jacint@534
|
1 |
// -*- c++ -*-
|
jacint@534
|
2 |
#include <vector>
|
jacint@534
|
3 |
#include <cstdlib>
|
jacint@534
|
4 |
|
marci@605
|
5 |
// ///\ingroup gwrappers
|
marci@605
|
6 |
///\file
|
marci@605
|
7 |
///\brief Graph generator functions.
|
marci@605
|
8 |
///
|
marci@605
|
9 |
///This file contains several graph generator functions.
|
marci@605
|
10 |
///
|
marci@605
|
11 |
// ///\author Marton Makai
|
marci@605
|
12 |
|
alpar@921
|
13 |
namespace lemon {
|
jacint@534
|
14 |
|
jacint@534
|
15 |
|
jacint@534
|
16 |
/**
|
jacint@534
|
17 |
* Inicializalja a veletlenszamgeneratort.
|
jacint@534
|
18 |
* Figyelem, ez nem jo igazi random szamokhoz,
|
jacint@534
|
19 |
* erre ne bizzad a titkaidat!
|
jacint@534
|
20 |
*/
|
jacint@534
|
21 |
void random_init()
|
jacint@534
|
22 |
{
|
jacint@534
|
23 |
unsigned int seed = getpid();
|
jacint@534
|
24 |
seed |= seed << 15;
|
jacint@534
|
25 |
seed ^= time(0);
|
jacint@534
|
26 |
|
jacint@534
|
27 |
srand(seed);
|
jacint@534
|
28 |
}
|
jacint@534
|
29 |
|
jacint@534
|
30 |
|
jacint@534
|
31 |
/**
|
jacint@534
|
32 |
* Egy veletlen int-et ad vissza 0 es m-1 kozott.
|
jacint@534
|
33 |
*/
|
jacint@534
|
34 |
int random(int m)
|
jacint@534
|
35 |
{
|
jacint@534
|
36 |
return int( double(m) * rand() / (RAND_MAX + 1.0) );
|
jacint@534
|
37 |
}
|
jacint@534
|
38 |
|
jacint@534
|
39 |
|
marci@558
|
40 |
/// Generates a random graph with n nodes and m edges.
|
marci@558
|
41 |
/// Before generating the random graph, \c g.clear() is called.
|
jacint@534
|
42 |
template<typename Graph>
|
marci@558
|
43 |
void randomGraph(Graph& g, int n, int m) {
|
jacint@534
|
44 |
g.clear();
|
marci@558
|
45 |
std::vector<typename Graph::Node> nodes;
|
jacint@534
|
46 |
for (int i=0; i<n; ++i)
|
jacint@534
|
47 |
nodes.push_back(g.addNode());
|
jacint@534
|
48 |
for (int i=0; i<m; ++i)
|
jacint@534
|
49 |
g.addEdge(nodes[random(n)], nodes[random(n)]);
|
jacint@534
|
50 |
}
|
jacint@534
|
51 |
|
marci@558
|
52 |
/// Generates a random bipartite graph with a and b nodes
|
marci@558
|
53 |
/// in the color classes and m edges.
|
marci@558
|
54 |
/// According to the bipartite graph concept, the resulting
|
marci@558
|
55 |
/// graph is directed from the first class to the second one.
|
marci@558
|
56 |
/// Before generating the random graph, \c g.clear() is called.
|
marci@558
|
57 |
template<typename Graph>
|
marci@558
|
58 |
void randomBipartiteGraph(Graph& g, int a, int b, int m) {
|
marci@558
|
59 |
g.clear();
|
marci@558
|
60 |
std::vector<typename Graph::Node> s_nodes;
|
marci@558
|
61 |
std::vector<typename Graph::Node> t_nodes;
|
marci@558
|
62 |
for (int i=0; i<a; ++i)
|
marci@558
|
63 |
///\bug g.addNode(g.S_CLASS) would be better.
|
marci@558
|
64 |
s_nodes.push_back(g.addNode(false));
|
marci@558
|
65 |
for (int i=0; i<b; ++i)
|
marci@558
|
66 |
///\bug g.addNode(g.T_CLASS) would be better.
|
marci@558
|
67 |
t_nodes.push_back(g.addNode(true));
|
marci@558
|
68 |
for (int i=0; i<m; ++i)
|
marci@558
|
69 |
g.addEdge(s_nodes[random(a)], t_nodes[random(b)]);
|
marci@558
|
70 |
}
|
marci@558
|
71 |
|
marci@593
|
72 |
/// Generates a complete graph in the undirected sense
|
marci@598
|
73 |
/// with n nodes.
|
marci@593
|
74 |
/// Before generating the random graph, \c g.clear() is called.
|
marci@593
|
75 |
template<typename Graph>
|
marci@593
|
76 |
void completeGraph(Graph& g, int n) {
|
marci@593
|
77 |
g.clear();
|
marci@593
|
78 |
std::vector<typename Graph::Node> nodes;
|
marci@593
|
79 |
for (int i=0; i<n; ++i)
|
marci@593
|
80 |
nodes.push_back(g.addNode());
|
marci@593
|
81 |
for (int i=0; i<n; ++i)
|
marci@593
|
82 |
for (int j=i+1; j<n; ++j)
|
marci@593
|
83 |
g.addEdge(nodes[i], nodes[j]);
|
marci@593
|
84 |
}
|
marci@598
|
85 |
|
marci@598
|
86 |
/// Generates a complete bidirected graph on n nodes.
|
marci@598
|
87 |
/// Before generating the random graph, \c g.clear() is called.
|
marci@598
|
88 |
template<typename Graph>
|
marci@598
|
89 |
void completeBidirectedGraph(Graph& g, int n) {
|
marci@598
|
90 |
g.clear();
|
marci@598
|
91 |
std::vector<typename Graph::Node> nodes;
|
marci@598
|
92 |
for (int i=0; i<n; ++i)
|
marci@598
|
93 |
nodes.push_back(g.addNode());
|
marci@598
|
94 |
for (int i=0; i<n; ++i)
|
marci@598
|
95 |
for (int j=i+1; j<n; ++j) {
|
marci@598
|
96 |
g.addEdge(nodes[i], nodes[j]);
|
marci@598
|
97 |
g.addEdge(nodes[j], nodes[i]);
|
marci@598
|
98 |
}
|
marci@598
|
99 |
}
|
marci@598
|
100 |
|
marci@598
|
101 |
/// Generates a complete bipartite graph with a and b nodes
|
marci@598
|
102 |
/// in the color classes.
|
marci@598
|
103 |
/// Before generating the random graph, \c g.clear() is called.
|
marci@598
|
104 |
template<typename Graph>
|
marci@598
|
105 |
void completeBipartiteGraph(Graph& g, int a, int b) {
|
marci@598
|
106 |
g.clear();
|
marci@598
|
107 |
std::vector<typename Graph::Node> s_nodes;
|
marci@598
|
108 |
std::vector<typename Graph::Node> t_nodes;
|
marci@598
|
109 |
for (int i=0; i<a; ++i)
|
marci@598
|
110 |
///\bug g.addNode(g.S_CLASS) would be better.
|
marci@598
|
111 |
s_nodes.push_back(g.addNode(false));
|
marci@598
|
112 |
for (int i=0; i<b; ++i)
|
marci@598
|
113 |
///\bug g.addNode(g.T_CLASS) would be better.
|
marci@598
|
114 |
t_nodes.push_back(g.addNode(true));
|
marci@598
|
115 |
for (int i=0; i<a; ++i)
|
marci@598
|
116 |
for (int j=0; j<b; ++j)
|
marci@598
|
117 |
g.addEdge(s_nodes[i], t_nodes[j]);
|
marci@598
|
118 |
}
|
marci@593
|
119 |
|
alpar@921
|
120 |
} //namespace lemon
|