alpar@906
|
1 |
/* -*- C++ -*-
|
alpar@906
|
2 |
* src/hugo/min_cost_flow.h - Part of HUGOlib, a generic C++ optimization library
|
alpar@906
|
3 |
*
|
alpar@906
|
4 |
* Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@906
|
5 |
* (Egervary Combinatorial Optimization Research Group, EGRES).
|
alpar@906
|
6 |
*
|
alpar@906
|
7 |
* Permission to use, modify and distribute this software is granted
|
alpar@906
|
8 |
* provided that this copyright notice appears in all copies. For
|
alpar@906
|
9 |
* precise terms see the accompanying LICENSE file.
|
alpar@906
|
10 |
*
|
alpar@906
|
11 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@906
|
12 |
* express or implied, and with no claim as to its suitability for any
|
alpar@906
|
13 |
* purpose.
|
alpar@906
|
14 |
*
|
alpar@906
|
15 |
*/
|
alpar@906
|
16 |
|
marci@901
|
17 |
#ifndef HUGO_MIN_COST_FLOW_H
|
marci@901
|
18 |
#define HUGO_MIN_COST_FLOW_H
|
alpar@899
|
19 |
|
alpar@899
|
20 |
///\ingroup flowalgs
|
alpar@899
|
21 |
///\file
|
alpar@899
|
22 |
///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost
|
alpar@899
|
23 |
|
alpar@899
|
24 |
|
alpar@899
|
25 |
#include <hugo/dijkstra.h>
|
alpar@899
|
26 |
#include <hugo/graph_wrapper.h>
|
alpar@899
|
27 |
#include <hugo/maps.h>
|
alpar@899
|
28 |
#include <vector>
|
alpar@899
|
29 |
|
alpar@899
|
30 |
namespace hugo {
|
alpar@899
|
31 |
|
alpar@899
|
32 |
/// \addtogroup flowalgs
|
alpar@899
|
33 |
/// @{
|
alpar@899
|
34 |
|
alpar@899
|
35 |
///\brief Implementation of an algorithm for finding a flow of value \c k
|
alpar@899
|
36 |
///(for small values of \c k) having minimal total cost between 2 nodes
|
alpar@899
|
37 |
///
|
alpar@899
|
38 |
///
|
alpar@899
|
39 |
/// The class \ref hugo::MinCostFlow "MinCostFlow" implements
|
alpar@899
|
40 |
/// an algorithm for finding a flow of value \c k
|
alpar@899
|
41 |
/// having minimal total cost
|
alpar@899
|
42 |
/// from a given source node to a given target node in an
|
alpar@899
|
43 |
/// edge-weighted directed graph. To this end,
|
alpar@899
|
44 |
/// the edge-capacities and edge-weitghs have to be nonnegative.
|
alpar@899
|
45 |
/// The edge-capacities should be integers, but the edge-weights can be
|
alpar@899
|
46 |
/// integers, reals or of other comparable numeric type.
|
alpar@899
|
47 |
/// This algorithm is intended to use only for small values of \c k,
|
alpar@899
|
48 |
/// since it is only polynomial in k,
|
alpar@899
|
49 |
/// not in the length of k (which is log k).
|
alpar@899
|
50 |
/// In order to find the minimum cost flow of value \c k it
|
alpar@899
|
51 |
/// finds the minimum cost flow of value \c i for every
|
alpar@899
|
52 |
/// \c i between 0 and \c k.
|
alpar@899
|
53 |
///
|
alpar@899
|
54 |
///\param Graph The directed graph type the algorithm runs on.
|
alpar@899
|
55 |
///\param LengthMap The type of the length map.
|
alpar@899
|
56 |
///\param CapacityMap The capacity map type.
|
alpar@899
|
57 |
///
|
alpar@899
|
58 |
///\author Attila Bernath
|
alpar@899
|
59 |
template <typename Graph, typename LengthMap, typename CapacityMap>
|
alpar@899
|
60 |
class MinCostFlow {
|
alpar@899
|
61 |
|
alpar@899
|
62 |
typedef typename LengthMap::ValueType Length;
|
alpar@899
|
63 |
|
alpar@899
|
64 |
//Warning: this should be integer type
|
alpar@899
|
65 |
typedef typename CapacityMap::ValueType Capacity;
|
alpar@899
|
66 |
|
alpar@899
|
67 |
typedef typename Graph::Node Node;
|
alpar@899
|
68 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@899
|
69 |
typedef typename Graph::Edge Edge;
|
alpar@899
|
70 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@899
|
71 |
typedef typename Graph::template EdgeMap<int> EdgeIntMap;
|
alpar@899
|
72 |
|
alpar@899
|
73 |
|
alpar@899
|
74 |
typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
|
alpar@899
|
75 |
typedef typename ResGraphType::Edge ResGraphEdge;
|
alpar@899
|
76 |
|
alpar@899
|
77 |
class ModLengthMap {
|
alpar@899
|
78 |
typedef typename Graph::template NodeMap<Length> NodeMap;
|
alpar@899
|
79 |
const ResGraphType& G;
|
alpar@899
|
80 |
const LengthMap &ol;
|
alpar@899
|
81 |
const NodeMap &pot;
|
alpar@899
|
82 |
public :
|
alpar@899
|
83 |
typedef typename LengthMap::KeyType KeyType;
|
alpar@899
|
84 |
typedef typename LengthMap::ValueType ValueType;
|
alpar@899
|
85 |
|
alpar@899
|
86 |
ValueType operator[](typename ResGraphType::Edge e) const {
|
alpar@899
|
87 |
if (G.forward(e))
|
alpar@899
|
88 |
return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
|
alpar@899
|
89 |
else
|
alpar@899
|
90 |
return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
|
alpar@899
|
91 |
}
|
alpar@899
|
92 |
|
alpar@899
|
93 |
ModLengthMap(const ResGraphType& _G,
|
alpar@899
|
94 |
const LengthMap &o, const NodeMap &p) :
|
alpar@899
|
95 |
G(_G), /*rev(_rev),*/ ol(o), pot(p){};
|
alpar@899
|
96 |
};//ModLengthMap
|
alpar@899
|
97 |
|
alpar@899
|
98 |
|
alpar@899
|
99 |
protected:
|
alpar@899
|
100 |
|
alpar@899
|
101 |
//Input
|
alpar@899
|
102 |
const Graph& G;
|
alpar@899
|
103 |
const LengthMap& length;
|
alpar@899
|
104 |
const CapacityMap& capacity;
|
alpar@899
|
105 |
|
alpar@899
|
106 |
|
alpar@899
|
107 |
//auxiliary variables
|
alpar@899
|
108 |
|
alpar@899
|
109 |
//To store the flow
|
alpar@899
|
110 |
EdgeIntMap flow;
|
alpar@899
|
111 |
//To store the potential (dual variables)
|
alpar@899
|
112 |
typedef typename Graph::template NodeMap<Length> PotentialMap;
|
alpar@899
|
113 |
PotentialMap potential;
|
alpar@899
|
114 |
|
alpar@899
|
115 |
|
alpar@899
|
116 |
Length total_length;
|
alpar@899
|
117 |
|
alpar@899
|
118 |
|
alpar@899
|
119 |
public :
|
alpar@899
|
120 |
|
alpar@899
|
121 |
/// The constructor of the class.
|
alpar@899
|
122 |
|
alpar@899
|
123 |
///\param _G The directed graph the algorithm runs on.
|
alpar@899
|
124 |
///\param _length The length (weight or cost) of the edges.
|
alpar@899
|
125 |
///\param _cap The capacity of the edges.
|
alpar@899
|
126 |
MinCostFlow(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G),
|
alpar@899
|
127 |
length(_length), capacity(_cap), flow(_G), potential(_G){ }
|
alpar@899
|
128 |
|
alpar@899
|
129 |
|
alpar@899
|
130 |
///Runs the algorithm.
|
alpar@899
|
131 |
|
alpar@899
|
132 |
///Runs the algorithm.
|
alpar@899
|
133 |
///Returns k if there is a flow of value at least k edge-disjoint
|
alpar@899
|
134 |
///from s to t.
|
alpar@899
|
135 |
///Otherwise it returns the maximum value of a flow from s to t.
|
alpar@899
|
136 |
///
|
alpar@899
|
137 |
///\param s The source node.
|
alpar@899
|
138 |
///\param t The target node.
|
alpar@899
|
139 |
///\param k The value of the flow we are looking for.
|
alpar@899
|
140 |
///
|
alpar@899
|
141 |
///\todo May be it does make sense to be able to start with a nonzero
|
alpar@899
|
142 |
/// feasible primal-dual solution pair as well.
|
alpar@899
|
143 |
int run(Node s, Node t, int k) {
|
alpar@899
|
144 |
|
alpar@899
|
145 |
//Resetting variables from previous runs
|
alpar@899
|
146 |
total_length = 0;
|
alpar@899
|
147 |
|
alpar@899
|
148 |
for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
|
alpar@899
|
149 |
|
alpar@899
|
150 |
//Initialize the potential to zero
|
alpar@899
|
151 |
for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
|
alpar@899
|
152 |
|
alpar@899
|
153 |
|
alpar@899
|
154 |
//We need a residual graph
|
alpar@899
|
155 |
ResGraphType res_graph(G, capacity, flow);
|
alpar@899
|
156 |
|
alpar@899
|
157 |
|
alpar@899
|
158 |
ModLengthMap mod_length(res_graph, length, potential);
|
alpar@899
|
159 |
|
alpar@899
|
160 |
Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
|
alpar@899
|
161 |
|
alpar@899
|
162 |
int i;
|
alpar@899
|
163 |
for (i=0; i<k; ++i){
|
alpar@899
|
164 |
dijkstra.run(s);
|
alpar@899
|
165 |
if (!dijkstra.reached(t)){
|
alpar@899
|
166 |
//There are no flow of value k from s to t
|
alpar@899
|
167 |
break;
|
alpar@899
|
168 |
};
|
alpar@899
|
169 |
|
alpar@899
|
170 |
//We have to change the potential
|
alpar@899
|
171 |
for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n)
|
alpar@899
|
172 |
potential[n] += dijkstra.distMap()[n];
|
alpar@899
|
173 |
|
alpar@899
|
174 |
|
alpar@899
|
175 |
//Augmenting on the sortest path
|
alpar@899
|
176 |
Node n=t;
|
alpar@899
|
177 |
ResGraphEdge e;
|
alpar@899
|
178 |
while (n!=s){
|
alpar@899
|
179 |
e = dijkstra.pred(n);
|
alpar@899
|
180 |
n = dijkstra.predNode(n);
|
alpar@899
|
181 |
res_graph.augment(e,1);
|
alpar@899
|
182 |
//Let's update the total length
|
alpar@899
|
183 |
if (res_graph.forward(e))
|
alpar@899
|
184 |
total_length += length[e];
|
alpar@899
|
185 |
else
|
alpar@899
|
186 |
total_length -= length[e];
|
alpar@899
|
187 |
}
|
alpar@899
|
188 |
|
alpar@899
|
189 |
|
alpar@899
|
190 |
}
|
alpar@899
|
191 |
|
alpar@899
|
192 |
|
alpar@899
|
193 |
return i;
|
alpar@899
|
194 |
}
|
alpar@899
|
195 |
|
alpar@899
|
196 |
|
alpar@899
|
197 |
|
alpar@899
|
198 |
/// Gives back the total weight of the found flow.
|
alpar@899
|
199 |
|
alpar@899
|
200 |
///This function gives back the total weight of the found flow.
|
alpar@899
|
201 |
///Assumes that \c run() has been run and nothing changed since then.
|
alpar@899
|
202 |
Length totalLength(){
|
alpar@899
|
203 |
return total_length;
|
alpar@899
|
204 |
}
|
alpar@899
|
205 |
|
alpar@899
|
206 |
///Returns a const reference to the EdgeMap \c flow.
|
alpar@899
|
207 |
|
alpar@899
|
208 |
///Returns a const reference to the EdgeMap \c flow.
|
alpar@899
|
209 |
///\pre \ref run() must
|
alpar@899
|
210 |
///be called before using this function.
|
alpar@899
|
211 |
const EdgeIntMap &getFlow() const { return flow;}
|
alpar@899
|
212 |
|
alpar@899
|
213 |
///Returns a const reference to the NodeMap \c potential (the dual solution).
|
alpar@899
|
214 |
|
alpar@899
|
215 |
///Returns a const reference to the NodeMap \c potential (the dual solution).
|
alpar@899
|
216 |
/// \pre \ref run() must be called before using this function.
|
alpar@899
|
217 |
const PotentialMap &getPotential() const { return potential;}
|
alpar@899
|
218 |
|
alpar@899
|
219 |
/// Checking the complementary slackness optimality criteria
|
alpar@899
|
220 |
|
alpar@899
|
221 |
///This function checks, whether the given solution is optimal
|
alpar@899
|
222 |
///If executed after the call of \c run() then it should return with true.
|
alpar@899
|
223 |
///This function only checks optimality, doesn't bother with feasibility.
|
alpar@899
|
224 |
///It is meant for testing purposes.
|
alpar@899
|
225 |
///
|
alpar@899
|
226 |
bool checkComplementarySlackness(){
|
alpar@899
|
227 |
Length mod_pot;
|
alpar@899
|
228 |
Length fl_e;
|
alpar@899
|
229 |
for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
|
alpar@899
|
230 |
//C^{\Pi}_{i,j}
|
alpar@899
|
231 |
mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
|
alpar@899
|
232 |
fl_e = flow[e];
|
alpar@899
|
233 |
if (0<fl_e && fl_e<capacity[e]) {
|
alpar@899
|
234 |
/// \todo better comparison is needed for real types, moreover,
|
alpar@899
|
235 |
/// this comparison here is superfluous.
|
alpar@899
|
236 |
if (mod_pot != 0)
|
alpar@899
|
237 |
return false;
|
alpar@899
|
238 |
}
|
alpar@899
|
239 |
else {
|
alpar@899
|
240 |
if (mod_pot > 0 && fl_e != 0)
|
alpar@899
|
241 |
return false;
|
alpar@899
|
242 |
if (mod_pot < 0 && fl_e != capacity[e])
|
alpar@899
|
243 |
return false;
|
alpar@899
|
244 |
}
|
alpar@899
|
245 |
}
|
alpar@899
|
246 |
return true;
|
alpar@899
|
247 |
}
|
alpar@899
|
248 |
|
alpar@899
|
249 |
|
alpar@899
|
250 |
}; //class MinCostFlow
|
alpar@899
|
251 |
|
alpar@899
|
252 |
///@}
|
alpar@899
|
253 |
|
alpar@899
|
254 |
} //namespace hugo
|
alpar@899
|
255 |
|
marci@901
|
256 |
#endif //HUGO_MIN_COST_FLOW_H
|