src/include/fib_heap.h
author jacint
Fri, 23 Apr 2004 19:04:05 +0000
changeset 385 d7ebbae96025
parent 255 45107782cbca
child 387 4406c93c862b
permissions -rw-r--r--
Some changes in the documentation.
alpar@255
     1
// -*- C++ -*-
alpar@255
     2
jacint@373
     3
#ifndef HUGO_FIB_HEAP_H
jacint@373
     4
#define HUGO_FIB_HEAP_H
alpar@255
     5
alpar@255
     6
///\file
alpar@255
     7
///\brief Fibonacci Heap implementation.
alpar@255
     8
alpar@255
     9
#include <vector>
alpar@255
    10
#include <functional>
alpar@255
    11
#include <math.h>
alpar@255
    12
alpar@255
    13
namespace hugo {
alpar@255
    14
  
jacint@373
    15
  /// An implementation of the Fibonacci Heap.
jacint@373
    16
jacint@373
    17
  /**
jacint@373
    18
     This class implements the \e Fibonacci \e heap data structure. A \e
jacint@373
    19
     heap is a data structure for storing items with specified priorities,
jacint@373
    20
     such that finding the item with minimum priority is efficient. In a
jacint@373
    21
     heap one can change the priority of an item, and to add or erase an
jacint@373
    22
     item.
jacint@373
    23
jacint@373
    24
     The methods \ref increase and \ref erase are not efficient, in
jacint@373
    25
     case of many calls to these operations, it is better to use
jacint@373
    26
     a binary heap.
jacint@373
    27
     
jacint@373
    28
     /param Item The type of the items to be stored.  
jacint@373
    29
     /param Prio The type of the priority of the items.
jacint@373
    30
     /param ItemIntMap A read and writable Item int map, for the usage of
jacint@373
    31
     the heap.
jacint@373
    32
     /param Compare A class for the comparison of the priorities. The
jacint@373
    33
     default is \c std::less<Prio>.
jacint@373
    34
jacint@373
    35
  */
jacint@373
    36
jacint@373
    37
#ifdef DOXYGEN
jacint@373
    38
  template <typename Item, 
jacint@373
    39
	    typename Prio, 
jacint@373
    40
	    typename ItemIntMap, 
jacint@373
    41
	    typename Compare>
jacint@373
    42
#else
jacint@373
    43
  template <typename Item, 
jacint@373
    44
	    typename Prio, 
jacint@373
    45
	    typename ItemIntMap, 
alpar@255
    46
	    typename Compare = std::less<Prio> >
jacint@373
    47
#endif
alpar@255
    48
  class FibHeap {
jacint@373
    49
  public: 
alpar@255
    50
    typedef Prio PrioType;
alpar@255
    51
    
jacint@373
    52
  private:
alpar@255
    53
    class store;
alpar@255
    54
    
alpar@255
    55
    std::vector<store> container;
alpar@255
    56
    int minimum;
alpar@255
    57
    ItemIntMap &iimap;
alpar@255
    58
    Compare comp;
alpar@255
    59
    int num_items;
jacint@373
    60
    
alpar@255
    61
    ///\todo It is use nowhere
alpar@255
    62
    ///\todo It doesn't conform to the naming conventions.
alpar@255
    63
  public:
alpar@255
    64
    enum state_enum {
alpar@255
    65
      IN_HEAP = 0,
alpar@255
    66
      PRE_HEAP = -1,
alpar@255
    67
      POST_HEAP = -2
alpar@255
    68
    };
alpar@255
    69
    
alpar@255
    70
  public :
alpar@255
    71
    
jacint@373
    72
    FibHeap(ItemIntMap &_iimap) : minimum(0), iimap(_iimap), num_items() {} 
jacint@373
    73
    FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
alpar@255
    74
      iimap(_iimap), comp(_comp), num_items() {}
alpar@255
    75
    
jacint@373
    76
    ///The number of items stored in the heap.
jacint@373
    77
jacint@373
    78
    /**
jacint@373
    79
    Returns the number of items stored in the heap.
jacint@373
    80
    */
jacint@373
    81
    int size() const { return num_items; }
jacint@373
    82
jacint@373
    83
    ///Checks if the heap stores no items.
alpar@255
    84
    
jacint@373
    85
    /**
jacint@373
    86
       Returns true iff the heap stores no items.
jacint@373
    87
    */
jacint@373
    88
    bool empty() const { return num_items==0; }
jacint@373
    89
jacint@373
    90
    ///Item \c item gets to the heap with priority \c value independently if \c item was already there.
jacint@373
    91
jacint@373
    92
    /**
jacint@373
    93
       This method calls \ref push(item, value) if \c item is not
jacint@373
    94
       stored in the heap, and it calls \ref decrease(it, \c value) or
jacint@373
    95
       \ref increase(it, \c value) otherwise.
jacint@373
    96
    */
jacint@373
    97
    void set (Item const item, PrioType const value); //vigyazat: az implementacioban it van
jacint@373
    98
    
jacint@373
    99
    ///Adds \c item to the heap with priority \c value. 
jacint@373
   100
    
jacint@373
   101
    /**
jacint@373
   102
       Adds \c item to the heap with priority \c value. 
jacint@373
   103
       \pre \c item must not be stored in the heap. 
jacint@373
   104
    */
jacint@373
   105
    void push (Item const it, PrioType const value); /*vigyazat: az implementacioban it van*/
jacint@373
   106
    
jacint@373
   107
    
jacint@373
   108
    ///Returns the item having the minimum priority w.r.t.  Compare.
jacint@373
   109
    
jacint@373
   110
    /**
jacint@373
   111
       This method returns the item having the minimum priority w.r.t.  Compare. 
jacint@373
   112
       \pre The heap must be nonempty.
jacint@373
   113
    */
jacint@373
   114
    Item top() const { return container[minimum].name; }
jacint@373
   115
    
jacint@373
   116
jacint@373
   117
    ///Returns the minimum priority w.r.t.  Compare.
jacint@373
   118
jacint@373
   119
    /**
jacint@373
   120
       It returns the minimum priority w.r.t.  Compare.
jacint@373
   121
       \pre The heap must be nonempty.
jacint@373
   122
    */
jacint@373
   123
    PrioType prio() const { return container[minimum].prio; }
jacint@373
   124
    
jacint@373
   125
jacint@373
   126
    ///Returns the priority of \c item.
jacint@373
   127
jacint@373
   128
    /**
jacint@373
   129
       It returns the priority of \c item.
jacint@373
   130
       \pre \c item must be in the heap.
jacint@373
   131
    */
jacint@373
   132
    PrioType& operator[](const Item& it) { return container[iimap[it]].prio; }
jacint@373
   133
    
jacint@373
   134
    ///Returns the priority of \c item.
jacint@373
   135
    
jacint@373
   136
    /**
jacint@373
   137
       It returns the priority of \c item.
jacint@373
   138
       \pre \c item must be in the heap.
jacint@373
   139
    */
jacint@373
   140
    const PrioType& operator[](const Item& it) const { 
jacint@373
   141
      return container[iimap[it]].prio; 
alpar@255
   142
    }
alpar@255
   143
alpar@255
   144
jacint@373
   145
    ///Deletes the item with minimum priority w.r.t.  Compare.
alpar@255
   146
jacint@373
   147
    /**
jacint@373
   148
    This method deletes the item with minimum priority w.r.t. 
jacint@373
   149
    Compare from the heap.
jacint@373
   150
    \pre The heap must be non-empty.
jacint@373
   151
    */
jacint@373
   152
    void pop();
jacint@373
   153
jacint@373
   154
    ///Deletes \c item from the heap.
jacint@373
   155
jacint@373
   156
    /**
jacint@373
   157
       This method deletes \c item from the heap, if \c item was already
jacint@373
   158
       stored in the heap. It is quite inefficient in Fibonacci heaps.
jacint@373
   159
    */
jacint@373
   160
    void erase (const Item& item); /*vigyazat: az implementacioban it van*/
jacint@373
   161
jacint@373
   162
    ///Decreases the priority of \c item to \c value.
jacint@373
   163
jacint@373
   164
    /**
jacint@373
   165
       This method decreases the priority of \c item to \c value.
jacint@373
   166
       \pre \c item must be stored in the heap with priority at least \c
jacint@373
   167
       value w.r.t.  Compare.
jacint@373
   168
    */
jacint@373
   169
    void decrease (Item item, PrioType const value); /*vigyazat: az implementacioban it van*/
jacint@373
   170
jacint@373
   171
jacint@373
   172
    ///Increases the priority of \c item to \c value.
jacint@373
   173
jacint@373
   174
    /**
jacint@373
   175
       This method sets the priority of \c item to \c value. Though
jacint@373
   176
       there is no precondition on the priority of \c item, this
jacint@373
   177
       method should be used only if one wants to \e increase
jacint@373
   178
       (w.r.t.  Compare) the priority of \c item, because this
jacint@373
   179
       method is inefficient.
jacint@373
   180
    */
jacint@373
   181
    void increase (Item it, PrioType const value) {
jacint@373
   182
      erase(it);
jacint@373
   183
      push(it, value);
jacint@373
   184
    }
jacint@373
   185
jacint@373
   186
jacint@373
   187
    ///Tells if \c item is in, was in, or has not been in the heap.
jacint@373
   188
jacint@373
   189
    /**
jacint@373
   190
       This method returns PRE_HEAP if \c item has never been in the
jacint@373
   191
       heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
jacint@373
   192
       otherwise. In the latter case it is possible that \c item will
jacint@373
   193
       get back to the heap again.
jacint@373
   194
    */
jacint@373
   195
    state_enum state(const Item &it);  /*vigyazat: az implementacioban it van*/
jacint@373
   196
jacint@373
   197
jacint@373
   198
jacint@373
   199
    // **********************************************************************
jacint@373
   200
    //  IMPLEMENTATIONS
jacint@373
   201
    // **********************************************************************
jacint@373
   202
    
alpar@255
   203
alpar@255
   204
    void set (Item const it, PrioType const value) {
alpar@255
   205
      int i=iimap[it];
alpar@255
   206
      if ( i >= 0 && container[i].in ) {
alpar@255
   207
	if ( comp(value, container[i].prio) ) decrease(it, value); 
alpar@255
   208
	if ( comp(container[i].prio, value) ) increase(it, value); 
alpar@255
   209
      } else push(it, value);
alpar@255
   210
    }
alpar@255
   211
    
alpar@255
   212
alpar@255
   213
    void push (Item const it, PrioType const value) {
alpar@255
   214
      int i=iimap[it];      
alpar@255
   215
      if ( i < 0 ) {
alpar@255
   216
	int s=container.size();
alpar@255
   217
	iimap.set( it, s );	
alpar@255
   218
	store st;
alpar@255
   219
	st.name=it;
alpar@255
   220
	container.push_back(st);
alpar@255
   221
	i=s;
alpar@255
   222
      } else {
alpar@255
   223
	container[i].parent=container[i].child=-1;
alpar@255
   224
	container[i].degree=0;
alpar@255
   225
	container[i].in=true;
alpar@255
   226
	container[i].marked=false;
alpar@255
   227
      }
alpar@255
   228
alpar@255
   229
      if ( num_items ) {
alpar@255
   230
	container[container[minimum].right_neighbor].left_neighbor=i;
alpar@255
   231
	container[i].right_neighbor=container[minimum].right_neighbor;
alpar@255
   232
	container[minimum].right_neighbor=i;
alpar@255
   233
	container[i].left_neighbor=minimum;
alpar@255
   234
	if ( comp( value, container[minimum].prio) ) minimum=i; 
alpar@255
   235
      } else {
alpar@255
   236
	container[i].right_neighbor=container[i].left_neighbor=i;
alpar@255
   237
	minimum=i;	
alpar@255
   238
      }
alpar@255
   239
      container[i].prio=value;
alpar@255
   240
      ++num_items;
alpar@255
   241
    }
alpar@255
   242
    
alpar@255
   243
alpar@255
   244
    void pop() {
alpar@255
   245
      /*The first case is that there are only one root.*/
alpar@255
   246
      if ( container[minimum].left_neighbor==minimum ) {
alpar@255
   247
	container[minimum].in=false;
alpar@255
   248
	if ( container[minimum].degree!=0 ) { 
alpar@255
   249
	  makeroot(container[minimum].child);
alpar@255
   250
	  minimum=container[minimum].child;
alpar@255
   251
	  balance();
alpar@255
   252
	}
alpar@255
   253
      } else {
alpar@255
   254
	int right=container[minimum].right_neighbor;
alpar@255
   255
	unlace(minimum);
alpar@255
   256
	container[minimum].in=false;
alpar@255
   257
	if ( container[minimum].degree > 0 ) {
alpar@255
   258
	  int left=container[minimum].left_neighbor;
alpar@255
   259
	  int child=container[minimum].child;
alpar@255
   260
	  int last_child=container[child].left_neighbor;
alpar@255
   261
	
alpar@255
   262
	  makeroot(child);
alpar@255
   263
	  
alpar@255
   264
	  container[left].right_neighbor=child;
alpar@255
   265
	  container[child].left_neighbor=left;
alpar@255
   266
	  container[right].left_neighbor=last_child;
alpar@255
   267
	  container[last_child].right_neighbor=right;
alpar@255
   268
	}
alpar@255
   269
	minimum=right;
alpar@255
   270
	balance();
alpar@255
   271
      } // the case where there are more roots
alpar@255
   272
      --num_items;   
alpar@255
   273
    }
alpar@255
   274
alpar@255
   275
    
alpar@255
   276
    void erase (const Item& it) {
alpar@255
   277
      int i=iimap[it];
alpar@255
   278
      
alpar@255
   279
      if ( i >= 0 && container[i].in ) { 	
alpar@255
   280
	if ( container[i].parent!=-1 ) {
alpar@255
   281
	  int p=container[i].parent;
alpar@255
   282
	  cut(i,p);	    
alpar@255
   283
	  cascade(p);
alpar@255
   284
	}
alpar@255
   285
	minimum=i;     //As if its prio would be -infinity
alpar@255
   286
	pop();
alpar@255
   287
      }
alpar@255
   288
    }
alpar@255
   289
    
alpar@255
   290
alpar@255
   291
    void decrease (Item it, PrioType const value) {
alpar@255
   292
      int i=iimap[it];
alpar@255
   293
      container[i].prio=value;
alpar@255
   294
      int p=container[i].parent;
alpar@255
   295
      
alpar@255
   296
      if ( p!=-1 && comp(value, container[p].prio) ) {
alpar@255
   297
	cut(i,p);	    
alpar@255
   298
	cascade(p);
alpar@255
   299
      }      
alpar@255
   300
      if ( comp(value, container[minimum].prio) ) minimum=i; 
alpar@255
   301
    }
alpar@255
   302
   
alpar@255
   303
alpar@255
   304
    state_enum state(const Item &it) const {
alpar@255
   305
      int i=iimap[it];
alpar@255
   306
      if( i>=0 ) {
alpar@255
   307
	if ( container[i].in ) i=0;
alpar@255
   308
	else i=-2; 
alpar@255
   309
      }
alpar@255
   310
      return state_enum(i);
alpar@255
   311
    }
alpar@255
   312
alpar@255
   313
alpar@255
   314
  private:
alpar@255
   315
    
alpar@255
   316
    void balance() {      
alpar@255
   317
alpar@255
   318
    int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
alpar@255
   319
  
alpar@255
   320
    std::vector<int> A(maxdeg,-1); 
alpar@255
   321
    
alpar@255
   322
    /*
alpar@255
   323
     *Recall that now minimum does not point to the minimum prio element.
alpar@255
   324
     *We set minimum to this during balance().
alpar@255
   325
     */
alpar@255
   326
    int anchor=container[minimum].left_neighbor; 
alpar@255
   327
    int next=minimum; 
alpar@255
   328
    bool end=false; 
alpar@255
   329
    	
alpar@255
   330
       do {
alpar@255
   331
	int active=next;
alpar@255
   332
	if ( anchor==active ) end=true;
alpar@255
   333
	int d=container[active].degree;
alpar@255
   334
	next=container[active].right_neighbor;
alpar@255
   335
alpar@255
   336
	while (A[d]!=-1) {	  
alpar@255
   337
	  if( comp(container[active].prio, container[A[d]].prio) ) {
alpar@255
   338
	    fuse(active,A[d]); 
alpar@255
   339
	  } else { 
alpar@255
   340
	    fuse(A[d],active);
alpar@255
   341
	    active=A[d];
alpar@255
   342
	  } 
alpar@255
   343
	  A[d]=-1;
alpar@255
   344
	  ++d;
alpar@255
   345
	}	
alpar@255
   346
	A[d]=active;
alpar@255
   347
       } while ( !end );
alpar@255
   348
alpar@255
   349
alpar@255
   350
       while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
alpar@255
   351
       int s=minimum;
alpar@255
   352
       int m=minimum;
alpar@255
   353
       do {  
alpar@255
   354
	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
alpar@255
   355
	 s=container[s].right_neighbor;
alpar@255
   356
       } while ( s != m );
alpar@255
   357
    }
alpar@255
   358
alpar@255
   359
alpar@255
   360
    void makeroot (int c) {
alpar@255
   361
      int s=c;
alpar@255
   362
      do {  
alpar@255
   363
	container[s].parent=-1;
alpar@255
   364
	s=container[s].right_neighbor;
alpar@255
   365
      } while ( s != c );
alpar@255
   366
    }
alpar@255
   367
    
alpar@255
   368
alpar@255
   369
    void cut (int a, int b) {    
alpar@255
   370
      /*
alpar@255
   371
       *Replacing a from the children of b.
alpar@255
   372
       */
alpar@255
   373
      --container[b].degree;
alpar@255
   374
      
alpar@255
   375
      if ( container[b].degree !=0 ) {
alpar@255
   376
	int child=container[b].child;
alpar@255
   377
	if ( child==a ) 
alpar@255
   378
	  container[b].child=container[child].right_neighbor;
alpar@255
   379
	unlace(a);
alpar@255
   380
      }
alpar@255
   381
      
alpar@255
   382
      
alpar@255
   383
      /*Lacing a to the roots.*/
alpar@255
   384
      int right=container[minimum].right_neighbor;
alpar@255
   385
      container[minimum].right_neighbor=a;
alpar@255
   386
      container[a].left_neighbor=minimum;
alpar@255
   387
      container[a].right_neighbor=right;
alpar@255
   388
      container[right].left_neighbor=a;
alpar@255
   389
alpar@255
   390
      container[a].parent=-1;
alpar@255
   391
      container[a].marked=false;
alpar@255
   392
    }
alpar@255
   393
alpar@255
   394
alpar@255
   395
    void cascade (int a) 
alpar@255
   396
    {
alpar@255
   397
      if ( container[a].parent!=-1 ) {
alpar@255
   398
	int p=container[a].parent;
alpar@255
   399
	
alpar@255
   400
	if ( container[a].marked==false ) container[a].marked=true;
alpar@255
   401
	else {
alpar@255
   402
	  cut(a,p);
alpar@255
   403
	  cascade(p);
alpar@255
   404
	}
alpar@255
   405
      }
alpar@255
   406
    }
alpar@255
   407
alpar@255
   408
alpar@255
   409
    void fuse (int a, int b) {
alpar@255
   410
      unlace(b);
alpar@255
   411
      
alpar@255
   412
      /*Lacing b under a.*/
alpar@255
   413
      container[b].parent=a;
alpar@255
   414
alpar@255
   415
      if (container[a].degree==0) {
alpar@255
   416
	container[b].left_neighbor=b;
alpar@255
   417
	container[b].right_neighbor=b;
alpar@255
   418
	container[a].child=b;	
alpar@255
   419
      } else {
alpar@255
   420
	int child=container[a].child;
alpar@255
   421
	int last_child=container[child].left_neighbor;
alpar@255
   422
	container[child].left_neighbor=b;
alpar@255
   423
	container[b].right_neighbor=child;
alpar@255
   424
	container[last_child].right_neighbor=b;
alpar@255
   425
	container[b].left_neighbor=last_child;
alpar@255
   426
      }
alpar@255
   427
alpar@255
   428
      ++container[a].degree;
alpar@255
   429
      
alpar@255
   430
      container[b].marked=false;
alpar@255
   431
    }
alpar@255
   432
alpar@255
   433
alpar@255
   434
    /*
alpar@255
   435
     *It is invoked only if a has siblings.
alpar@255
   436
     */
alpar@255
   437
    void unlace (int a) {      
alpar@255
   438
      int leftn=container[a].left_neighbor;
alpar@255
   439
      int rightn=container[a].right_neighbor;
alpar@255
   440
      container[leftn].right_neighbor=rightn;
alpar@255
   441
      container[rightn].left_neighbor=leftn;
alpar@255
   442
    }
alpar@255
   443
alpar@255
   444
alpar@255
   445
    class store {
alpar@255
   446
      friend class FibHeap;
alpar@255
   447
      
alpar@255
   448
      Item name;
alpar@255
   449
      int parent;
alpar@255
   450
      int left_neighbor;
alpar@255
   451
      int right_neighbor;
alpar@255
   452
      int child;
alpar@255
   453
      int degree;  
alpar@255
   454
      bool marked;
alpar@255
   455
      bool in;
alpar@255
   456
      PrioType prio;
alpar@255
   457
alpar@255
   458
      store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
alpar@255
   459
    };
alpar@255
   460
    
alpar@255
   461
  };
alpar@255
   462
  
alpar@255
   463
} //namespace hugo
alpar@255
   464
#endif