alpar@906
|
1 |
/* -*- C++ -*-
|
ladanyi@1435
|
2 |
* lemon/preflow.h - Part of LEMON, a generic C++ optimization library
|
alpar@906
|
3 |
*
|
alpar@1164
|
4 |
* Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@1359
|
5 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@906
|
6 |
*
|
alpar@906
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
9 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
10 |
*
|
alpar@906
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
13 |
* purpose.
|
alpar@906
|
14 |
*
|
alpar@906
|
15 |
*/
|
alpar@906
|
16 |
|
alpar@921
|
17 |
#ifndef LEMON_PREFLOW_H
|
alpar@921
|
18 |
#define LEMON_PREFLOW_H
|
jacint@836
|
19 |
|
jacint@836
|
20 |
#include <vector>
|
jacint@836
|
21 |
#include <queue>
|
jacint@836
|
22 |
|
alpar@921
|
23 |
#include <lemon/invalid.h>
|
alpar@921
|
24 |
#include <lemon/maps.h>
|
klao@977
|
25 |
#include <lemon/graph_utils.h>
|
jacint@836
|
26 |
|
jacint@836
|
27 |
/// \file
|
jacint@836
|
28 |
/// \ingroup flowalgs
|
deba@1742
|
29 |
/// \brief Implementation of the preflow algorithm.
|
jacint@836
|
30 |
|
alpar@921
|
31 |
namespace lemon {
|
jacint@836
|
32 |
|
jacint@836
|
33 |
/// \addtogroup flowalgs
|
jacint@836
|
34 |
/// @{
|
jacint@836
|
35 |
|
alpar@851
|
36 |
///%Preflow algorithms class.
|
jacint@836
|
37 |
|
jacint@836
|
38 |
///This class provides an implementation of the \e preflow \e
|
jacint@836
|
39 |
///algorithm producing a flow of maximum value in a directed
|
alpar@1222
|
40 |
///graph. The preflow algorithms are the fastest known max flow algorithms
|
alpar@851
|
41 |
///up to now. The \e source node, the \e target node, the \e
|
jacint@836
|
42 |
///capacity of the edges and the \e starting \e flow value of the
|
jacint@836
|
43 |
///edges should be passed to the algorithm through the
|
jacint@836
|
44 |
///constructor. It is possible to change these quantities using the
|
zsuzska@1285
|
45 |
///functions \ref source, \ref target, \ref capacityMap and \ref
|
zsuzska@1285
|
46 |
///flowMap.
|
jacint@836
|
47 |
///
|
alpar@921
|
48 |
///After running \ref lemon::Preflow::phase1() "phase1()"
|
alpar@921
|
49 |
///or \ref lemon::Preflow::run() "run()", the maximal flow
|
jacint@836
|
50 |
///value can be obtained by calling \ref flowValue(). The minimum
|
alpar@851
|
51 |
///value cut can be written into a <tt>bool</tt> node map by
|
alpar@851
|
52 |
///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
|
jacint@836
|
53 |
///the inclusionwise minimum and maximum of the minimum value cuts,
|
jacint@836
|
54 |
///resp.)
|
jacint@836
|
55 |
///
|
jacint@836
|
56 |
///\param Graph The directed graph type the algorithm runs on.
|
jacint@836
|
57 |
///\param Num The number type of the capacities and the flow values.
|
alpar@1222
|
58 |
///\param CapacityMap The capacity map type.
|
jacint@836
|
59 |
///\param FlowMap The flow map type.
|
jacint@836
|
60 |
///
|
jacint@836
|
61 |
///\author Jacint Szabo
|
alpar@1227
|
62 |
///\todo Second template parameter is superfluous
|
jacint@836
|
63 |
template <typename Graph, typename Num,
|
alpar@1222
|
64 |
typename CapacityMap=typename Graph::template EdgeMap<Num>,
|
jacint@836
|
65 |
typename FlowMap=typename Graph::template EdgeMap<Num> >
|
jacint@836
|
66 |
class Preflow {
|
jacint@836
|
67 |
protected:
|
jacint@836
|
68 |
typedef typename Graph::Node Node;
|
jacint@836
|
69 |
typedef typename Graph::NodeIt NodeIt;
|
jacint@836
|
70 |
typedef typename Graph::EdgeIt EdgeIt;
|
jacint@836
|
71 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
jacint@836
|
72 |
typedef typename Graph::InEdgeIt InEdgeIt;
|
jacint@836
|
73 |
|
jacint@836
|
74 |
typedef typename Graph::template NodeMap<Node> NNMap;
|
jacint@836
|
75 |
typedef typename std::vector<Node> VecNode;
|
jacint@836
|
76 |
|
alpar@1222
|
77 |
const Graph* _g;
|
alpar@1222
|
78 |
Node _source;
|
alpar@1222
|
79 |
Node _target;
|
alpar@1222
|
80 |
const CapacityMap* _capacity;
|
alpar@1222
|
81 |
FlowMap* _flow;
|
alpar@1222
|
82 |
int _node_num; //the number of nodes of G
|
jacint@836
|
83 |
|
jacint@836
|
84 |
typename Graph::template NodeMap<int> level;
|
jacint@836
|
85 |
typename Graph::template NodeMap<Num> excess;
|
jacint@836
|
86 |
|
jacint@836
|
87 |
// constants used for heuristics
|
jacint@836
|
88 |
static const int H0=20;
|
jacint@836
|
89 |
static const int H1=1;
|
jacint@836
|
90 |
|
jacint@836
|
91 |
public:
|
jacint@836
|
92 |
|
jacint@836
|
93 |
///Indicates the property of the starting flow map.
|
jacint@836
|
94 |
|
alpar@1222
|
95 |
///Indicates the property of the starting flow map.
|
alpar@1222
|
96 |
///The meanings are as follows:
|
jacint@836
|
97 |
///- \c ZERO_FLOW: constant zero flow
|
jacint@836
|
98 |
///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
|
jacint@836
|
99 |
///the sum of the out-flows in every node except the \e source and
|
jacint@836
|
100 |
///the \e target.
|
jacint@836
|
101 |
///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
|
jacint@836
|
102 |
///least the sum of the out-flows in every node except the \e source.
|
alpar@911
|
103 |
///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be
|
alpar@911
|
104 |
///set to the constant zero flow in the beginning of
|
alpar@911
|
105 |
///the algorithm in this case.
|
jacint@836
|
106 |
///
|
jacint@836
|
107 |
enum FlowEnum{
|
jacint@836
|
108 |
NO_FLOW,
|
jacint@836
|
109 |
ZERO_FLOW,
|
jacint@836
|
110 |
GEN_FLOW,
|
jacint@836
|
111 |
PRE_FLOW
|
jacint@836
|
112 |
};
|
jacint@836
|
113 |
|
jacint@836
|
114 |
///Indicates the state of the preflow algorithm.
|
jacint@836
|
115 |
|
alpar@1222
|
116 |
///Indicates the state of the preflow algorithm.
|
alpar@1222
|
117 |
///The meanings are as follows:
|
alpar@1222
|
118 |
///- \c AFTER_NOTHING: before running the algorithm or
|
alpar@1222
|
119 |
/// at an unspecified state.
|
jacint@836
|
120 |
///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
|
jacint@836
|
121 |
///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
|
jacint@836
|
122 |
///
|
jacint@836
|
123 |
enum StatusEnum {
|
jacint@836
|
124 |
AFTER_NOTHING,
|
jacint@836
|
125 |
AFTER_PREFLOW_PHASE_1,
|
jacint@836
|
126 |
AFTER_PREFLOW_PHASE_2
|
jacint@836
|
127 |
};
|
jacint@836
|
128 |
|
jacint@836
|
129 |
protected:
|
jacint@836
|
130 |
FlowEnum flow_prop;
|
jacint@836
|
131 |
StatusEnum status; // Do not needle this flag only if necessary.
|
jacint@836
|
132 |
|
jacint@836
|
133 |
public:
|
jacint@836
|
134 |
///The constructor of the class.
|
jacint@836
|
135 |
|
jacint@836
|
136 |
///The constructor of the class.
|
zsuzska@1285
|
137 |
///\param _gr The directed graph the algorithm runs on.
|
jacint@836
|
138 |
///\param _s The source node.
|
jacint@836
|
139 |
///\param _t The target node.
|
alpar@1222
|
140 |
///\param _cap The capacity of the edges.
|
alpar@1222
|
141 |
///\param _f The flow of the edges.
|
jacint@836
|
142 |
///Except the graph, all of these parameters can be reset by
|
zsuzska@1285
|
143 |
///calling \ref source, \ref target, \ref capacityMap and \ref
|
zsuzska@1285
|
144 |
///flowMap, resp.
|
alpar@1222
|
145 |
Preflow(const Graph& _gr, Node _s, Node _t,
|
alpar@1222
|
146 |
const CapacityMap& _cap, FlowMap& _f) :
|
alpar@1222
|
147 |
_g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
|
alpar@1222
|
148 |
_flow(&_f), _node_num(countNodes(_gr)), level(_gr), excess(_gr,0),
|
jacint@836
|
149 |
flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
|
jacint@836
|
150 |
|
jacint@836
|
151 |
|
jacint@836
|
152 |
|
jacint@836
|
153 |
///Runs the preflow algorithm.
|
jacint@836
|
154 |
|
alpar@851
|
155 |
///Runs the preflow algorithm.
|
alpar@851
|
156 |
///
|
jacint@836
|
157 |
void run() {
|
jacint@836
|
158 |
phase1(flow_prop);
|
jacint@836
|
159 |
phase2();
|
jacint@836
|
160 |
}
|
jacint@836
|
161 |
|
jacint@836
|
162 |
///Runs the preflow algorithm.
|
jacint@836
|
163 |
|
jacint@836
|
164 |
///Runs the preflow algorithm.
|
jacint@836
|
165 |
///\pre The starting flow map must be
|
jacint@836
|
166 |
/// - a constant zero flow if \c fp is \c ZERO_FLOW,
|
jacint@836
|
167 |
/// - an arbitrary flow if \c fp is \c GEN_FLOW,
|
jacint@836
|
168 |
/// - an arbitrary preflow if \c fp is \c PRE_FLOW,
|
jacint@836
|
169 |
/// - any map if \c fp is NO_FLOW.
|
jacint@836
|
170 |
///If the starting flow map is a flow or a preflow then
|
jacint@836
|
171 |
///the algorithm terminates faster.
|
jacint@836
|
172 |
void run(FlowEnum fp) {
|
jacint@836
|
173 |
flow_prop=fp;
|
jacint@836
|
174 |
run();
|
jacint@836
|
175 |
}
|
jacint@836
|
176 |
|
jacint@836
|
177 |
///Runs the first phase of the preflow algorithm.
|
jacint@836
|
178 |
|
jacint@920
|
179 |
///The preflow algorithm consists of two phases, this method runs
|
jacint@920
|
180 |
///the first phase. After the first phase the maximum flow value
|
zsuzska@1285
|
181 |
///and a minimum value cut can already be computed, although a
|
jacint@920
|
182 |
///maximum flow is not yet obtained. So after calling this method
|
jacint@920
|
183 |
///\ref flowValue returns the value of a maximum flow and \ref
|
jacint@920
|
184 |
///minCut returns a minimum cut.
|
jacint@920
|
185 |
///\warning \ref minMinCut and \ref maxMinCut do not give minimum
|
jacint@920
|
186 |
///value cuts unless calling \ref phase2.
|
jacint@920
|
187 |
///\pre The starting flow must be
|
jacint@920
|
188 |
///- a constant zero flow if \c fp is \c ZERO_FLOW,
|
jacint@920
|
189 |
///- an arbitary flow if \c fp is \c GEN_FLOW,
|
jacint@920
|
190 |
///- an arbitary preflow if \c fp is \c PRE_FLOW,
|
jacint@920
|
191 |
///- any map if \c fp is NO_FLOW.
|
jacint@836
|
192 |
void phase1(FlowEnum fp)
|
jacint@836
|
193 |
{
|
jacint@836
|
194 |
flow_prop=fp;
|
jacint@836
|
195 |
phase1();
|
jacint@836
|
196 |
}
|
jacint@836
|
197 |
|
jacint@836
|
198 |
|
jacint@836
|
199 |
///Runs the first phase of the preflow algorithm.
|
jacint@836
|
200 |
|
jacint@920
|
201 |
///The preflow algorithm consists of two phases, this method runs
|
jacint@920
|
202 |
///the first phase. After the first phase the maximum flow value
|
zsuzska@1285
|
203 |
///and a minimum value cut can already be computed, although a
|
jacint@920
|
204 |
///maximum flow is not yet obtained. So after calling this method
|
jacint@920
|
205 |
///\ref flowValue returns the value of a maximum flow and \ref
|
jacint@920
|
206 |
///minCut returns a minimum cut.
|
alpar@911
|
207 |
///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not
|
alpar@911
|
208 |
///give minimum value cuts unless calling \ref phase2().
|
jacint@836
|
209 |
void phase1()
|
jacint@836
|
210 |
{
|
alpar@1222
|
211 |
int heur0=(int)(H0*_node_num); //time while running 'bound decrease'
|
alpar@1222
|
212 |
int heur1=(int)(H1*_node_num); //time while running 'highest label'
|
jacint@836
|
213 |
int heur=heur1; //starting time interval (#of relabels)
|
jacint@836
|
214 |
int numrelabel=0;
|
jacint@836
|
215 |
|
jacint@836
|
216 |
bool what_heur=1;
|
jacint@836
|
217 |
//It is 0 in case 'bound decrease' and 1 in case 'highest label'
|
jacint@836
|
218 |
|
jacint@836
|
219 |
bool end=false;
|
jacint@836
|
220 |
//Needed for 'bound decrease', true means no active
|
jacint@836
|
221 |
//nodes are above bound b.
|
jacint@836
|
222 |
|
alpar@1222
|
223 |
int k=_node_num-2; //bound on the highest level under n containing a node
|
jacint@836
|
224 |
int b=k; //bound on the highest level under n of an active node
|
jacint@836
|
225 |
|
alpar@1222
|
226 |
VecNode first(_node_num, INVALID);
|
alpar@1222
|
227 |
NNMap next(*_g, INVALID);
|
jacint@836
|
228 |
|
alpar@1222
|
229 |
NNMap left(*_g, INVALID);
|
alpar@1222
|
230 |
NNMap right(*_g, INVALID);
|
alpar@1222
|
231 |
VecNode level_list(_node_num,INVALID);
|
jacint@836
|
232 |
//List of the nodes in level i<n, set to n.
|
jacint@836
|
233 |
|
jacint@836
|
234 |
preflowPreproc(first, next, level_list, left, right);
|
jacint@836
|
235 |
|
jacint@836
|
236 |
//Push/relabel on the highest level active nodes.
|
jacint@836
|
237 |
while ( true ) {
|
jacint@836
|
238 |
if ( b == 0 ) {
|
jacint@836
|
239 |
if ( !what_heur && !end && k > 0 ) {
|
jacint@836
|
240 |
b=k;
|
jacint@836
|
241 |
end=true;
|
jacint@836
|
242 |
} else break;
|
jacint@836
|
243 |
}
|
jacint@836
|
244 |
|
jacint@836
|
245 |
if ( first[b]==INVALID ) --b;
|
jacint@836
|
246 |
else {
|
jacint@836
|
247 |
end=false;
|
jacint@836
|
248 |
Node w=first[b];
|
jacint@836
|
249 |
first[b]=next[w];
|
jacint@836
|
250 |
int newlevel=push(w, next, first);
|
jacint@836
|
251 |
if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list,
|
jacint@836
|
252 |
left, right, b, k, what_heur);
|
jacint@836
|
253 |
|
jacint@836
|
254 |
++numrelabel;
|
jacint@836
|
255 |
if ( numrelabel >= heur ) {
|
jacint@836
|
256 |
numrelabel=0;
|
jacint@836
|
257 |
if ( what_heur ) {
|
jacint@836
|
258 |
what_heur=0;
|
jacint@836
|
259 |
heur=heur0;
|
jacint@836
|
260 |
end=false;
|
jacint@836
|
261 |
} else {
|
jacint@836
|
262 |
what_heur=1;
|
jacint@836
|
263 |
heur=heur1;
|
jacint@836
|
264 |
b=k;
|
jacint@836
|
265 |
}
|
jacint@836
|
266 |
}
|
jacint@836
|
267 |
}
|
jacint@836
|
268 |
}
|
jacint@836
|
269 |
flow_prop=PRE_FLOW;
|
jacint@836
|
270 |
status=AFTER_PREFLOW_PHASE_1;
|
jacint@836
|
271 |
}
|
jacint@836
|
272 |
// Heuristics:
|
jacint@836
|
273 |
// 2 phase
|
jacint@836
|
274 |
// gap
|
jacint@836
|
275 |
// list 'level_list' on the nodes on level i implemented by hand
|
jacint@836
|
276 |
// stack 'active' on the active nodes on level i
|
jacint@836
|
277 |
// runs heuristic 'highest label' for H1*n relabels
|
alpar@1222
|
278 |
// runs heuristic 'bound decrease' for H0*n relabels,
|
alpar@1222
|
279 |
// starts with 'highest label'
|
jacint@836
|
280 |
// Parameters H0 and H1 are initialized to 20 and 1.
|
jacint@836
|
281 |
|
jacint@836
|
282 |
|
jacint@836
|
283 |
///Runs the second phase of the preflow algorithm.
|
jacint@836
|
284 |
|
jacint@836
|
285 |
///The preflow algorithm consists of two phases, this method runs
|
alpar@1631
|
286 |
///the second phase. After calling \ref phase1() and then
|
alpar@1631
|
287 |
///\ref phase2(),
|
alpar@1631
|
288 |
/// \ref flowMap() return a maximum flow, \ref flowValue
|
jacint@920
|
289 |
///returns the value of a maximum flow, \ref minCut returns a
|
jacint@920
|
290 |
///minimum cut, while the methods \ref minMinCut and \ref
|
jacint@920
|
291 |
///maxMinCut return the inclusionwise minimum and maximum cuts of
|
jacint@920
|
292 |
///minimum value, resp. \pre \ref phase1 must be called before.
|
jacint@836
|
293 |
void phase2()
|
jacint@836
|
294 |
{
|
jacint@836
|
295 |
|
alpar@1222
|
296 |
int k=_node_num-2; //bound on the highest level under n containing a node
|
jacint@836
|
297 |
int b=k; //bound on the highest level under n of an active node
|
jacint@836
|
298 |
|
jacint@836
|
299 |
|
alpar@1222
|
300 |
VecNode first(_node_num, INVALID);
|
alpar@1222
|
301 |
NNMap next(*_g, INVALID);
|
alpar@1222
|
302 |
level.set(_source,0);
|
jacint@836
|
303 |
std::queue<Node> bfs_queue;
|
alpar@1222
|
304 |
bfs_queue.push(_source);
|
jacint@836
|
305 |
|
jacint@836
|
306 |
while ( !bfs_queue.empty() ) {
|
jacint@836
|
307 |
|
jacint@836
|
308 |
Node v=bfs_queue.front();
|
jacint@836
|
309 |
bfs_queue.pop();
|
jacint@836
|
310 |
int l=level[v]+1;
|
jacint@836
|
311 |
|
alpar@1222
|
312 |
for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
|
alpar@1222
|
313 |
if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
|
alpar@1222
|
314 |
Node u=_g->source(e);
|
alpar@1222
|
315 |
if ( level[u] >= _node_num ) {
|
jacint@836
|
316 |
bfs_queue.push(u);
|
jacint@836
|
317 |
level.set(u, l);
|
jacint@836
|
318 |
if ( excess[u] > 0 ) {
|
jacint@836
|
319 |
next.set(u,first[l]);
|
jacint@836
|
320 |
first[l]=u;
|
jacint@836
|
321 |
}
|
jacint@836
|
322 |
}
|
jacint@836
|
323 |
}
|
jacint@836
|
324 |
|
alpar@1222
|
325 |
for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
|
alpar@1222
|
326 |
if ( 0 >= (*_flow)[e] ) continue;
|
alpar@1222
|
327 |
Node u=_g->target(e);
|
alpar@1222
|
328 |
if ( level[u] >= _node_num ) {
|
jacint@836
|
329 |
bfs_queue.push(u);
|
jacint@836
|
330 |
level.set(u, l);
|
jacint@836
|
331 |
if ( excess[u] > 0 ) {
|
jacint@836
|
332 |
next.set(u,first[l]);
|
jacint@836
|
333 |
first[l]=u;
|
jacint@836
|
334 |
}
|
jacint@836
|
335 |
}
|
jacint@836
|
336 |
}
|
jacint@836
|
337 |
}
|
alpar@1222
|
338 |
b=_node_num-2;
|
jacint@836
|
339 |
|
jacint@836
|
340 |
while ( true ) {
|
jacint@836
|
341 |
|
jacint@836
|
342 |
if ( b == 0 ) break;
|
jacint@836
|
343 |
if ( first[b]==INVALID ) --b;
|
jacint@836
|
344 |
else {
|
jacint@836
|
345 |
Node w=first[b];
|
jacint@836
|
346 |
first[b]=next[w];
|
jacint@836
|
347 |
int newlevel=push(w,next, first);
|
jacint@836
|
348 |
|
jacint@836
|
349 |
//relabel
|
jacint@836
|
350 |
if ( excess[w] > 0 ) {
|
jacint@836
|
351 |
level.set(w,++newlevel);
|
jacint@836
|
352 |
next.set(w,first[newlevel]);
|
jacint@836
|
353 |
first[newlevel]=w;
|
jacint@836
|
354 |
b=newlevel;
|
jacint@836
|
355 |
}
|
jacint@836
|
356 |
}
|
jacint@836
|
357 |
} // while(true)
|
jacint@836
|
358 |
flow_prop=GEN_FLOW;
|
jacint@836
|
359 |
status=AFTER_PREFLOW_PHASE_2;
|
jacint@836
|
360 |
}
|
jacint@836
|
361 |
|
jacint@836
|
362 |
/// Returns the value of the maximum flow.
|
jacint@836
|
363 |
|
jacint@836
|
364 |
/// Returns the value of the maximum flow by returning the excess
|
alpar@911
|
365 |
/// of the target node \c t. This value equals to the value of
|
jacint@836
|
366 |
/// the maximum flow already after running \ref phase1.
|
jacint@836
|
367 |
Num flowValue() const {
|
alpar@1222
|
368 |
return excess[_target];
|
jacint@836
|
369 |
}
|
jacint@836
|
370 |
|
jacint@836
|
371 |
|
jacint@836
|
372 |
///Returns a minimum value cut.
|
jacint@836
|
373 |
|
jacint@836
|
374 |
///Sets \c M to the characteristic vector of a minimum value
|
jacint@836
|
375 |
///cut. This method can be called both after running \ref
|
jacint@836
|
376 |
///phase1 and \ref phase2. It is much faster after
|
marci@849
|
377 |
///\ref phase1. \pre M should be a bool-valued node-map. \pre
|
alpar@911
|
378 |
///If \ref minCut() is called after \ref phase2() then M should
|
jacint@836
|
379 |
///be initialized to false.
|
jacint@836
|
380 |
template<typename _CutMap>
|
jacint@836
|
381 |
void minCut(_CutMap& M) const {
|
jacint@836
|
382 |
switch ( status ) {
|
jacint@836
|
383 |
case AFTER_PREFLOW_PHASE_1:
|
alpar@1222
|
384 |
for(NodeIt v(*_g); v!=INVALID; ++v) {
|
alpar@1222
|
385 |
if (level[v] < _node_num) {
|
jacint@836
|
386 |
M.set(v, false);
|
jacint@836
|
387 |
} else {
|
jacint@836
|
388 |
M.set(v, true);
|
jacint@836
|
389 |
}
|
jacint@836
|
390 |
}
|
jacint@836
|
391 |
break;
|
jacint@836
|
392 |
case AFTER_PREFLOW_PHASE_2:
|
jacint@836
|
393 |
minMinCut(M);
|
jacint@836
|
394 |
break;
|
jacint@836
|
395 |
case AFTER_NOTHING:
|
jacint@836
|
396 |
break;
|
jacint@836
|
397 |
}
|
jacint@836
|
398 |
}
|
jacint@836
|
399 |
|
jacint@836
|
400 |
///Returns the inclusionwise minimum of the minimum value cuts.
|
jacint@836
|
401 |
|
jacint@836
|
402 |
///Sets \c M to the characteristic vector of the minimum value cut
|
jacint@836
|
403 |
///which is inclusionwise minimum. It is computed by processing a
|
jacint@836
|
404 |
///bfs from the source node \c s in the residual graph. \pre M
|
jacint@836
|
405 |
///should be a node map of bools initialized to false. \pre \ref
|
jacint@836
|
406 |
///phase2 should already be run.
|
jacint@836
|
407 |
template<typename _CutMap>
|
jacint@836
|
408 |
void minMinCut(_CutMap& M) const {
|
jacint@836
|
409 |
|
jacint@836
|
410 |
std::queue<Node> queue;
|
alpar@1222
|
411 |
M.set(_source,true);
|
alpar@1227
|
412 |
queue.push(_source);
|
jacint@836
|
413 |
|
jacint@836
|
414 |
while (!queue.empty()) {
|
jacint@836
|
415 |
Node w=queue.front();
|
jacint@836
|
416 |
queue.pop();
|
jacint@836
|
417 |
|
alpar@1222
|
418 |
for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
|
alpar@1222
|
419 |
Node v=_g->target(e);
|
alpar@1222
|
420 |
if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) {
|
jacint@836
|
421 |
queue.push(v);
|
jacint@836
|
422 |
M.set(v, true);
|
jacint@836
|
423 |
}
|
jacint@836
|
424 |
}
|
jacint@836
|
425 |
|
alpar@1222
|
426 |
for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
|
alpar@1222
|
427 |
Node v=_g->source(e);
|
alpar@1222
|
428 |
if (!M[v] && (*_flow)[e] > 0 ) {
|
jacint@836
|
429 |
queue.push(v);
|
jacint@836
|
430 |
M.set(v, true);
|
jacint@836
|
431 |
}
|
jacint@836
|
432 |
}
|
jacint@836
|
433 |
}
|
jacint@836
|
434 |
}
|
jacint@836
|
435 |
|
jacint@836
|
436 |
///Returns the inclusionwise maximum of the minimum value cuts.
|
jacint@836
|
437 |
|
jacint@836
|
438 |
///Sets \c M to the characteristic vector of the minimum value cut
|
jacint@836
|
439 |
///which is inclusionwise maximum. It is computed by processing a
|
jacint@836
|
440 |
///backward bfs from the target node \c t in the residual graph.
|
alpar@911
|
441 |
///\pre \ref phase2() or run() should already be run.
|
jacint@836
|
442 |
template<typename _CutMap>
|
jacint@836
|
443 |
void maxMinCut(_CutMap& M) const {
|
jacint@836
|
444 |
|
alpar@1222
|
445 |
for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
|
jacint@836
|
446 |
|
jacint@836
|
447 |
std::queue<Node> queue;
|
jacint@836
|
448 |
|
alpar@1222
|
449 |
M.set(_target,false);
|
alpar@1222
|
450 |
queue.push(_target);
|
jacint@836
|
451 |
|
jacint@836
|
452 |
while (!queue.empty()) {
|
jacint@836
|
453 |
Node w=queue.front();
|
jacint@836
|
454 |
queue.pop();
|
jacint@836
|
455 |
|
alpar@1222
|
456 |
for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
|
alpar@1222
|
457 |
Node v=_g->source(e);
|
alpar@1222
|
458 |
if (M[v] && (*_flow)[e] < (*_capacity)[e] ) {
|
jacint@836
|
459 |
queue.push(v);
|
jacint@836
|
460 |
M.set(v, false);
|
jacint@836
|
461 |
}
|
jacint@836
|
462 |
}
|
jacint@836
|
463 |
|
alpar@1222
|
464 |
for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
|
alpar@1222
|
465 |
Node v=_g->target(e);
|
alpar@1222
|
466 |
if (M[v] && (*_flow)[e] > 0 ) {
|
jacint@836
|
467 |
queue.push(v);
|
jacint@836
|
468 |
M.set(v, false);
|
jacint@836
|
469 |
}
|
jacint@836
|
470 |
}
|
jacint@836
|
471 |
}
|
jacint@836
|
472 |
}
|
jacint@836
|
473 |
|
jacint@836
|
474 |
///Sets the source node to \c _s.
|
jacint@836
|
475 |
|
jacint@836
|
476 |
///Sets the source node to \c _s.
|
jacint@836
|
477 |
///
|
alpar@1222
|
478 |
void source(Node _s) {
|
alpar@1222
|
479 |
_source=_s;
|
jacint@836
|
480 |
if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
|
jacint@836
|
481 |
status=AFTER_NOTHING;
|
jacint@836
|
482 |
}
|
jacint@836
|
483 |
|
alpar@1222
|
484 |
///Returns the source node.
|
alpar@1222
|
485 |
|
alpar@1222
|
486 |
///Returns the source node.
|
alpar@1222
|
487 |
///
|
alpar@1222
|
488 |
Node source() const {
|
alpar@1222
|
489 |
return _source;
|
alpar@1222
|
490 |
}
|
alpar@1222
|
491 |
|
jacint@836
|
492 |
///Sets the target node to \c _t.
|
jacint@836
|
493 |
|
jacint@836
|
494 |
///Sets the target node to \c _t.
|
jacint@836
|
495 |
///
|
alpar@1222
|
496 |
void target(Node _t) {
|
alpar@1222
|
497 |
_target=_t;
|
jacint@836
|
498 |
if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
|
jacint@836
|
499 |
status=AFTER_NOTHING;
|
jacint@836
|
500 |
}
|
jacint@836
|
501 |
|
alpar@1222
|
502 |
///Returns the target node.
|
alpar@1222
|
503 |
|
alpar@1222
|
504 |
///Returns the target node.
|
alpar@1222
|
505 |
///
|
alpar@1222
|
506 |
Node target() const {
|
alpar@1222
|
507 |
return _target;
|
alpar@1222
|
508 |
}
|
alpar@1222
|
509 |
|
jacint@836
|
510 |
/// Sets the edge map of the capacities to _cap.
|
jacint@836
|
511 |
|
jacint@836
|
512 |
/// Sets the edge map of the capacities to _cap.
|
jacint@836
|
513 |
///
|
alpar@1222
|
514 |
void capacityMap(const CapacityMap& _cap) {
|
alpar@1222
|
515 |
_capacity=&_cap;
|
jacint@836
|
516 |
status=AFTER_NOTHING;
|
jacint@836
|
517 |
}
|
zsuzska@1285
|
518 |
/// Returns a reference to capacity map.
|
alpar@1222
|
519 |
|
zsuzska@1285
|
520 |
/// Returns a reference to capacity map.
|
alpar@1222
|
521 |
///
|
alpar@1222
|
522 |
const CapacityMap &capacityMap() const {
|
alpar@1222
|
523 |
return *_capacity;
|
alpar@1222
|
524 |
}
|
jacint@836
|
525 |
|
jacint@836
|
526 |
/// Sets the edge map of the flows to _flow.
|
jacint@836
|
527 |
|
jacint@836
|
528 |
/// Sets the edge map of the flows to _flow.
|
jacint@836
|
529 |
///
|
alpar@1222
|
530 |
void flowMap(FlowMap& _f) {
|
alpar@1222
|
531 |
_flow=&_f;
|
jacint@836
|
532 |
flow_prop=NO_FLOW;
|
jacint@836
|
533 |
status=AFTER_NOTHING;
|
jacint@836
|
534 |
}
|
alpar@1222
|
535 |
|
zsuzska@1285
|
536 |
/// Returns a reference to flow map.
|
jacint@836
|
537 |
|
zsuzska@1285
|
538 |
/// Returns a reference to flow map.
|
alpar@1222
|
539 |
///
|
alpar@1222
|
540 |
const FlowMap &flowMap() const {
|
alpar@1222
|
541 |
return *_flow;
|
alpar@1222
|
542 |
}
|
jacint@836
|
543 |
|
jacint@836
|
544 |
private:
|
jacint@836
|
545 |
|
jacint@836
|
546 |
int push(Node w, NNMap& next, VecNode& first) {
|
jacint@836
|
547 |
|
jacint@836
|
548 |
int lev=level[w];
|
jacint@836
|
549 |
Num exc=excess[w];
|
alpar@1222
|
550 |
int newlevel=_node_num; //bound on the next level of w
|
jacint@836
|
551 |
|
alpar@1222
|
552 |
for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
|
alpar@1222
|
553 |
if ( (*_flow)[e] >= (*_capacity)[e] ) continue;
|
alpar@1222
|
554 |
Node v=_g->target(e);
|
jacint@836
|
555 |
|
jacint@836
|
556 |
if( lev > level[v] ) { //Push is allowed now
|
jacint@836
|
557 |
|
alpar@1222
|
558 |
if ( excess[v]<=0 && v!=_target && v!=_source ) {
|
jacint@836
|
559 |
next.set(v,first[level[v]]);
|
jacint@836
|
560 |
first[level[v]]=v;
|
jacint@836
|
561 |
}
|
jacint@836
|
562 |
|
alpar@1222
|
563 |
Num cap=(*_capacity)[e];
|
alpar@1222
|
564 |
Num flo=(*_flow)[e];
|
jacint@836
|
565 |
Num remcap=cap-flo;
|
jacint@836
|
566 |
|
jacint@836
|
567 |
if ( remcap >= exc ) { //A nonsaturating push.
|
jacint@836
|
568 |
|
alpar@1222
|
569 |
_flow->set(e, flo+exc);
|
jacint@836
|
570 |
excess.set(v, excess[v]+exc);
|
jacint@836
|
571 |
exc=0;
|
jacint@836
|
572 |
break;
|
jacint@836
|
573 |
|
jacint@836
|
574 |
} else { //A saturating push.
|
alpar@1222
|
575 |
_flow->set(e, cap);
|
jacint@836
|
576 |
excess.set(v, excess[v]+remcap);
|
jacint@836
|
577 |
exc-=remcap;
|
jacint@836
|
578 |
}
|
jacint@836
|
579 |
} else if ( newlevel > level[v] ) newlevel = level[v];
|
jacint@836
|
580 |
} //for out edges wv
|
jacint@836
|
581 |
|
jacint@836
|
582 |
if ( exc > 0 ) {
|
alpar@1222
|
583 |
for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
|
jacint@836
|
584 |
|
alpar@1222
|
585 |
if( (*_flow)[e] <= 0 ) continue;
|
alpar@1222
|
586 |
Node v=_g->source(e);
|
jacint@836
|
587 |
|
jacint@836
|
588 |
if( lev > level[v] ) { //Push is allowed now
|
jacint@836
|
589 |
|
alpar@1222
|
590 |
if ( excess[v]<=0 && v!=_target && v!=_source ) {
|
jacint@836
|
591 |
next.set(v,first[level[v]]);
|
jacint@836
|
592 |
first[level[v]]=v;
|
jacint@836
|
593 |
}
|
jacint@836
|
594 |
|
alpar@1222
|
595 |
Num flo=(*_flow)[e];
|
jacint@836
|
596 |
|
jacint@836
|
597 |
if ( flo >= exc ) { //A nonsaturating push.
|
jacint@836
|
598 |
|
alpar@1222
|
599 |
_flow->set(e, flo-exc);
|
jacint@836
|
600 |
excess.set(v, excess[v]+exc);
|
jacint@836
|
601 |
exc=0;
|
jacint@836
|
602 |
break;
|
jacint@836
|
603 |
} else { //A saturating push.
|
jacint@836
|
604 |
|
jacint@836
|
605 |
excess.set(v, excess[v]+flo);
|
jacint@836
|
606 |
exc-=flo;
|
alpar@1222
|
607 |
_flow->set(e,0);
|
jacint@836
|
608 |
}
|
jacint@836
|
609 |
} else if ( newlevel > level[v] ) newlevel = level[v];
|
jacint@836
|
610 |
} //for in edges vw
|
jacint@836
|
611 |
|
jacint@836
|
612 |
} // if w still has excess after the out edge for cycle
|
jacint@836
|
613 |
|
jacint@836
|
614 |
excess.set(w, exc);
|
jacint@836
|
615 |
|
jacint@836
|
616 |
return newlevel;
|
jacint@836
|
617 |
}
|
jacint@836
|
618 |
|
jacint@836
|
619 |
|
jacint@836
|
620 |
|
jacint@836
|
621 |
void preflowPreproc(VecNode& first, NNMap& next,
|
jacint@836
|
622 |
VecNode& level_list, NNMap& left, NNMap& right)
|
jacint@836
|
623 |
{
|
alpar@1222
|
624 |
for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
|
jacint@836
|
625 |
std::queue<Node> bfs_queue;
|
jacint@836
|
626 |
|
jacint@836
|
627 |
if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
|
jacint@836
|
628 |
//Reverse_bfs from t in the residual graph,
|
jacint@836
|
629 |
//to find the starting level.
|
alpar@1222
|
630 |
level.set(_target,0);
|
alpar@1222
|
631 |
bfs_queue.push(_target);
|
jacint@836
|
632 |
|
jacint@836
|
633 |
while ( !bfs_queue.empty() ) {
|
jacint@836
|
634 |
|
jacint@836
|
635 |
Node v=bfs_queue.front();
|
jacint@836
|
636 |
bfs_queue.pop();
|
jacint@836
|
637 |
int l=level[v]+1;
|
jacint@836
|
638 |
|
alpar@1222
|
639 |
for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
|
alpar@1222
|
640 |
if ( (*_capacity)[e] <= (*_flow)[e] ) continue;
|
alpar@1222
|
641 |
Node w=_g->source(e);
|
alpar@1222
|
642 |
if ( level[w] == _node_num && w != _source ) {
|
jacint@836
|
643 |
bfs_queue.push(w);
|
jacint@836
|
644 |
Node z=level_list[l];
|
jacint@836
|
645 |
if ( z!=INVALID ) left.set(z,w);
|
jacint@836
|
646 |
right.set(w,z);
|
jacint@836
|
647 |
level_list[l]=w;
|
jacint@836
|
648 |
level.set(w, l);
|
jacint@836
|
649 |
}
|
jacint@836
|
650 |
}
|
jacint@836
|
651 |
|
alpar@1222
|
652 |
for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
|
alpar@1222
|
653 |
if ( 0 >= (*_flow)[e] ) continue;
|
alpar@1222
|
654 |
Node w=_g->target(e);
|
alpar@1222
|
655 |
if ( level[w] == _node_num && w != _source ) {
|
jacint@836
|
656 |
bfs_queue.push(w);
|
jacint@836
|
657 |
Node z=level_list[l];
|
jacint@836
|
658 |
if ( z!=INVALID ) left.set(z,w);
|
jacint@836
|
659 |
right.set(w,z);
|
jacint@836
|
660 |
level_list[l]=w;
|
jacint@836
|
661 |
level.set(w, l);
|
jacint@836
|
662 |
}
|
jacint@836
|
663 |
}
|
jacint@836
|
664 |
} //while
|
jacint@836
|
665 |
} //if
|
jacint@836
|
666 |
|
jacint@836
|
667 |
|
jacint@836
|
668 |
switch (flow_prop) {
|
jacint@836
|
669 |
case NO_FLOW:
|
alpar@1222
|
670 |
for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
|
jacint@836
|
671 |
case ZERO_FLOW:
|
alpar@1222
|
672 |
for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
|
jacint@836
|
673 |
|
jacint@836
|
674 |
//Reverse_bfs from t, to find the starting level.
|
alpar@1222
|
675 |
level.set(_target,0);
|
alpar@1222
|
676 |
bfs_queue.push(_target);
|
jacint@836
|
677 |
|
jacint@836
|
678 |
while ( !bfs_queue.empty() ) {
|
jacint@836
|
679 |
|
jacint@836
|
680 |
Node v=bfs_queue.front();
|
jacint@836
|
681 |
bfs_queue.pop();
|
jacint@836
|
682 |
int l=level[v]+1;
|
jacint@836
|
683 |
|
alpar@1222
|
684 |
for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
|
alpar@1222
|
685 |
Node w=_g->source(e);
|
alpar@1222
|
686 |
if ( level[w] == _node_num && w != _source ) {
|
jacint@836
|
687 |
bfs_queue.push(w);
|
jacint@836
|
688 |
Node z=level_list[l];
|
jacint@836
|
689 |
if ( z!=INVALID ) left.set(z,w);
|
jacint@836
|
690 |
right.set(w,z);
|
jacint@836
|
691 |
level_list[l]=w;
|
jacint@836
|
692 |
level.set(w, l);
|
jacint@836
|
693 |
}
|
jacint@836
|
694 |
}
|
jacint@836
|
695 |
}
|
jacint@836
|
696 |
|
jacint@836
|
697 |
//the starting flow
|
alpar@1222
|
698 |
for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
|
alpar@1222
|
699 |
Num c=(*_capacity)[e];
|
jacint@836
|
700 |
if ( c <= 0 ) continue;
|
alpar@1222
|
701 |
Node w=_g->target(e);
|
alpar@1222
|
702 |
if ( level[w] < _node_num ) {
|
alpar@1222
|
703 |
if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
|
jacint@836
|
704 |
next.set(w,first[level[w]]);
|
jacint@836
|
705 |
first[level[w]]=w;
|
jacint@836
|
706 |
}
|
alpar@1222
|
707 |
_flow->set(e, c);
|
jacint@836
|
708 |
excess.set(w, excess[w]+c);
|
jacint@836
|
709 |
}
|
jacint@836
|
710 |
}
|
jacint@836
|
711 |
break;
|
jacint@836
|
712 |
|
jacint@836
|
713 |
case GEN_FLOW:
|
alpar@1222
|
714 |
for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
|
jacint@836
|
715 |
{
|
jacint@836
|
716 |
Num exc=0;
|
alpar@1222
|
717 |
for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
|
alpar@1222
|
718 |
for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
|
alpar@1222
|
719 |
excess.set(_target,exc);
|
jacint@836
|
720 |
}
|
jacint@836
|
721 |
|
jacint@836
|
722 |
//the starting flow
|
alpar@1222
|
723 |
for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e) {
|
alpar@1222
|
724 |
Num rem=(*_capacity)[e]-(*_flow)[e];
|
jacint@836
|
725 |
if ( rem <= 0 ) continue;
|
alpar@1222
|
726 |
Node w=_g->target(e);
|
alpar@1222
|
727 |
if ( level[w] < _node_num ) {
|
alpar@1222
|
728 |
if ( excess[w] <= 0 && w!=_target ) { //putting into the stack
|
jacint@836
|
729 |
next.set(w,first[level[w]]);
|
jacint@836
|
730 |
first[level[w]]=w;
|
jacint@836
|
731 |
}
|
alpar@1222
|
732 |
_flow->set(e, (*_capacity)[e]);
|
jacint@836
|
733 |
excess.set(w, excess[w]+rem);
|
jacint@836
|
734 |
}
|
jacint@836
|
735 |
}
|
jacint@836
|
736 |
|
alpar@1222
|
737 |
for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
|
alpar@1222
|
738 |
if ( (*_flow)[e] <= 0 ) continue;
|
alpar@1222
|
739 |
Node w=_g->source(e);
|
alpar@1222
|
740 |
if ( level[w] < _node_num ) {
|
alpar@1222
|
741 |
if ( excess[w] <= 0 && w!=_target ) {
|
jacint@836
|
742 |
next.set(w,first[level[w]]);
|
jacint@836
|
743 |
first[level[w]]=w;
|
jacint@836
|
744 |
}
|
alpar@1222
|
745 |
excess.set(w, excess[w]+(*_flow)[e]);
|
alpar@1222
|
746 |
_flow->set(e, 0);
|
jacint@836
|
747 |
}
|
jacint@836
|
748 |
}
|
jacint@836
|
749 |
break;
|
jacint@836
|
750 |
|
jacint@836
|
751 |
case PRE_FLOW:
|
jacint@836
|
752 |
//the starting flow
|
alpar@1222
|
753 |
for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
|
alpar@1222
|
754 |
Num rem=(*_capacity)[e]-(*_flow)[e];
|
jacint@836
|
755 |
if ( rem <= 0 ) continue;
|
alpar@1222
|
756 |
Node w=_g->target(e);
|
alpar@1222
|
757 |
if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
|
jacint@836
|
758 |
}
|
jacint@836
|
759 |
|
alpar@1222
|
760 |
for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
|
alpar@1222
|
761 |
if ( (*_flow)[e] <= 0 ) continue;
|
alpar@1222
|
762 |
Node w=_g->source(e);
|
alpar@1222
|
763 |
if ( level[w] < _node_num ) _flow->set(e, 0);
|
jacint@836
|
764 |
}
|
jacint@836
|
765 |
|
jacint@836
|
766 |
//computing the excess
|
alpar@1222
|
767 |
for(NodeIt w(*_g); w!=INVALID; ++w) {
|
jacint@836
|
768 |
Num exc=0;
|
alpar@1222
|
769 |
for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
|
alpar@1222
|
770 |
for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
|
jacint@836
|
771 |
excess.set(w,exc);
|
jacint@836
|
772 |
|
jacint@836
|
773 |
//putting the active nodes into the stack
|
jacint@836
|
774 |
int lev=level[w];
|
alpar@1222
|
775 |
if ( exc > 0 && lev < _node_num && Node(w) != _target ) {
|
jacint@836
|
776 |
next.set(w,first[lev]);
|
jacint@836
|
777 |
first[lev]=w;
|
jacint@836
|
778 |
}
|
jacint@836
|
779 |
}
|
jacint@836
|
780 |
break;
|
jacint@836
|
781 |
} //switch
|
jacint@836
|
782 |
} //preflowPreproc
|
jacint@836
|
783 |
|
jacint@836
|
784 |
|
jacint@836
|
785 |
void relabel(Node w, int newlevel, VecNode& first, NNMap& next,
|
jacint@836
|
786 |
VecNode& level_list, NNMap& left,
|
jacint@836
|
787 |
NNMap& right, int& b, int& k, bool what_heur )
|
jacint@836
|
788 |
{
|
jacint@836
|
789 |
|
jacint@836
|
790 |
int lev=level[w];
|
jacint@836
|
791 |
|
jacint@836
|
792 |
Node right_n=right[w];
|
jacint@836
|
793 |
Node left_n=left[w];
|
jacint@836
|
794 |
|
jacint@836
|
795 |
//unlacing starts
|
jacint@836
|
796 |
if ( right_n!=INVALID ) {
|
jacint@836
|
797 |
if ( left_n!=INVALID ) {
|
jacint@836
|
798 |
right.set(left_n, right_n);
|
jacint@836
|
799 |
left.set(right_n, left_n);
|
jacint@836
|
800 |
} else {
|
jacint@836
|
801 |
level_list[lev]=right_n;
|
jacint@836
|
802 |
left.set(right_n, INVALID);
|
jacint@836
|
803 |
}
|
jacint@836
|
804 |
} else {
|
jacint@836
|
805 |
if ( left_n!=INVALID ) {
|
jacint@836
|
806 |
right.set(left_n, INVALID);
|
jacint@836
|
807 |
} else {
|
jacint@836
|
808 |
level_list[lev]=INVALID;
|
jacint@836
|
809 |
}
|
jacint@836
|
810 |
}
|
jacint@836
|
811 |
//unlacing ends
|
jacint@836
|
812 |
|
jacint@836
|
813 |
if ( level_list[lev]==INVALID ) {
|
jacint@836
|
814 |
|
jacint@836
|
815 |
//gapping starts
|
jacint@836
|
816 |
for (int i=lev; i!=k ; ) {
|
jacint@836
|
817 |
Node v=level_list[++i];
|
jacint@836
|
818 |
while ( v!=INVALID ) {
|
alpar@1222
|
819 |
level.set(v,_node_num);
|
jacint@836
|
820 |
v=right[v];
|
jacint@836
|
821 |
}
|
jacint@836
|
822 |
level_list[i]=INVALID;
|
jacint@836
|
823 |
if ( !what_heur ) first[i]=INVALID;
|
jacint@836
|
824 |
}
|
jacint@836
|
825 |
|
alpar@1222
|
826 |
level.set(w,_node_num);
|
jacint@836
|
827 |
b=lev-1;
|
jacint@836
|
828 |
k=b;
|
jacint@836
|
829 |
//gapping ends
|
jacint@836
|
830 |
|
jacint@836
|
831 |
} else {
|
jacint@836
|
832 |
|
alpar@1222
|
833 |
if ( newlevel == _node_num ) level.set(w,_node_num);
|
jacint@836
|
834 |
else {
|
jacint@836
|
835 |
level.set(w,++newlevel);
|
jacint@836
|
836 |
next.set(w,first[newlevel]);
|
jacint@836
|
837 |
first[newlevel]=w;
|
jacint@836
|
838 |
if ( what_heur ) b=newlevel;
|
jacint@836
|
839 |
if ( k < newlevel ) ++k; //now k=newlevel
|
jacint@836
|
840 |
Node z=level_list[newlevel];
|
jacint@836
|
841 |
if ( z!=INVALID ) left.set(z,w);
|
jacint@836
|
842 |
right.set(w,z);
|
jacint@836
|
843 |
left.set(w,INVALID);
|
jacint@836
|
844 |
level_list[newlevel]=w;
|
jacint@836
|
845 |
}
|
jacint@836
|
846 |
}
|
jacint@836
|
847 |
} //relabel
|
jacint@836
|
848 |
|
jacint@836
|
849 |
};
|
alpar@1227
|
850 |
|
alpar@1227
|
851 |
///Function type interface for Preflow algorithm.
|
alpar@1227
|
852 |
|
alpar@1227
|
853 |
/// \ingroup flowalgs
|
alpar@1227
|
854 |
///Function type interface for Preflow algorithm.
|
alpar@1227
|
855 |
///\sa Preflow
|
alpar@1227
|
856 |
template<class GR, class CM, class FM>
|
alpar@1227
|
857 |
Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
|
alpar@1227
|
858 |
typename GR::Node source,
|
alpar@1227
|
859 |
typename GR::Node target,
|
alpar@1227
|
860 |
const CM &cap,
|
alpar@1227
|
861 |
FM &flow
|
alpar@1227
|
862 |
)
|
alpar@1227
|
863 |
{
|
alpar@1227
|
864 |
return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
|
alpar@1227
|
865 |
}
|
alpar@1227
|
866 |
|
alpar@921
|
867 |
} //namespace lemon
|
jacint@836
|
868 |
|
alpar@921
|
869 |
#endif //LEMON_PREFLOW_H
|