lemon/floyd_warshall.h
author deba
Tue, 08 Apr 2008 15:16:16 +0000
changeset 2604 e4ec01f1a4cd
parent 2391 14a343be7a5a
permissions -rw-r--r--
Fix Makefile.am
deba@1699
     1
/* -*- C++ -*-
deba@1699
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@2553
     5
 * Copyright (C) 2003-2008
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1699
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1699
     8
 *
deba@1699
     9
 * Permission to use, modify and distribute this software is granted
deba@1699
    10
 * provided that this copyright notice appears in all copies. For
deba@1699
    11
 * precise terms see the accompanying LICENSE file.
deba@1699
    12
 *
deba@1699
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@1699
    14
 * express or implied, and with no claim as to its suitability for any
deba@1699
    15
 * purpose.
deba@1699
    16
 *
deba@1699
    17
 */
deba@1699
    18
deba@1699
    19
#ifndef LEMON_FLOYD_WARSHALL_H
deba@1699
    20
#define LEMON_FLOYD_WARSHALL_H
deba@1699
    21
deba@2376
    22
///\ingroup shortest_path
deba@1699
    23
/// \file
deba@1699
    24
/// \brief FloydWarshall algorithm.
deba@1699
    25
///
deba@1699
    26
deba@1699
    27
#include <lemon/list_graph.h>
deba@1699
    28
#include <lemon/graph_utils.h>
deba@2335
    29
#include <lemon/bits/path_dump.h>
deba@1993
    30
#include <lemon/bits/invalid.h>
deba@1699
    31
#include <lemon/error.h>
deba@1723
    32
#include <lemon/matrix_maps.h>
deba@1699
    33
#include <lemon/maps.h>
deba@1699
    34
deba@1699
    35
#include <limits>
deba@1699
    36
deba@1699
    37
namespace lemon {
deba@1699
    38
deba@1699
    39
  /// \brief Default OperationTraits for the FloydWarshall algorithm class.
deba@1699
    40
  ///  
deba@1699
    41
  /// It defines all computational operations and constants which are
deba@1699
    42
  /// used in the Floyd-Warshall algorithm. The default implementation
deba@1699
    43
  /// is based on the numeric_limits class. If the numeric type does not
deba@1699
    44
  /// have infinity value then the maximum value is used as extremal
deba@1699
    45
  /// infinity value.
deba@1699
    46
  template <
deba@1699
    47
    typename Value, 
deba@1699
    48
    bool has_infinity = std::numeric_limits<Value>::has_infinity>
deba@1699
    49
  struct FloydWarshallDefaultOperationTraits {
deba@1699
    50
    /// \brief Gives back the zero value of the type.
deba@1699
    51
    static Value zero() {
deba@1699
    52
      return static_cast<Value>(0);
deba@1699
    53
    }
deba@1699
    54
    /// \brief Gives back the positive infinity value of the type.
deba@1699
    55
    static Value infinity() {
deba@1699
    56
      return std::numeric_limits<Value>::infinity();
deba@1699
    57
    }
deba@1699
    58
    /// \brief Gives back the sum of the given two elements.
deba@1699
    59
    static Value plus(const Value& left, const Value& right) {
deba@1699
    60
      return left + right;
deba@1699
    61
    }
deba@1699
    62
    /// \brief Gives back true only if the first value less than the second.
deba@1699
    63
    static bool less(const Value& left, const Value& right) {
deba@1699
    64
      return left < right;
deba@1699
    65
    }
deba@1699
    66
  };
deba@1699
    67
deba@1699
    68
  template <typename Value>
deba@1699
    69
  struct FloydWarshallDefaultOperationTraits<Value, false> {
deba@1699
    70
    static Value zero() {
deba@1699
    71
      return static_cast<Value>(0);
deba@1699
    72
    }
deba@1699
    73
    static Value infinity() {
deba@1699
    74
      return std::numeric_limits<Value>::max();
deba@1699
    75
    }
deba@1699
    76
    static Value plus(const Value& left, const Value& right) {
deba@1699
    77
      if (left == infinity() || right == infinity()) return infinity();
deba@1699
    78
      return left + right;
deba@1699
    79
    }
deba@1699
    80
    static bool less(const Value& left, const Value& right) {
deba@1699
    81
      return left < right;
deba@1699
    82
    }
deba@1699
    83
  };
deba@1699
    84
  
deba@1699
    85
  /// \brief Default traits class of FloydWarshall class.
deba@1699
    86
  ///
deba@1699
    87
  /// Default traits class of FloydWarshall class.
deba@1699
    88
  /// \param _Graph Graph type.
deba@1699
    89
  /// \param _LegthMap Type of length map.
deba@1699
    90
  template<class _Graph, class _LengthMap>
deba@1699
    91
  struct FloydWarshallDefaultTraits {
deba@1699
    92
    /// The graph type the algorithm runs on. 
deba@1699
    93
    typedef _Graph Graph;
deba@1699
    94
deba@1699
    95
    /// \brief The type of the map that stores the edge lengths.
deba@1699
    96
    ///
deba@1699
    97
    /// The type of the map that stores the edge lengths.
alpar@2260
    98
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
deba@1699
    99
    typedef _LengthMap LengthMap;
deba@1699
   100
deba@1699
   101
    // The type of the length of the edges.
deba@1699
   102
    typedef typename _LengthMap::Value Value;
deba@1699
   103
deba@1865
   104
    /// \brief Operation traits for floyd-warshall algorithm.
deba@1699
   105
    ///
deba@1699
   106
    /// It defines the infinity type on the given Value type
deba@1699
   107
    /// and the used operation.
deba@1699
   108
    /// \see FloydWarshallDefaultOperationTraits
deba@1699
   109
    typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
deba@1699
   110
 
deba@1723
   111
    /// \brief The type of the matrix map that stores the last edges of the 
deba@1699
   112
    /// shortest paths.
deba@1699
   113
    /// 
deba@1723
   114
    /// The type of the map that stores the last edges of the shortest paths.
deba@1699
   115
    /// It must be a matrix map with \c Graph::Edge value type.
deba@1699
   116
    ///
deba@1723
   117
    typedef DynamicMatrixMap<Graph, typename Graph::Node, 
deba@1723
   118
			     typename Graph::Edge> PredMap;
deba@1699
   119
deba@1699
   120
    /// \brief Instantiates a PredMap.
deba@1699
   121
    /// 
deba@1699
   122
    /// This function instantiates a \ref PredMap. 
alpar@1946
   123
    /// \param graph is the graph,
alpar@1946
   124
    /// to which we would like to define the PredMap.
deba@1699
   125
    /// \todo The graph alone may be insufficient for the initialization
deba@1699
   126
    static PredMap *createPredMap(const _Graph& graph) {
deba@1699
   127
      return new PredMap(graph);
deba@1699
   128
    }
deba@1699
   129
deba@1699
   130
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   131
    ///
deba@1699
   132
    /// The type of the map that stores the dists of the nodes.
alpar@2260
   133
    /// It must meet the \ref concepts::WriteMatrixMap "WriteMatrixMap" concept.
deba@1699
   134
    ///
deba@1723
   135
    typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
deba@1699
   136
deba@1699
   137
    /// \brief Instantiates a DistMap.
deba@1699
   138
    ///
deba@1699
   139
    /// This function instantiates a \ref DistMap. 
alpar@1946
   140
    /// \param graph is the graph, to which we would like to define the 
deba@1699
   141
    /// \ref DistMap
deba@1699
   142
    static DistMap *createDistMap(const _Graph& graph) {
deba@1699
   143
      return new DistMap(graph);
deba@1699
   144
    }
deba@1699
   145
deba@1699
   146
  };
deba@1699
   147
  
deba@1754
   148
  /// \brief %FloydWarshall algorithm class.
deba@1699
   149
  ///
deba@2376
   150
  /// \ingroup shortest_path
deba@1754
   151
  /// This class provides an efficient implementation of \c Floyd-Warshall 
deba@1699
   152
  /// algorithm. The edge lengths are passed to the algorithm using a
alpar@2260
   153
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
deba@1699
   154
  /// kind of length.
deba@1699
   155
  ///
alpar@1757
   156
  /// The algorithm solves the shortest path problem for each pair
deba@1723
   157
  /// of node when the edges can have negative length but the graph should
deba@1754
   158
  /// not contain cycles with negative sum of length. If we can assume
deba@1723
   159
  /// that all edge is non-negative in the graph then the dijkstra algorithm
deba@1723
   160
  /// should be used from each node rather and if the graph is sparse and
deba@1754
   161
  /// there are negative circles then the johnson algorithm.
deba@1723
   162
  ///
deba@2042
   163
  /// The complexity of this algorithm is \f$ O(n^3+e) \f$.
deba@1723
   164
  ///
deba@1699
   165
  /// The type of the length is determined by the
alpar@2260
   166
  /// \ref concepts::ReadMap::Value "Value" of the length map.
deba@1699
   167
  ///
deba@1699
   168
  /// \param _Graph The graph type the algorithm runs on. The default value
deba@1699
   169
  /// is \ref ListGraph. The value of _Graph is not used directly by
deba@1699
   170
  /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
deba@1699
   171
  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
deba@1699
   172
  /// edges. It is read once for each edge, so the map may involve in
deba@1699
   173
  /// relatively time consuming process to compute the edge length if
deba@1699
   174
  /// it is necessary. The default map type is \ref
alpar@2260
   175
  /// concepts::Graph::EdgeMap "Graph::EdgeMap<int>".  The value
deba@1699
   176
  /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
deba@1699
   177
  /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
deba@1699
   178
  /// various data types used by the algorithm.  The default traits
deba@1699
   179
  /// class is \ref FloydWarshallDefaultTraits
deba@1699
   180
  /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
deba@1699
   181
  /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
deba@1699
   182
  /// traits class.
deba@1699
   183
  ///
deba@1699
   184
  /// \author Balazs Dezso
alpar@2184
   185
  /// \todo A function type interface would be nice.
alpar@2184
   186
  /// \todo Implement \c nextNode() and \c nextEdge()
deba@1710
   187
#ifdef DOXYGEN
alpar@2184
   188
  template <typename _Graph, typename _LengthMap, typename _Traits >
deba@1710
   189
#else
deba@1699
   190
  template <typename _Graph=ListGraph,
deba@1699
   191
	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
deba@1699
   192
	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
deba@1710
   193
#endif
deba@1699
   194
  class FloydWarshall {
deba@1699
   195
  public:
deba@1699
   196
    
deba@1699
   197
    /// \brief \ref Exception for uninitialized parameters.
deba@1699
   198
    ///
deba@1699
   199
    /// This error represents problems in the initialization
deba@1699
   200
    /// of the parameters of the algorithms.
deba@1699
   201
deba@1699
   202
    class UninitializedParameter : public lemon::UninitializedParameter {
deba@1699
   203
    public:
alpar@2151
   204
      virtual const char* what() const throw() {
deba@1699
   205
	return "lemon::FloydWarshall::UninitializedParameter";
deba@1699
   206
      }
deba@1699
   207
    };
deba@1699
   208
deba@1699
   209
    typedef _Traits Traits;
deba@1699
   210
    ///The type of the underlying graph.
deba@1699
   211
    typedef typename _Traits::Graph Graph;
deba@1699
   212
deba@1699
   213
    typedef typename Graph::Node Node;
deba@1699
   214
    typedef typename Graph::NodeIt NodeIt;
deba@1699
   215
    typedef typename Graph::Edge Edge;
deba@1699
   216
    typedef typename Graph::EdgeIt EdgeIt;
deba@1699
   217
    
deba@1699
   218
    /// \brief The type of the length of the edges.
deba@1699
   219
    typedef typename _Traits::LengthMap::Value Value;
deba@1699
   220
    /// \brief The type of the map that stores the edge lengths.
deba@1699
   221
    typedef typename _Traits::LengthMap LengthMap;
deba@1699
   222
    /// \brief The type of the map that stores the last
deba@1699
   223
    /// edges of the shortest paths. The type of the PredMap
deba@1699
   224
    /// is a matrix map for Edges
deba@1699
   225
    typedef typename _Traits::PredMap PredMap;
deba@1699
   226
    /// \brief The type of the map that stores the dists of the nodes.
deba@1699
   227
    /// The type of the DistMap is a matrix map for Values
alpar@2184
   228
    ///
alpar@2184
   229
    /// \todo It should rather be
alpar@2184
   230
    /// called \c DistMatrix
deba@1699
   231
    typedef typename _Traits::DistMap DistMap;
deba@1699
   232
    /// \brief The operation traits.
deba@1699
   233
    typedef typename _Traits::OperationTraits OperationTraits;
deba@1699
   234
  private:
deba@1699
   235
    /// Pointer to the underlying graph.
deba@1699
   236
    const Graph *graph;
deba@1699
   237
    /// Pointer to the length map
deba@1699
   238
    const LengthMap *length;
deba@1699
   239
    ///Pointer to the map of predecessors edges.
deba@1699
   240
    PredMap *_pred;
deba@1699
   241
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
deba@1699
   242
    bool local_pred;
deba@1699
   243
    ///Pointer to the map of distances.
deba@1699
   244
    DistMap *_dist;
deba@1699
   245
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
deba@1699
   246
    bool local_dist;
deba@1699
   247
deba@1699
   248
    /// Creates the maps if necessary.
deba@1699
   249
    void create_maps() {
deba@1699
   250
      if(!_pred) {
deba@1699
   251
	local_pred = true;
deba@1699
   252
	_pred = Traits::createPredMap(*graph);
deba@1699
   253
      }
deba@1699
   254
      if(!_dist) {
deba@1699
   255
	local_dist = true;
deba@1699
   256
	_dist = Traits::createDistMap(*graph);
deba@1699
   257
      }
deba@1699
   258
    }
deba@1699
   259
    
deba@1699
   260
  public :
deba@1699
   261
 
deba@1699
   262
    /// \name Named template parameters
deba@1699
   263
deba@1699
   264
    ///@{
deba@1699
   265
deba@1699
   266
    template <class T>
deba@1699
   267
    struct DefPredMapTraits : public Traits {
deba@1699
   268
      typedef T PredMap;
deba@1699
   269
      static PredMap *createPredMap(const Graph& graph) {
deba@1699
   270
	throw UninitializedParameter();
deba@1699
   271
      }
deba@1699
   272
    };
deba@1699
   273
deba@1699
   274
    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
deba@1699
   275
    /// type
deba@1699
   276
    /// \ref named-templ-param "Named parameter" for setting PredMap type
deba@1699
   277
    ///
deba@1699
   278
    template <class T>
deba@1710
   279
    struct DefPredMap 
deba@1710
   280
      : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {
deba@1710
   281
      typedef FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > Create;
deba@1710
   282
    };
deba@1699
   283
    
deba@1699
   284
    template <class T>
deba@1699
   285
    struct DefDistMapTraits : public Traits {
deba@1699
   286
      typedef T DistMap;
deba@1699
   287
      static DistMap *createDistMap(const Graph& graph) {
deba@1699
   288
	throw UninitializedParameter();
deba@1699
   289
      }
deba@1699
   290
    };
deba@1699
   291
    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
deba@1699
   292
    /// type
deba@1699
   293
    ///
deba@1699
   294
    /// \ref named-templ-param "Named parameter" for setting DistMap type
deba@1699
   295
    ///
deba@1699
   296
    template <class T>
deba@1710
   297
    struct DefDistMap 
deba@1710
   298
      : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {
deba@1710
   299
      typedef FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > Create;
deba@1710
   300
    };
deba@1699
   301
    
deba@1699
   302
    template <class T>
deba@1699
   303
    struct DefOperationTraitsTraits : public Traits {
deba@1699
   304
      typedef T OperationTraits;
deba@1699
   305
    };
deba@1699
   306
    
deba@1699
   307
    /// \brief \ref named-templ-param "Named parameter" for setting 
deba@1699
   308
    /// OperationTraits type
deba@1699
   309
    ///
deba@1699
   310
    /// \ref named-templ-param "Named parameter" for setting PredMap type
deba@1699
   311
    template <class T>
deba@1710
   312
    struct DefOperationTraits
deba@1699
   313
      : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
deba@1710
   314
      typedef FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> >
deba@1710
   315
      Create;
deba@1699
   316
    };
deba@1699
   317
    
deba@1699
   318
    ///@}
deba@1699
   319
deba@1710
   320
  protected:
deba@1710
   321
deba@1710
   322
    FloydWarshall() {}
deba@1710
   323
deba@1699
   324
  public:      
deba@1710
   325
deba@1710
   326
    typedef FloydWarshall Create;
deba@1699
   327
    
deba@1699
   328
    /// \brief Constructor.
deba@1699
   329
    ///
deba@1699
   330
    /// \param _graph the graph the algorithm will run on.
deba@1699
   331
    /// \param _length the length map used by the algorithm.
deba@1699
   332
    FloydWarshall(const Graph& _graph, const LengthMap& _length) :
deba@1699
   333
      graph(&_graph), length(&_length),
deba@1699
   334
      _pred(0), local_pred(false),
deba@1699
   335
      _dist(0), local_dist(false) {}
deba@1699
   336
    
deba@1699
   337
    ///Destructor.
deba@1699
   338
    ~FloydWarshall() {
deba@1699
   339
      if(local_pred) delete _pred;
deba@1699
   340
      if(local_dist) delete _dist;
deba@1699
   341
    }
deba@1699
   342
deba@1699
   343
    /// \brief Sets the length map.
deba@1699
   344
    ///
deba@1699
   345
    /// Sets the length map.
deba@1699
   346
    /// \return \c (*this)
deba@1699
   347
    FloydWarshall &lengthMap(const LengthMap &m) {
deba@1699
   348
      length = &m;
deba@1699
   349
      return *this;
deba@1699
   350
    }
deba@1699
   351
deba@1699
   352
    /// \brief Sets the map storing the predecessor edges.
deba@1699
   353
    ///
deba@1699
   354
    /// Sets the map storing the predecessor edges.
deba@1699
   355
    /// If you don't use this function before calling \ref run(),
deba@1699
   356
    /// it will allocate one. The destuctor deallocates this
deba@1699
   357
    /// automatically allocated map, of course.
deba@1699
   358
    /// \return \c (*this)
deba@1699
   359
    FloydWarshall &predMap(PredMap &m) {
deba@1699
   360
      if(local_pred) {
deba@1699
   361
	delete _pred;
deba@1699
   362
	local_pred=false;
deba@1699
   363
      }
deba@1699
   364
      _pred = &m;
deba@1699
   365
      return *this;
deba@1699
   366
    }
deba@1699
   367
deba@1699
   368
    /// \brief Sets the map storing the distances calculated by the algorithm.
deba@1699
   369
    ///
deba@1699
   370
    /// Sets the map storing the distances calculated by the algorithm.
deba@1699
   371
    /// If you don't use this function before calling \ref run(),
deba@1699
   372
    /// it will allocate one. The destuctor deallocates this
deba@1699
   373
    /// automatically allocated map, of course.
deba@1699
   374
    /// \return \c (*this)
deba@1699
   375
    FloydWarshall &distMap(DistMap &m) {
deba@1699
   376
      if(local_dist) {
deba@1699
   377
	delete _dist;
deba@1699
   378
	local_dist=false;
deba@1699
   379
      }
deba@1699
   380
      _dist = &m;
deba@1699
   381
      return *this;
deba@1699
   382
    }
deba@1699
   383
deba@1699
   384
    ///\name Execution control
deba@1699
   385
    /// The simplest way to execute the algorithm is to use
deba@1699
   386
    /// one of the member functions called \c run(...).
deba@1699
   387
    /// \n
deba@1699
   388
    /// If you need more control on the execution,
deba@1699
   389
    /// Finally \ref start() will perform the actual path
deba@1699
   390
    /// computation.
deba@1699
   391
deba@1699
   392
    ///@{
deba@1699
   393
deba@1699
   394
    /// \brief Initializes the internal data structures.
deba@1699
   395
    /// 
deba@1699
   396
    /// Initializes the internal data structures.
deba@1699
   397
    void init() {
deba@1699
   398
      create_maps();
deba@1699
   399
      for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1699
   400
	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
deba@1699
   401
	  _pred->set(it, jt, INVALID);
deba@1741
   402
	  _dist->set(it, jt, OperationTraits::infinity());
deba@1699
   403
	}
deba@1741
   404
	_dist->set(it, it, OperationTraits::zero());
deba@1699
   405
      }
deba@1699
   406
      for (EdgeIt it(*graph); it != INVALID; ++it) {
deba@1699
   407
	Node source = graph->source(it);
deba@1699
   408
	Node target = graph->target(it);	
deba@1699
   409
	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
deba@1699
   410
	  _dist->set(source, target, (*length)[it]);
deba@1699
   411
	  _pred->set(source, target, it);
deba@1699
   412
	}
deba@1699
   413
      }
deba@1699
   414
    }
deba@1699
   415
    
deba@1699
   416
    /// \brief Executes the algorithm.
deba@1699
   417
    ///
deba@1699
   418
    /// This method runs the %FloydWarshall algorithm in order to compute 
deba@1699
   419
    /// the shortest path to each node pairs. The algorithm 
deba@1699
   420
    /// computes 
deba@1699
   421
    /// - The shortest path tree for each node.
deba@1699
   422
    /// - The distance between each node pairs.
deba@1699
   423
    void start() {
deba@1699
   424
      for (NodeIt kt(*graph); kt != INVALID; ++kt) {
deba@1699
   425
	for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1699
   426
	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
deba@1699
   427
	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
deba@1699
   428
						  (*_dist)(kt, jt));
deba@1699
   429
	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
deba@1699
   430
	      _dist->set(it, jt, relaxed);
deba@1699
   431
	      _pred->set(it, jt, (*_pred)(kt, jt));
deba@1699
   432
	    }
deba@1699
   433
	  }
deba@1699
   434
	}
deba@1699
   435
      }
deba@1699
   436
    }
deba@1741
   437
deba@1754
   438
    /// \brief Executes the algorithm and checks the negative cycles.
deba@1741
   439
    ///
deba@1741
   440
    /// This method runs the %FloydWarshall algorithm in order to compute 
deba@1754
   441
    /// the shortest path to each node pairs. If there is a negative cycle 
deba@1741
   442
    /// in the graph it gives back false. 
deba@1741
   443
    /// The algorithm computes 
deba@1741
   444
    /// - The shortest path tree for each node.
deba@1741
   445
    /// - The distance between each node pairs.
deba@1741
   446
    bool checkedStart() {
deba@1741
   447
      start();
deba@1741
   448
      for (NodeIt it(*graph); it != INVALID; ++it) {
deba@1741
   449
	if (OperationTraits::less((*dist)(it, it), OperationTraits::zero())) {
deba@1741
   450
	  return false;
deba@1741
   451
	}
deba@1741
   452
      }
deba@1741
   453
      return true;
deba@1741
   454
    }
deba@1699
   455
    
deba@1699
   456
    /// \brief Runs %FloydWarshall algorithm.
deba@1699
   457
    ///    
deba@1699
   458
    /// This method runs the %FloydWarshall algorithm from a each node
deba@1699
   459
    /// in order to compute the shortest path to each node pairs. 
deba@1699
   460
    /// The algorithm computes
deba@1699
   461
    /// - The shortest path tree for each node.
deba@1699
   462
    /// - The distance between each node pairs.
deba@1699
   463
    ///
deba@1699
   464
    /// \note d.run(s) is just a shortcut of the following code.
alpar@1946
   465
    ///\code
deba@1699
   466
    ///  d.init();
deba@1699
   467
    ///  d.start();
alpar@1946
   468
    ///\endcode
deba@1699
   469
    void run() {
deba@1699
   470
      init();
deba@1699
   471
      start();
deba@1699
   472
    }
deba@1699
   473
    
deba@1699
   474
    ///@}
deba@1699
   475
deba@1699
   476
    /// \name Query Functions
deba@1699
   477
    /// The result of the %FloydWarshall algorithm can be obtained using these
deba@1699
   478
    /// functions.\n
deba@1699
   479
    /// Before the use of these functions,
deba@1699
   480
    /// either run() or start() must be called.
deba@1699
   481
    
deba@1699
   482
    ///@{
deba@1699
   483
deba@2335
   484
    typedef PredMatrixMapPath<Graph, PredMap> Path;
deba@2335
   485
deba@2335
   486
    ///Gives back the shortest path.
deba@2335
   487
    
deba@2335
   488
    ///Gives back the shortest path.
deba@2335
   489
    ///\pre The \c t should be reachable from the \c t.
deba@2335
   490
    Path path(Node s, Node t) 
deba@2335
   491
    {
deba@2335
   492
      return Path(*graph, *_pred, s, t);
deba@1699
   493
    }
deba@1699
   494
	  
deba@1699
   495
    /// \brief The distance between two nodes.
deba@1699
   496
    ///
deba@1699
   497
    /// Returns the distance between two nodes.
deba@1699
   498
    /// \pre \ref run() must be called before using this function.
deba@1699
   499
    /// \warning If node \c v in unreachable from the root the return value
deba@1699
   500
    /// of this funcion is undefined.
deba@1699
   501
    Value dist(Node source, Node target) const { 
deba@1699
   502
      return (*_dist)(source, target); 
deba@1699
   503
    }
deba@1699
   504
deba@1699
   505
    /// \brief Returns the 'previous edge' of the shortest path tree.
deba@1699
   506
    ///
deba@1699
   507
    /// For the node \c node it returns the 'previous edge' of the shortest 
deba@1699
   508
    /// path tree to direction of the node \c root 
deba@1699
   509
    /// i.e. it returns the last edge of a shortest path from the node \c root 
deba@1699
   510
    /// to \c node. It is \ref INVALID if \c node is unreachable from the root
deba@1699
   511
    /// or if \c node=root. The shortest path tree used here is equal to the 
deba@1699
   512
    /// shortest path tree used in \ref predNode(). 
deba@1699
   513
    /// \pre \ref run() must be called before using this function.
deba@1763
   514
    Edge predEdge(Node root, Node node) const { 
deba@1699
   515
      return (*_pred)(root, node); 
deba@1699
   516
    }
deba@1699
   517
deba@1699
   518
    /// \brief Returns the 'previous node' of the shortest path tree.
deba@1699
   519
    ///
deba@1699
   520
    /// For a node \c node it returns the 'previous node' of the shortest path 
deba@1699
   521
    /// tree to direction of the node \c root, i.e. it returns the last but 
deba@1699
   522
    /// one node from a shortest path from the \c root to \c node. It is 
deba@1699
   523
    /// INVALID if \c node is unreachable from the root or if \c node=root. 
deba@1699
   524
    /// The shortest path tree used here is equal to the 
deba@1763
   525
    /// shortest path tree used in \ref predEdge().  
deba@1699
   526
    /// \pre \ref run() must be called before using this function.
deba@1699
   527
    Node predNode(Node root, Node node) const { 
deba@1699
   528
      return (*_pred)(root, node) == INVALID ? 
deba@1699
   529
      INVALID : graph->source((*_pred)(root, node)); 
deba@1699
   530
    }
deba@1699
   531
    
deba@1699
   532
    /// \brief Returns a reference to the matrix node map of distances.
deba@1699
   533
    ///
deba@1699
   534
    /// Returns a reference to the matrix node map of distances. 
deba@1699
   535
    ///
deba@1699
   536
    /// \pre \ref run() must be called before using this function.
deba@1699
   537
    const DistMap &distMap() const { return *_dist;}
deba@1699
   538
 
deba@1699
   539
    /// \brief Returns a reference to the shortest path tree map.
deba@1699
   540
    ///
deba@1699
   541
    /// Returns a reference to the matrix node map of the edges of the
deba@1699
   542
    /// shortest path tree.
deba@1699
   543
    /// \pre \ref run() must be called before using this function.
deba@1699
   544
    const PredMap &predMap() const { return *_pred;}
deba@1699
   545
 
deba@1699
   546
    /// \brief Checks if a node is reachable from the root.
deba@1699
   547
    ///
deba@1699
   548
    /// Returns \c true if \c v is reachable from the root.
deba@1699
   549
    /// \pre \ref run() must be called before using this function.
deba@1699
   550
    ///
deba@1699
   551
    bool connected(Node source, Node target) { 
deba@1699
   552
      return (*_dist)(source, target) != OperationTraits::infinity(); 
deba@1699
   553
    }
deba@1699
   554
    
deba@1699
   555
    ///@}
deba@1699
   556
  };
deba@1699
   557
 
deba@1699
   558
} //END OF NAMESPACE LEMON
deba@1699
   559
deba@1699
   560
#endif
deba@1699
   561