {
|
alpar@255
|
402 |
cut(a,p);
|
alpar@255
|
403 |
cascade(p);
|
alpar@255
|
404 |
}
|
alpar@255
|
405 |
}
|
alpar@255
|
406 |
}
|
alpar@255
|
407 |
|
alpar@255
|
408 |
|
alpar@255
|
409 |
void fuse (int a, int b) {
|
alpar@255
|
410 |
unlace(b);
|
alpar@255
|
411 |
|
alpar@255
|
412 |
/*Lacing b under a.*/
|
alpar@255
|
413 |
container[b].parent=a;
|
alpar@255
|
414 |
|
alpar@255
|
415 |
if (container[a].degree==0) {
|
alpar@255
|
416 |
container[b].left_neighbor=b;
|
alpar@255
|
417 |
container[b].right_neighbor=b;
|
alpar@255
|
418 |
container[a].child=b;
|
alpar@255
|
419 |
} else {
|
alpar@255
|
420 |
int child=container[a].child;
|
alpar@255
|
421 |
int last_child=container[child].left_neighbor;
|
alpar@255
|
422 |
container[child].left_neighbor=b;
|
alpar@255
|
423 |
container[b].right_neighbor=child;
|
alpar@255
|
424 |
container[last_child].right_neighbor=b;
|
alpar@255
|
425 |
container[b].left_neighbor=last_child;
|
alpar@255
|
426 |
}
|
alpar@255
|
427 |
|
alpar@255
|
428 |
++container[a].degree;
|
alpar@255
|
429 |
|
alpar@255
|
430 |
container[b].marked=false;
|
alpar@255
|
431 |
}
|
alpar@255
|
432 |
|
alpar@255
|
433 |
|
alpar@255
|
434 |
/*
|
alpar@255
|
435 |
*It is invoked only if a has siblings.
|
alpar@255
|
436 |
*/
|
alpar@255
|
437 |
void unlace (int a) {
|
alpar@255
|
438 |
int leftn=container[a].left_neighbor;
|
alpar@255
|
439 |
int rightn=container[a].right_neighbor;
|
alpar@255
|
440 |
container[leftn].right_neighbor=rightn;
|
alpar@255
|
441 |
container[rightn].left_neighbor=leftn;
|
alpar@255
|
442 |
}
|
alpar@255
|
443 |
|
alpar@255
|
444 |
|
alpar@255
|
445 |
class store {
|
alpar@255
|
446 |
friend class FibHeap;
|
alpar@255
|
447 |
|
alpar@255
|
448 |
Item name;
|
alpar@255
|
449 |
int parent;
|
alpar@255
|
450 |
int left_neighbor;
|
alpar@255
|
451 |
int right_neighbor;
|
alpar@255
|
452 |
int child;
|
alpar@255
|
453 |
int degree;
|
alpar@255
|
454 |
bool marked;
|
alpar@255
|
455 |
bool in;
|
alpar@255
|
456 |
PrioType prio;
|
alpar@255
|
457 |
|
alpar@255
|
458 |
store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
alpar@255
|
459 |
};
|
alpar@255
|
460 |
|
alpar@255
|
461 |
};
|
alpar@255
|
462 |
|
alpar@255
|
463 |
} //namespace hugo
|
alpar@255
|
464 |
#endif
|