lemon/bfs.h
author klao
Mon, 04 Jul 2005 16:18:11 +0000
changeset 1535 e667cd5c0886
parent 1435 8e85e6bbefdf
child 1536 308150155bb5
permissions -rw-r--r--
trivial bugfix for deba
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/bfs.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_BFS_H
alpar@921
    18
#define LEMON_BFS_H
alpar@774
    19
alpar@774
    20
///\ingroup flowalgs
alpar@774
    21
///\file
alpar@774
    22
///\brief Bfs algorithm.
alpar@774
    23
alpar@1218
    24
#include <lemon/list_graph.h>
alpar@1218
    25
#include <lemon/graph_utils.h>
alpar@921
    26
#include <lemon/invalid.h>
alpar@1218
    27
#include <lemon/error.h>
alpar@1218
    28
#include <lemon/maps.h>
alpar@774
    29
alpar@921
    30
namespace lemon {
alpar@774
    31
alpar@774
    32
alpar@1218
    33
  
alpar@1218
    34
  ///Default traits class of Bfs class.
alpar@1218
    35
alpar@1218
    36
  ///Default traits class of Bfs class.
alpar@1218
    37
  ///\param GR Graph type.
alpar@1218
    38
  template<class GR>
alpar@1218
    39
  struct BfsDefaultTraits
alpar@1218
    40
  {
alpar@1218
    41
    ///The graph type the algorithm runs on. 
alpar@1218
    42
    typedef GR Graph;
alpar@1218
    43
    ///\brief The type of the map that stores the last
alpar@1218
    44
    ///edges of the shortest paths.
alpar@1218
    45
    /// 
alpar@1218
    46
    ///The type of the map that stores the last
alpar@1218
    47
    ///edges of the shortest paths.
alpar@1218
    48
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
    49
    ///
alpar@1218
    50
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@1218
    51
    ///Instantiates a PredMap.
alpar@1218
    52
 
alpar@1218
    53
    ///This function instantiates a \ref PredMap. 
alpar@1218
    54
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1218
    55
    ///\todo The graph alone may be insufficient to initialize
alpar@1218
    56
    static PredMap *createPredMap(const GR &G) 
alpar@1218
    57
    {
alpar@1218
    58
      return new PredMap(G);
alpar@1218
    59
    }
alpar@1218
    60
//     ///\brief The type of the map that stores the last but one
alpar@1218
    61
//     ///nodes of the shortest paths.
alpar@1218
    62
//     ///
alpar@1218
    63
//     ///The type of the map that stores the last but one
alpar@1218
    64
//     ///nodes of the shortest paths.
alpar@1218
    65
//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
    66
//     ///
alpar@1218
    67
//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
alpar@1218
    68
//     ///Instantiates a PredNodeMap.
alpar@1218
    69
    
alpar@1218
    70
//     ///This function instantiates a \ref PredNodeMap. 
alpar@1218
    71
//     ///\param G is the graph, to which
alpar@1218
    72
//     ///we would like to define the \ref PredNodeMap
alpar@1218
    73
//     static PredNodeMap *createPredNodeMap(const GR &G)
alpar@1218
    74
//     {
alpar@1218
    75
//       return new PredNodeMap();
alpar@1218
    76
//     }
alpar@1218
    77
alpar@1218
    78
    ///The type of the map that indicates which nodes are processed.
alpar@1218
    79
 
alpar@1218
    80
    ///The type of the map that indicates which nodes are processed.
alpar@1218
    81
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
    82
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
    83
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
    84
    ///Instantiates a ProcessedMap.
alpar@1218
    85
 
alpar@1218
    86
    ///This function instantiates a \ref ProcessedMap. 
alpar@1218
    87
    ///\param G is the graph, to which
alpar@1218
    88
    ///we would like to define the \ref ProcessedMap
alpar@1367
    89
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1218
    90
    {
alpar@1218
    91
      return new ProcessedMap();
alpar@1218
    92
    }
alpar@1218
    93
    ///The type of the map that indicates which nodes are reached.
alpar@1218
    94
 
alpar@1218
    95
    ///The type of the map that indicates which nodes are reached.
alpar@1218
    96
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
    97
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
    98
    typedef typename Graph::template NodeMap<bool> ReachedMap;
alpar@1218
    99
    ///Instantiates a ReachedMap.
alpar@1218
   100
 
alpar@1218
   101
    ///This function instantiates a \ref ReachedMap. 
alpar@1218
   102
    ///\param G is the graph, to which
alpar@1218
   103
    ///we would like to define the \ref ReachedMap.
alpar@1218
   104
    static ReachedMap *createReachedMap(const GR &G)
alpar@1218
   105
    {
alpar@1218
   106
      return new ReachedMap(G);
alpar@1218
   107
    }
alpar@1218
   108
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   109
 
alpar@1218
   110
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   111
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   112
    ///
alpar@1218
   113
    typedef typename Graph::template NodeMap<int> DistMap;
alpar@1218
   114
    ///Instantiates a DistMap.
alpar@1218
   115
 
alpar@1218
   116
    ///This function instantiates a \ref DistMap. 
alpar@1218
   117
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@1218
   118
    static DistMap *createDistMap(const GR &G)
alpar@1218
   119
    {
alpar@1218
   120
      return new DistMap(G);
alpar@1218
   121
    }
alpar@1218
   122
  };
alpar@1218
   123
  
alpar@781
   124
  ///%BFS algorithm class.
alpar@1218
   125
  
alpar@1218
   126
  ///\ingroup flowalgs
alpar@1218
   127
  ///This class provides an efficient implementation of the %BFS algorithm.
alpar@774
   128
  ///
alpar@1218
   129
  ///\param GR The graph type the algorithm runs on. The default value is
alpar@1218
   130
  ///\ref ListGraph. The value of GR is not used directly by Bfs, it
alpar@1218
   131
  ///is only passed to \ref BfsDefaultTraits.
alpar@1218
   132
  ///\param TR Traits class to set various data types used by the algorithm.
alpar@1218
   133
  ///The default traits class is
alpar@1218
   134
  ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
alpar@1218
   135
  ///See \ref BfsDefaultTraits for the documentation of
alpar@1218
   136
  ///a Bfs traits class.
alpar@1218
   137
  ///
jacint@1270
   138
  ///\author Alpar Juttner
alpar@1218
   139
  ///\todo A compare object would be nice.
alpar@774
   140
alpar@774
   141
#ifdef DOXYGEN
alpar@1218
   142
  template <typename GR,
alpar@1218
   143
	    typename TR>
alpar@774
   144
#else
alpar@1218
   145
  template <typename GR=ListGraph,
alpar@1218
   146
	    typename TR=BfsDefaultTraits<GR> >
alpar@774
   147
#endif
alpar@1218
   148
  class Bfs {
alpar@774
   149
  public:
alpar@1218
   150
    /**
alpar@1218
   151
     * \brief \ref Exception for uninitialized parameters.
alpar@1218
   152
     *
alpar@1218
   153
     * This error represents problems in the initialization
alpar@1218
   154
     * of the parameters of the algorithms.
alpar@1218
   155
     */
alpar@1218
   156
    class UninitializedParameter : public lemon::UninitializedParameter {
alpar@1218
   157
    public:
alpar@1218
   158
      virtual const char* exceptionName() const {
alpar@1218
   159
	return "lemon::Bfs::UninitializedParameter";
alpar@1218
   160
      }
alpar@1218
   161
    };
alpar@1218
   162
alpar@1218
   163
    typedef TR Traits;
alpar@774
   164
    ///The type of the underlying graph.
alpar@1218
   165
    typedef typename TR::Graph Graph;
alpar@911
   166
    ///\e
alpar@774
   167
    typedef typename Graph::Node Node;
alpar@911
   168
    ///\e
alpar@774
   169
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   170
    ///\e
alpar@774
   171
    typedef typename Graph::Edge Edge;
alpar@911
   172
    ///\e
alpar@774
   173
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@774
   174
    
alpar@774
   175
    ///\brief The type of the map that stores the last
alpar@774
   176
    ///edges of the shortest paths.
alpar@1218
   177
    typedef typename TR::PredMap PredMap;
alpar@1218
   178
//     ///\brief The type of the map that stores the last but one
alpar@1218
   179
//     ///nodes of the shortest paths.
alpar@1218
   180
//     typedef typename TR::PredNodeMap PredNodeMap;
alpar@1218
   181
    ///The type of the map indicating which nodes are reached.
alpar@1218
   182
    typedef typename TR::ReachedMap ReachedMap;
alpar@1218
   183
    ///The type of the map indicating which nodes are processed.
alpar@1218
   184
    typedef typename TR::ProcessedMap ProcessedMap;
alpar@774
   185
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   186
    typedef typename TR::DistMap DistMap;
alpar@774
   187
  private:
alpar@802
   188
    /// Pointer to the underlying graph.
alpar@774
   189
    const Graph *G;
alpar@802
   190
    ///Pointer to the map of predecessors edges.
alpar@1218
   191
    PredMap *_pred;
alpar@1218
   192
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1218
   193
    bool local_pred;
alpar@1218
   194
//     ///Pointer to the map of predecessors nodes.
alpar@1218
   195
//     PredNodeMap *_predNode;
alpar@1218
   196
//     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
alpar@1218
   197
//     bool local_predNode;
alpar@802
   198
    ///Pointer to the map of distances.
alpar@1218
   199
    DistMap *_dist;
alpar@1218
   200
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
alpar@1218
   201
    bool local_dist;
alpar@1218
   202
    ///Pointer to the map of reached status of the nodes.
alpar@1218
   203
    ReachedMap *_reached;
alpar@1218
   204
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
alpar@1218
   205
    bool local_reached;
alpar@1218
   206
    ///Pointer to the map of processed status of the nodes.
alpar@1218
   207
    ProcessedMap *_processed;
alpar@1218
   208
    ///Indicates if \ref _processed is locally allocated (\c true) or not.
alpar@1218
   209
    bool local_processed;
alpar@774
   210
alpar@1218
   211
    std::vector<typename Graph::Node> _queue;
alpar@1218
   212
    int _queue_head,_queue_tail,_queue_next_dist;
alpar@1218
   213
    int _curr_dist;
alpar@1218
   214
//     ///The source node of the last execution.
alpar@1218
   215
//     Node source;
alpar@774
   216
alpar@1218
   217
    ///Creates the maps if necessary.
alpar@1218
   218
    
alpar@1218
   219
    ///\todo Error if \c G are \c NULL.
alpar@1218
   220
    ///\todo Better memory allocation (instead of new).
alpar@1218
   221
    void create_maps() 
alpar@774
   222
    {
alpar@1218
   223
      if(!_pred) {
alpar@1218
   224
	local_pred = true;
alpar@1218
   225
	_pred = Traits::createPredMap(*G);
alpar@774
   226
      }
alpar@1218
   227
//       if(!_predNode) {
alpar@1218
   228
// 	local_predNode = true;
alpar@1218
   229
// 	_predNode = Traits::createPredNodeMap(*G);
alpar@1218
   230
//       }
alpar@1218
   231
      if(!_dist) {
alpar@1218
   232
	local_dist = true;
alpar@1218
   233
	_dist = Traits::createDistMap(*G);
alpar@774
   234
      }
alpar@1218
   235
      if(!_reached) {
alpar@1218
   236
	local_reached = true;
alpar@1218
   237
	_reached = Traits::createReachedMap(*G);
alpar@1218
   238
      }
alpar@1218
   239
      if(!_processed) {
alpar@1218
   240
	local_processed = true;
alpar@1218
   241
	_processed = Traits::createProcessedMap(*G);
alpar@774
   242
      }
alpar@774
   243
    }
alpar@774
   244
    
alpar@1218
   245
  public :
alpar@1218
   246
 
alpar@1218
   247
    ///\name Named template parameters
alpar@1218
   248
alpar@1218
   249
    ///@{
alpar@1218
   250
alpar@1218
   251
    template <class T>
alpar@1218
   252
    struct DefPredMapTraits : public Traits {
alpar@1218
   253
      typedef T PredMap;
alpar@1218
   254
      static PredMap *createPredMap(const Graph &G) 
alpar@1218
   255
      {
alpar@1218
   256
	throw UninitializedParameter();
alpar@1218
   257
      }
alpar@1218
   258
    };
alpar@1218
   259
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1218
   260
alpar@1218
   261
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1218
   262
    ///
alpar@1218
   263
    template <class T>
alpar@1218
   264
    class DefPredMap : public Bfs< Graph,
alpar@1218
   265
					DefPredMapTraits<T> > { };
alpar@1218
   266
    
alpar@1218
   267
//     template <class T>
alpar@1218
   268
//     struct DefPredNodeMapTraits : public Traits {
alpar@1218
   269
//       typedef T PredNodeMap;
alpar@1218
   270
//       static PredNodeMap *createPredNodeMap(const Graph &G) 
alpar@1218
   271
//       {
alpar@1218
   272
// 	throw UninitializedParameter();
alpar@1218
   273
//       }
alpar@1218
   274
//     };
alpar@1218
   275
//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1218
   276
alpar@1218
   277
//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1218
   278
//     ///
alpar@1218
   279
//     template <class T>
alpar@1218
   280
//     class DefPredNodeMap : public Bfs< Graph,
alpar@1218
   281
// 					    LengthMap,
alpar@1218
   282
// 					    DefPredNodeMapTraits<T> > { };
alpar@1218
   283
    
alpar@1218
   284
    template <class T>
alpar@1218
   285
    struct DefDistMapTraits : public Traits {
alpar@1218
   286
      typedef T DistMap;
alpar@1218
   287
      static DistMap *createDistMap(const Graph &G) 
alpar@1218
   288
      {
alpar@1218
   289
	throw UninitializedParameter();
alpar@1218
   290
      }
alpar@1218
   291
    };
alpar@1218
   292
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1218
   293
alpar@1218
   294
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1218
   295
    ///
alpar@1218
   296
    template <class T>
alpar@1218
   297
    class DefDistMap : public Bfs< Graph,
alpar@1218
   298
				   DefDistMapTraits<T> > { };
alpar@1218
   299
    
alpar@1218
   300
    template <class T>
alpar@1218
   301
    struct DefReachedMapTraits : public Traits {
alpar@1218
   302
      typedef T ReachedMap;
alpar@1218
   303
      static ReachedMap *createReachedMap(const Graph &G) 
alpar@1218
   304
      {
alpar@1218
   305
	throw UninitializedParameter();
alpar@1218
   306
      }
alpar@1218
   307
    };
alpar@1218
   308
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
alpar@1218
   309
alpar@1218
   310
    ///\ref named-templ-param "Named parameter" for setting ReachedMap type
alpar@1218
   311
    ///
alpar@1218
   312
    template <class T>
alpar@1218
   313
    class DefReachedMap : public Bfs< Graph,
alpar@1218
   314
				      DefReachedMapTraits<T> > { };
alpar@1218
   315
    
alpar@1218
   316
    struct DefGraphReachedMapTraits : public Traits {
alpar@1218
   317
      typedef typename Graph::template NodeMap<bool> ReachedMap;
alpar@1218
   318
      static ReachedMap *createReachedMap(const Graph &G) 
alpar@1218
   319
      {
alpar@1218
   320
	return new ReachedMap(G);
alpar@1218
   321
      }
alpar@1218
   322
    };
alpar@1218
   323
    template <class T>
alpar@1218
   324
    struct DefProcessedMapTraits : public Traits {
alpar@1218
   325
      typedef T ProcessedMap;
alpar@1218
   326
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1218
   327
      {
alpar@1218
   328
	throw UninitializedParameter();
alpar@1218
   329
      }
alpar@1218
   330
    };
alpar@1218
   331
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1218
   332
alpar@1218
   333
    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
alpar@1218
   334
    ///
alpar@1218
   335
    template <class T>
alpar@1218
   336
    class DefProcessedMap : public Bfs< Graph,
alpar@1218
   337
					DefProcessedMapTraits<T> > { };
alpar@1218
   338
    
alpar@1218
   339
    struct DefGraphProcessedMapTraits : public Traits {
alpar@1218
   340
      typedef typename Graph::template NodeMap<bool> ProcessedMap;
alpar@1218
   341
      static ProcessedMap *createProcessedMap(const Graph &G) 
alpar@1218
   342
      {
alpar@1218
   343
	return new ProcessedMap(G);
alpar@1218
   344
      }
alpar@1218
   345
    };
alpar@1218
   346
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
   347
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
alpar@1218
   348
    ///
alpar@1218
   349
    ///\ref named-templ-param "Named parameter"
alpar@1218
   350
    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
jacint@1270
   351
    ///If you don't set it explicitly, it will be automatically allocated.
alpar@1218
   352
    template <class T>
alpar@1218
   353
    class DefProcessedMapToBeDefaultMap :
alpar@1218
   354
      public Bfs< Graph,
alpar@1218
   355
		  DefGraphProcessedMapTraits> { };
alpar@1218
   356
    
alpar@1218
   357
    ///@}
alpar@1218
   358
alpar@1218
   359
  public:      
alpar@1218
   360
    
alpar@802
   361
    ///Constructor.
alpar@802
   362
    
alpar@802
   363
    ///\param _G the graph the algorithm will run on.
alpar@911
   364
    ///
alpar@774
   365
    Bfs(const Graph& _G) :
alpar@774
   366
      G(&_G),
alpar@1218
   367
      _pred(NULL), local_pred(false),
alpar@1218
   368
//       _predNode(NULL), local_predNode(false),
alpar@1218
   369
      _dist(NULL), local_dist(false),
alpar@1218
   370
      _reached(NULL), local_reached(false),
alpar@1218
   371
      _processed(NULL), local_processed(false)
alpar@774
   372
    { }
alpar@774
   373
    
alpar@802
   374
    ///Destructor.
alpar@774
   375
    ~Bfs() 
alpar@774
   376
    {
alpar@1218
   377
      if(local_pred) delete _pred;
alpar@1218
   378
//       if(local_predNode) delete _predNode;
alpar@1218
   379
      if(local_dist) delete _dist;
alpar@1218
   380
      if(local_reached) delete _reached;
alpar@1218
   381
      if(local_processed) delete _processed;
alpar@774
   382
    }
alpar@774
   383
alpar@774
   384
    ///Sets the map storing the predecessor edges.
alpar@774
   385
alpar@774
   386
    ///Sets the map storing the predecessor edges.
alpar@774
   387
    ///If you don't use this function before calling \ref run(),
jacint@1270
   388
    ///it will allocate one. The destructor deallocates this
alpar@774
   389
    ///automatically allocated map, of course.
alpar@774
   390
    ///\return <tt> (*this) </tt>
alpar@1218
   391
    Bfs &predMap(PredMap &m) 
alpar@774
   392
    {
alpar@1218
   393
      if(local_pred) {
alpar@1218
   394
	delete _pred;
alpar@1218
   395
	local_pred=false;
alpar@774
   396
      }
alpar@1218
   397
      _pred = &m;
alpar@774
   398
      return *this;
alpar@774
   399
    }
alpar@774
   400
alpar@1218
   401
    ///Sets the map indicating the reached nodes.
alpar@774
   402
alpar@1218
   403
    ///Sets the map indicating the reached nodes.
alpar@774
   404
    ///If you don't use this function before calling \ref run(),
jacint@1270
   405
    ///it will allocate one. The destructor deallocates this
alpar@774
   406
    ///automatically allocated map, of course.
alpar@774
   407
    ///\return <tt> (*this) </tt>
alpar@1218
   408
    Bfs &reachedMap(ReachedMap &m) 
alpar@774
   409
    {
alpar@1218
   410
      if(local_reached) {
alpar@1218
   411
	delete _reached;
alpar@1218
   412
	local_reached=false;
alpar@774
   413
      }
alpar@1218
   414
      _reached = &m;
alpar@774
   415
      return *this;
alpar@774
   416
    }
alpar@774
   417
alpar@1218
   418
    ///Sets the map indicating the processed nodes.
alpar@1218
   419
alpar@1218
   420
    ///Sets the map indicating the processed nodes.
alpar@1218
   421
    ///If you don't use this function before calling \ref run(),
jacint@1270
   422
    ///it will allocate one. The destructor deallocates this
alpar@1218
   423
    ///automatically allocated map, of course.
alpar@1218
   424
    ///\return <tt> (*this) </tt>
alpar@1218
   425
    Bfs &processedMap(ProcessedMap &m) 
alpar@1218
   426
    {
alpar@1218
   427
      if(local_processed) {
alpar@1218
   428
	delete _processed;
alpar@1218
   429
	local_processed=false;
alpar@1218
   430
      }
alpar@1218
   431
      _processed = &m;
alpar@1218
   432
      return *this;
alpar@1218
   433
    }
alpar@1218
   434
alpar@1218
   435
//     ///Sets the map storing the predecessor nodes.
alpar@1218
   436
alpar@1218
   437
//     ///Sets the map storing the predecessor nodes.
alpar@1218
   438
//     ///If you don't use this function before calling \ref run(),
jacint@1270
   439
//     ///it will allocate one. The destructor deallocates this
alpar@1218
   440
//     ///automatically allocated map, of course.
alpar@1218
   441
//     ///\return <tt> (*this) </tt>
alpar@1218
   442
//     Bfs &predNodeMap(PredNodeMap &m) 
alpar@1218
   443
//     {
alpar@1218
   444
//       if(local_predNode) {
alpar@1218
   445
// 	delete _predNode;
alpar@1218
   446
// 	local_predNode=false;
alpar@1218
   447
//       }
alpar@1218
   448
//       _predNode = &m;
alpar@1218
   449
//       return *this;
alpar@1218
   450
//     }
alpar@1218
   451
alpar@774
   452
    ///Sets the map storing the distances calculated by the algorithm.
alpar@774
   453
alpar@774
   454
    ///Sets the map storing the distances calculated by the algorithm.
alpar@774
   455
    ///If you don't use this function before calling \ref run(),
jacint@1270
   456
    ///it will allocate one. The destructor deallocates this
alpar@774
   457
    ///automatically allocated map, of course.
alpar@774
   458
    ///\return <tt> (*this) </tt>
alpar@1218
   459
    Bfs &distMap(DistMap &m) 
alpar@774
   460
    {
alpar@1218
   461
      if(local_dist) {
alpar@1218
   462
	delete _dist;
alpar@1218
   463
	local_dist=false;
alpar@774
   464
      }
alpar@1218
   465
      _dist = &m;
alpar@774
   466
      return *this;
alpar@774
   467
    }
alpar@774
   468
alpar@1218
   469
  public:
alpar@1218
   470
    ///\name Execution control
alpar@1218
   471
    ///The simplest way to execute the algorithm is to use
alpar@1218
   472
    ///one of the member functions called \c run(...).
alpar@1218
   473
    ///\n
alpar@1218
   474
    ///If you need more control on the execution,
alpar@1218
   475
    ///first you must call \ref init(), then you can add several source nodes
alpar@1218
   476
    ///with \ref addSource().
alpar@1218
   477
    ///Finally \ref start() will perform the actual path
alpar@1218
   478
    ///computation.
alpar@1218
   479
alpar@1218
   480
    ///@{
alpar@1218
   481
alpar@1218
   482
    ///Initializes the internal data structures.
alpar@1218
   483
alpar@1218
   484
    ///Initializes the internal data structures.
alpar@1218
   485
    ///
alpar@1218
   486
    void init()
alpar@1218
   487
    {
alpar@1218
   488
      create_maps();
alpar@1218
   489
      _queue.resize(countNodes(*G));
alpar@1218
   490
      _queue_head=_queue_tail=0;
alpar@1218
   491
      _curr_dist=1;
alpar@774
   492
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1218
   493
	_pred->set(u,INVALID);
alpar@1218
   494
// 	_predNode->set(u,INVALID);
alpar@1218
   495
	_reached->set(u,false);
alpar@1218
   496
	_processed->set(u,false);
alpar@774
   497
      }
alpar@774
   498
    }
alpar@774
   499
    
alpar@1218
   500
    ///Adds a new source node.
alpar@774
   501
alpar@1218
   502
    ///Adds a new source node to the set of nodes to be processed.
alpar@1218
   503
    ///
alpar@1218
   504
    void addSource(Node s)
alpar@1218
   505
    {
alpar@1218
   506
      if(!(*_reached)[s])
alpar@1218
   507
	{
alpar@1218
   508
	  _reached->set(s,true);
alpar@1218
   509
	  _pred->set(s,INVALID);
alpar@1218
   510
	  _dist->set(s,0);
alpar@1218
   511
	  _queue[_queue_head++]=s;
alpar@1218
   512
	  _queue_next_dist=_queue_head;
alpar@1218
   513
	}
alpar@1218
   514
    }
alpar@1218
   515
    
alpar@1218
   516
    ///Processes the next node.
alpar@1218
   517
alpar@1218
   518
    ///Processes the next node.
alpar@1218
   519
    ///
alpar@1516
   520
    ///\return The processed node.
alpar@1516
   521
    ///
alpar@1218
   522
    ///\warning The queue must not be empty!
alpar@1516
   523
    Node processNextNode()
alpar@1218
   524
    {
alpar@1218
   525
      if(_queue_tail==_queue_next_dist) {
alpar@1218
   526
	_curr_dist++;
alpar@1218
   527
	_queue_next_dist=_queue_head;
alpar@1218
   528
      }
alpar@1218
   529
      Node n=_queue[_queue_tail++];
alpar@1218
   530
      _processed->set(n,true);
alpar@1218
   531
      Node m;
alpar@1218
   532
      for(OutEdgeIt e(*G,n);e!=INVALID;++e)
alpar@1218
   533
	if(!(*_reached)[m=G->target(e)]) {
alpar@1218
   534
	  _queue[_queue_head++]=m;
alpar@1218
   535
	  _reached->set(m,true);
alpar@1218
   536
	  _pred->set(m,e);
alpar@1218
   537
// 	  _pred_node->set(m,n);
alpar@1218
   538
	  _dist->set(m,_curr_dist);
alpar@1218
   539
	}
alpar@1516
   540
      return n;
alpar@1218
   541
    }
alpar@1218
   542
      
alpar@1218
   543
    ///\brief Returns \c false if there are nodes
alpar@1218
   544
    ///to be processed in the queue
alpar@1218
   545
    ///
alpar@1218
   546
    ///Returns \c false if there are nodes
alpar@1218
   547
    ///to be processed in the queue
alpar@1218
   548
    bool emptyQueue() { return _queue_tail==_queue_head; }
alpar@1218
   549
    ///Returns the number of the nodes to be processed.
alpar@1218
   550
    
alpar@1218
   551
    ///Returns the number of the nodes to be processed in the queue.
alpar@1218
   552
    ///
alpar@1218
   553
    int queueSize() { return _queue_head-_queue_tail; }
alpar@1218
   554
    
alpar@1218
   555
    ///Executes the algorithm.
alpar@1218
   556
alpar@1218
   557
    ///Executes the algorithm.
alpar@1218
   558
    ///
alpar@1218
   559
    ///\pre init() must be called and at least one node should be added
alpar@1218
   560
    ///with addSource() before using this function.
alpar@1218
   561
    ///
alpar@1218
   562
    ///This method runs the %BFS algorithm from the root node(s)
alpar@1218
   563
    ///in order to
alpar@1218
   564
    ///compute the
alpar@1218
   565
    ///shortest path to each node. The algorithm computes
alpar@1218
   566
    ///- The shortest path tree.
alpar@1218
   567
    ///- The distance of each node from the root(s).
alpar@1218
   568
    ///
alpar@1218
   569
    void start()
alpar@1218
   570
    {
alpar@1218
   571
      while ( !emptyQueue() ) processNextNode();
alpar@1218
   572
    }
alpar@1218
   573
    
alpar@1218
   574
    ///Executes the algorithm until \c dest is reached.
alpar@1218
   575
alpar@1218
   576
    ///Executes the algorithm until \c dest is reached.
alpar@1218
   577
    ///
alpar@1218
   578
    ///\pre init() must be called and at least one node should be added
alpar@1218
   579
    ///with addSource() before using this function.
alpar@1218
   580
    ///
alpar@1218
   581
    ///This method runs the %BFS algorithm from the root node(s)
alpar@1218
   582
    ///in order to
alpar@1218
   583
    ///compute the
alpar@1218
   584
    ///shortest path to \c dest. The algorithm computes
alpar@1218
   585
    ///- The shortest path to \c  dest.
alpar@1218
   586
    ///- The distance of \c dest from the root(s).
alpar@1218
   587
    ///
alpar@1218
   588
    void start(Node dest)
alpar@1218
   589
    {
alpar@1218
   590
      while ( !emptyQueue() && _queue[_queue_tail]!=dest ) processNextNode();
alpar@1218
   591
    }
alpar@1218
   592
    
alpar@1218
   593
    ///Executes the algorithm until a condition is met.
alpar@1218
   594
alpar@1218
   595
    ///Executes the algorithm until a condition is met.
alpar@1218
   596
    ///
alpar@1218
   597
    ///\pre init() must be called and at least one node should be added
alpar@1218
   598
    ///with addSource() before using this function.
alpar@1218
   599
    ///
alpar@1218
   600
    ///\param nm must be a bool (or convertible) node map. The algorithm
alpar@1218
   601
    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
alpar@1218
   602
    template<class NM>
alpar@1218
   603
      void start(const NM &nm)
alpar@1218
   604
      {
alpar@1218
   605
	while ( !emptyQueue() && !nm[_queue[_queue_tail]] ) processNextNode();
alpar@1218
   606
      }
alpar@1218
   607
    
alpar@1218
   608
    ///Runs %BFS algorithm from node \c s.
alpar@1218
   609
    
alpar@1218
   610
    ///This method runs the %BFS algorithm from a root node \c s
alpar@1218
   611
    ///in order to
alpar@1218
   612
    ///compute the
alpar@1218
   613
    ///shortest path to each node. The algorithm computes
alpar@1218
   614
    ///- The shortest path tree.
alpar@1218
   615
    ///- The distance of each node from the root.
alpar@1218
   616
    ///
alpar@1218
   617
    ///\note d.run(s) is just a shortcut of the following code.
alpar@1218
   618
    ///\code
alpar@1218
   619
    ///  d.init();
alpar@1218
   620
    ///  d.addSource(s);
alpar@1218
   621
    ///  d.start();
alpar@1218
   622
    ///\endcode
alpar@1218
   623
    void run(Node s) {
alpar@1218
   624
      init();
alpar@1218
   625
      addSource(s);
alpar@1218
   626
      start();
alpar@1218
   627
    }
alpar@1218
   628
    
alpar@1218
   629
    ///Finds the shortest path between \c s and \c t.
alpar@1218
   630
    
alpar@1218
   631
    ///Finds the shortest path between \c s and \c t.
alpar@1218
   632
    ///
alpar@1218
   633
    ///\return The length of the shortest s---t path if there exists one,
alpar@1218
   634
    ///0 otherwise.
alpar@1218
   635
    ///\note Apart from the return value, d.run(s) is
alpar@1218
   636
    ///just a shortcut of the following code.
alpar@1218
   637
    ///\code
alpar@1218
   638
    ///  d.init();
alpar@1218
   639
    ///  d.addSource(s);
alpar@1218
   640
    ///  d.start(t);
alpar@1218
   641
    ///\endcode
alpar@1218
   642
    int run(Node s,Node t) {
alpar@1218
   643
      init();
alpar@1218
   644
      addSource(s);
alpar@1218
   645
      start(t);
alpar@1218
   646
      return reached(t)?_curr_dist-1+(_queue_tail==_queue_next_dist):0;
alpar@1218
   647
    }
alpar@1218
   648
    
alpar@1218
   649
    ///@}
alpar@1218
   650
alpar@1218
   651
    ///\name Query Functions
alpar@1218
   652
    ///The result of the %BFS algorithm can be obtained using these
alpar@1218
   653
    ///functions.\n
alpar@1218
   654
    ///Before the use of these functions,
alpar@1218
   655
    ///either run() or start() must be called.
alpar@1218
   656
    
alpar@1218
   657
    ///@{
alpar@1218
   658
alpar@1283
   659
    ///Copies the shortest path to \c t into \c p
alpar@1283
   660
    
alpar@1283
   661
    ///This function copies the shortest path to \c t into \c p.
alpar@1283
   662
    ///If it \c \t is a source itself or unreachable, then it does not
alpar@1283
   663
    ///alter \c p.
alpar@1283
   664
    ///\todo Is it the right way to handle unreachable nodes?
alpar@1283
   665
    ///\return Returns \c true if a path to \c t was actually copied to \c p,
alpar@1283
   666
    ///\c false otherwise.
alpar@1283
   667
    ///\sa DirPath
alpar@1283
   668
    template<class P>
alpar@1283
   669
    bool getPath(P &p,Node t) 
alpar@1283
   670
    {
alpar@1283
   671
      if(reached(t)) {
alpar@1283
   672
	p.clear();
alpar@1283
   673
	typename P::Builder b(p);
alpar@1283
   674
	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
alpar@1283
   675
	  b.pushFront(pred(t));
alpar@1283
   676
	b.commit();
alpar@1283
   677
	return true;
alpar@1283
   678
      }
alpar@1283
   679
      return false;
alpar@1283
   680
    }
alpar@1283
   681
alpar@1218
   682
    ///The distance of a node from the root(s).
alpar@1218
   683
alpar@1218
   684
    ///Returns the distance of a node from the root(s).
alpar@774
   685
    ///\pre \ref run() must be called before using this function.
alpar@1218
   686
    ///\warning If node \c v in unreachable from the root(s) the return value
jacint@1270
   687
    ///of this function is undefined.
alpar@1218
   688
    int dist(Node v) const { return (*_dist)[v]; }
alpar@774
   689
alpar@1218
   690
    ///Returns the 'previous edge' of the shortest path tree.
alpar@774
   691
alpar@1218
   692
    ///For a node \c v it returns the 'previous edge'
alpar@1218
   693
    ///of the shortest path tree,
alpar@1218
   694
    ///i.e. it returns the last edge of a shortest path from the root(s) to \c
alpar@774
   695
    ///v. It is \ref INVALID
alpar@1218
   696
    ///if \c v is unreachable from the root(s) or \c v is a root. The
alpar@1218
   697
    ///shortest path tree used here is equal to the shortest path tree used in
alpar@1218
   698
    ///\ref predNode(Node v).
alpar@1218
   699
    ///\pre Either \ref run() or \ref start() must be called before using
alpar@774
   700
    ///this function.
alpar@1218
   701
    ///\todo predEdge could be a better name.
alpar@1218
   702
    Edge pred(Node v) const { return (*_pred)[v];}
alpar@774
   703
alpar@1218
   704
    ///Returns the 'previous node' of the shortest path tree.
alpar@774
   705
alpar@1218
   706
    ///For a node \c v it returns the 'previous node'
alpar@1218
   707
    ///of the shortest path tree,
alpar@774
   708
    ///i.e. it returns the last but one node from a shortest path from the
alpar@1218
   709
    ///root(a) to \c /v.
alpar@1218
   710
    ///It is INVALID if \c v is unreachable from the root(s) or
alpar@1218
   711
    ///if \c v itself a root.
alpar@1218
   712
    ///The shortest path tree used here is equal to the shortest path
alpar@1218
   713
    ///tree used in \ref pred(Node v).
alpar@1218
   714
    ///\pre Either \ref run() or \ref start() must be called before
alpar@774
   715
    ///using this function.
alpar@1218
   716
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@1218
   717
				  G->source((*_pred)[v]); }
alpar@774
   718
    
alpar@774
   719
    ///Returns a reference to the NodeMap of distances.
alpar@1218
   720
alpar@1218
   721
    ///Returns a reference to the NodeMap of distances.
alpar@1218
   722
    ///\pre Either \ref run() or \ref init() must
alpar@774
   723
    ///be called before using this function.
alpar@1218
   724
    const DistMap &distMap() const { return *_dist;}
alpar@774
   725
 
alpar@1218
   726
    ///Returns a reference to the shortest path tree map.
alpar@774
   727
alpar@774
   728
    ///Returns a reference to the NodeMap of the edges of the
alpar@1218
   729
    ///shortest path tree.
alpar@1218
   730
    ///\pre Either \ref run() or \ref init()
alpar@1218
   731
    ///must be called before using this function.
alpar@1218
   732
    const PredMap &predMap() const { return *_pred;}
alpar@774
   733
 
alpar@1218
   734
//     ///Returns a reference to the map of nodes of shortest paths.
alpar@774
   735
alpar@1218
   736
//     ///Returns a reference to the NodeMap of the last but one nodes of the
alpar@1218
   737
//     ///shortest path tree.
alpar@1218
   738
//     ///\pre \ref run() must be called before using this function.
alpar@1218
   739
//     const PredNodeMap &predNodeMap() const { return *_predNode;}
alpar@774
   740
alpar@774
   741
    ///Checks if a node is reachable from the root.
alpar@774
   742
alpar@774
   743
    ///Returns \c true if \c v is reachable from the root.
jacint@1270
   744
    ///\warning The source nodes are indicated as unreached.
alpar@1218
   745
    ///\pre Either \ref run() or \ref start()
alpar@1218
   746
    ///must be called before using this function.
alpar@774
   747
    ///
alpar@1218
   748
    bool reached(Node v) { return (*_reached)[v]; }
alpar@1218
   749
    
alpar@1218
   750
    ///@}
alpar@1218
   751
  };
alpar@1218
   752
alpar@1218
   753
  ///Default traits class of Bfs function.
alpar@1218
   754
alpar@1218
   755
  ///Default traits class of Bfs function.
alpar@1218
   756
  ///\param GR Graph type.
alpar@1218
   757
  template<class GR>
alpar@1218
   758
  struct BfsWizardDefaultTraits
alpar@1218
   759
  {
alpar@1218
   760
    ///The graph type the algorithm runs on. 
alpar@1218
   761
    typedef GR Graph;
alpar@1218
   762
    ///\brief The type of the map that stores the last
alpar@1218
   763
    ///edges of the shortest paths.
alpar@1218
   764
    /// 
alpar@1218
   765
    ///The type of the map that stores the last
alpar@1218
   766
    ///edges of the shortest paths.
alpar@1218
   767
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@774
   768
    ///
alpar@1218
   769
    typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
alpar@1218
   770
    ///Instantiates a PredMap.
alpar@1218
   771
 
alpar@1218
   772
    ///This function instantiates a \ref PredMap. 
alpar@1218
   773
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1218
   774
    ///\todo The graph alone may be insufficient to initialize
alpar@1367
   775
    static PredMap *createPredMap(const GR &) 
alpar@1218
   776
    {
alpar@1218
   777
      return new PredMap();
alpar@1218
   778
    }
alpar@1218
   779
//     ///\brief The type of the map that stores the last but one
alpar@1218
   780
//     ///nodes of the shortest paths.
alpar@1218
   781
//     ///
alpar@1218
   782
//     ///The type of the map that stores the last but one
alpar@1218
   783
//     ///nodes of the shortest paths.
alpar@1218
   784
//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   785
//     ///
alpar@1218
   786
//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
alpar@1218
   787
//     ///Instantiates a PredNodeMap.
alpar@1218
   788
    
alpar@1218
   789
//     ///This function instantiates a \ref PredNodeMap. 
alpar@1218
   790
//     ///\param G is the graph, to which
alpar@1218
   791
//     ///we would like to define the \ref PredNodeMap
alpar@1218
   792
//     static PredNodeMap *createPredNodeMap(const GR &G)
alpar@1218
   793
//     {
alpar@1218
   794
//       return new PredNodeMap();
alpar@1218
   795
//     }
alpar@1218
   796
alpar@1218
   797
    ///The type of the map that indicates which nodes are processed.
alpar@1218
   798
 
alpar@1218
   799
    ///The type of the map that indicates which nodes are processed.
alpar@1218
   800
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   801
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   802
    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
alpar@1218
   803
    ///Instantiates a ProcessedMap.
alpar@1218
   804
 
alpar@1218
   805
    ///This function instantiates a \ref ProcessedMap. 
alpar@1218
   806
    ///\param G is the graph, to which
alpar@1218
   807
    ///we would like to define the \ref ProcessedMap
alpar@1367
   808
    static ProcessedMap *createProcessedMap(const GR &)
alpar@1218
   809
    {
alpar@1218
   810
      return new ProcessedMap();
alpar@1218
   811
    }
alpar@1218
   812
    ///The type of the map that indicates which nodes are reached.
alpar@1218
   813
 
alpar@1218
   814
    ///The type of the map that indicates which nodes are reached.
alpar@1218
   815
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   816
    ///\todo named parameter to set this type, function to read and write.
alpar@1218
   817
    typedef typename Graph::template NodeMap<bool> ReachedMap;
alpar@1218
   818
    ///Instantiates a ReachedMap.
alpar@1218
   819
 
alpar@1218
   820
    ///This function instantiates a \ref ReachedMap. 
alpar@1218
   821
    ///\param G is the graph, to which
alpar@1218
   822
    ///we would like to define the \ref ReachedMap.
alpar@1218
   823
    static ReachedMap *createReachedMap(const GR &G)
alpar@1218
   824
    {
alpar@1218
   825
      return new ReachedMap(G);
alpar@1218
   826
    }
alpar@1218
   827
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   828
 
alpar@1218
   829
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   830
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1218
   831
    ///
alpar@1218
   832
    typedef NullMap<typename Graph::Node,int> DistMap;
alpar@1218
   833
    ///Instantiates a DistMap.
alpar@1218
   834
 
alpar@1218
   835
    ///This function instantiates a \ref DistMap. 
alpar@1218
   836
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@1367
   837
    static DistMap *createDistMap(const GR &)
alpar@1218
   838
    {
alpar@1218
   839
      return new DistMap();
alpar@1218
   840
    }
alpar@1218
   841
  };
alpar@1218
   842
  
alpar@1218
   843
  /// Default traits used by \ref BfsWizard
alpar@1218
   844
alpar@1218
   845
  /// To make it easier to use Bfs algorithm
alpar@1218
   846
  ///we have created a wizard class.
alpar@1218
   847
  /// This \ref BfsWizard class needs default traits,
alpar@1218
   848
  ///as well as the \ref Bfs class.
alpar@1218
   849
  /// The \ref BfsWizardBase is a class to be the default traits of the
alpar@1218
   850
  /// \ref BfsWizard class.
alpar@1218
   851
  template<class GR>
alpar@1218
   852
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
alpar@1218
   853
  {
alpar@1218
   854
alpar@1218
   855
    typedef BfsWizardDefaultTraits<GR> Base;
alpar@1218
   856
  protected:
alpar@1218
   857
    /// Type of the nodes in the graph.
alpar@1218
   858
    typedef typename Base::Graph::Node Node;
alpar@1218
   859
alpar@1218
   860
    /// Pointer to the underlying graph.
alpar@1218
   861
    void *_g;
alpar@1218
   862
    ///Pointer to the map of reached nodes.
alpar@1218
   863
    void *_reached;
alpar@1218
   864
    ///Pointer to the map of processed nodes.
alpar@1218
   865
    void *_processed;
alpar@1218
   866
    ///Pointer to the map of predecessors edges.
alpar@1218
   867
    void *_pred;
alpar@1218
   868
//     ///Pointer to the map of predecessors nodes.
alpar@1218
   869
//     void *_predNode;
alpar@1218
   870
    ///Pointer to the map of distances.
alpar@1218
   871
    void *_dist;
alpar@1218
   872
    ///Pointer to the source node.
alpar@1218
   873
    Node _source;
alpar@1218
   874
    
alpar@1218
   875
    public:
alpar@1218
   876
    /// Constructor.
alpar@1218
   877
    
alpar@1218
   878
    /// This constructor does not require parameters, therefore it initiates
alpar@1218
   879
    /// all of the attributes to default values (0, INVALID).
alpar@1218
   880
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
alpar@1218
   881
// 			   _predNode(0),
alpar@1218
   882
			   _dist(0), _source(INVALID) {}
alpar@1218
   883
alpar@1218
   884
    /// Constructor.
alpar@1218
   885
    
alpar@1218
   886
    /// This constructor requires some parameters,
alpar@1218
   887
    /// listed in the parameters list.
alpar@1218
   888
    /// Others are initiated to 0.
alpar@1218
   889
    /// \param g is the initial value of  \ref _g
alpar@1218
   890
    /// \param s is the initial value of  \ref _source
alpar@1218
   891
    BfsWizardBase(const GR &g, Node s=INVALID) :
alpar@1218
   892
      _g((void *)&g), _reached(0), _processed(0), _pred(0),
alpar@1218
   893
//       _predNode(0),
alpar@1218
   894
      _dist(0), _source(s) {}
alpar@1218
   895
alpar@1218
   896
  };
alpar@1218
   897
  
alpar@1218
   898
  /// A class to make the usage of Bfs algorithm easier
alpar@1218
   899
alpar@1218
   900
  /// This class is created to make it easier to use Bfs algorithm.
alpar@1218
   901
  /// It uses the functions and features of the plain \ref Bfs,
alpar@1218
   902
  /// but it is much simpler to use it.
alpar@1218
   903
  ///
alpar@1218
   904
  /// Simplicity means that the way to change the types defined
alpar@1218
   905
  /// in the traits class is based on functions that returns the new class
alpar@1218
   906
  /// and not on templatable built-in classes.
alpar@1218
   907
  /// When using the plain \ref Bfs
alpar@1218
   908
  /// the new class with the modified type comes from
alpar@1218
   909
  /// the original class by using the ::
alpar@1218
   910
  /// operator. In the case of \ref BfsWizard only
alpar@1218
   911
  /// a function have to be called and it will
alpar@1218
   912
  /// return the needed class.
alpar@1218
   913
  ///
alpar@1218
   914
  /// It does not have own \ref run method. When its \ref run method is called
alpar@1218
   915
  /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
alpar@1218
   916
  /// method of it.
alpar@1218
   917
  template<class TR>
alpar@1218
   918
  class BfsWizard : public TR
alpar@1218
   919
  {
alpar@1218
   920
    typedef TR Base;
alpar@1218
   921
alpar@1218
   922
    ///The type of the underlying graph.
alpar@1218
   923
    typedef typename TR::Graph Graph;
alpar@1218
   924
    //\e
alpar@1218
   925
    typedef typename Graph::Node Node;
alpar@1218
   926
    //\e
alpar@1218
   927
    typedef typename Graph::NodeIt NodeIt;
alpar@1218
   928
    //\e
alpar@1218
   929
    typedef typename Graph::Edge Edge;
alpar@1218
   930
    //\e
alpar@1218
   931
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@1218
   932
    
alpar@1218
   933
    ///\brief The type of the map that stores
alpar@1218
   934
    ///the reached nodes
alpar@1218
   935
    typedef typename TR::ReachedMap ReachedMap;
alpar@1218
   936
    ///\brief The type of the map that stores
alpar@1218
   937
    ///the processed nodes
alpar@1218
   938
    typedef typename TR::ProcessedMap ProcessedMap;
alpar@1218
   939
    ///\brief The type of the map that stores the last
alpar@1218
   940
    ///edges of the shortest paths.
alpar@1218
   941
    typedef typename TR::PredMap PredMap;
alpar@1218
   942
//     ///\brief The type of the map that stores the last but one
alpar@1218
   943
//     ///nodes of the shortest paths.
alpar@1218
   944
//     typedef typename TR::PredNodeMap PredNodeMap;
alpar@1218
   945
    ///The type of the map that stores the dists of the nodes.
alpar@1218
   946
    typedef typename TR::DistMap DistMap;
alpar@1218
   947
alpar@1218
   948
public:
alpar@1218
   949
    /// Constructor.
alpar@1218
   950
    BfsWizard() : TR() {}
alpar@1218
   951
alpar@1218
   952
    /// Constructor that requires parameters.
alpar@1218
   953
alpar@1218
   954
    /// Constructor that requires parameters.
alpar@1218
   955
    /// These parameters will be the default values for the traits class.
alpar@1218
   956
    BfsWizard(const Graph &g, Node s=INVALID) :
alpar@1218
   957
      TR(g,s) {}
alpar@1218
   958
alpar@1218
   959
    ///Copy constructor
alpar@1218
   960
    BfsWizard(const TR &b) : TR(b) {}
alpar@1218
   961
alpar@1218
   962
    ~BfsWizard() {}
alpar@1218
   963
alpar@1218
   964
    ///Runs Bfs algorithm from a given node.
alpar@1218
   965
    
alpar@1218
   966
    ///Runs Bfs algorithm from a given node.
alpar@1218
   967
    ///The node can be given by the \ref source function.
alpar@1218
   968
    void run()
alpar@1218
   969
    {
alpar@1218
   970
      if(Base::_source==INVALID) throw UninitializedParameter();
alpar@1218
   971
      Bfs<Graph,TR> alg(*(Graph*)Base::_g);
alpar@1218
   972
      if(Base::_reached)
alpar@1218
   973
	alg.reachedMap(*(ReachedMap*)Base::_reached);
alpar@1218
   974
      if(Base::_processed) alg.processedMap(*(ProcessedMap*)Base::_processed);
alpar@1218
   975
      if(Base::_pred) alg.predMap(*(PredMap*)Base::_pred);
alpar@1218
   976
//       if(Base::_predNode) alg.predNodeMap(*(PredNodeMap*)Base::_predNode);
alpar@1218
   977
      if(Base::_dist) alg.distMap(*(DistMap*)Base::_dist);
alpar@1218
   978
      alg.run(Base::_source);
alpar@1218
   979
    }
alpar@1218
   980
alpar@1218
   981
    ///Runs Bfs algorithm from the given node.
alpar@1218
   982
alpar@1218
   983
    ///Runs Bfs algorithm from the given node.
alpar@1218
   984
    ///\param s is the given source.
alpar@1218
   985
    void run(Node s)
alpar@1218
   986
    {
alpar@1218
   987
      Base::_source=s;
alpar@1218
   988
      run();
alpar@1218
   989
    }
alpar@1218
   990
alpar@1218
   991
    template<class T>
alpar@1218
   992
    struct DefPredMapBase : public Base {
alpar@1218
   993
      typedef T PredMap;
alpar@1367
   994
      static PredMap *createPredMap(const Graph &) { return 0; };
alpar@1236
   995
      DefPredMapBase(const TR &b) : TR(b) {}
alpar@1218
   996
    };
alpar@1218
   997
    
alpar@1218
   998
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
   999
    ///function for setting PredMap
alpar@1218
  1000
    ///
alpar@1218
  1001
    /// \ref named-templ-param "Named parameter"
alpar@1218
  1002
    ///function for setting PredMap
alpar@1218
  1003
    ///
alpar@1218
  1004
    template<class T>
alpar@1218
  1005
    BfsWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@1218
  1006
    {
alpar@1218
  1007
      Base::_pred=(void *)&t;
alpar@1218
  1008
      return BfsWizard<DefPredMapBase<T> >(*this);
alpar@1218
  1009
    }
alpar@1218
  1010
    
alpar@1218
  1011
 
alpar@1218
  1012
    template<class T>
alpar@1218
  1013
    struct DefReachedMapBase : public Base {
alpar@1218
  1014
      typedef T ReachedMap;
alpar@1367
  1015
      static ReachedMap *createReachedMap(const Graph &) { return 0; };
alpar@1236
  1016
      DefReachedMapBase(const TR &b) : TR(b) {}
alpar@1218
  1017
    };
alpar@1218
  1018
    
alpar@1218
  1019
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
  1020
    ///function for setting ReachedMap
alpar@1218
  1021
    ///
alpar@1218
  1022
    /// \ref named-templ-param "Named parameter"
alpar@1218
  1023
    ///function for setting ReachedMap
alpar@1218
  1024
    ///
alpar@1218
  1025
    template<class T>
alpar@1218
  1026
    BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
alpar@1218
  1027
    {
alpar@1218
  1028
      Base::_pred=(void *)&t;
alpar@1218
  1029
      return BfsWizard<DefReachedMapBase<T> >(*this);
alpar@1218
  1030
    }
alpar@1218
  1031
    
alpar@1218
  1032
alpar@1218
  1033
    template<class T>
alpar@1218
  1034
    struct DefProcessedMapBase : public Base {
alpar@1218
  1035
      typedef T ProcessedMap;
alpar@1367
  1036
      static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
alpar@1236
  1037
      DefProcessedMapBase(const TR &b) : TR(b) {}
alpar@1218
  1038
    };
alpar@1218
  1039
    
alpar@1218
  1040
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
  1041
    ///function for setting ProcessedMap
alpar@1218
  1042
    ///
alpar@1218
  1043
    /// \ref named-templ-param "Named parameter"
alpar@1218
  1044
    ///function for setting ProcessedMap
alpar@1218
  1045
    ///
alpar@1218
  1046
    template<class T>
alpar@1218
  1047
    BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
alpar@1218
  1048
    {
alpar@1218
  1049
      Base::_pred=(void *)&t;
alpar@1218
  1050
      return BfsWizard<DefProcessedMapBase<T> >(*this);
alpar@1218
  1051
    }
alpar@1218
  1052
    
alpar@1218
  1053
alpar@1218
  1054
//     template<class T>
alpar@1218
  1055
//     struct DefPredNodeMapBase : public Base {
alpar@1218
  1056
//       typedef T PredNodeMap;
alpar@1218
  1057
//       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
alpar@1236
  1058
//       DefPredNodeMapBase(const TR &b) : TR(b) {}
alpar@1218
  1059
//     };
alpar@1218
  1060
    
alpar@1218
  1061
//     ///\brief \ref named-templ-param "Named parameter"
alpar@1218
  1062
//     ///function for setting PredNodeMap type
alpar@1218
  1063
//     ///
alpar@1218
  1064
//     /// \ref named-templ-param "Named parameter"
alpar@1218
  1065
//     ///function for setting PredNodeMap type
alpar@1218
  1066
//     ///
alpar@1218
  1067
//     template<class T>
alpar@1218
  1068
//     BfsWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
alpar@1218
  1069
//     {
alpar@1218
  1070
//       Base::_predNode=(void *)&t;
alpar@1218
  1071
//       return BfsWizard<DefPredNodeMapBase<T> >(*this);
alpar@1218
  1072
//     }
alpar@1218
  1073
   
alpar@1218
  1074
    template<class T>
alpar@1218
  1075
    struct DefDistMapBase : public Base {
alpar@1218
  1076
      typedef T DistMap;
alpar@1367
  1077
      static DistMap *createDistMap(const Graph &) { return 0; };
alpar@1236
  1078
      DefDistMapBase(const TR &b) : TR(b) {}
alpar@1218
  1079
    };
alpar@1218
  1080
    
alpar@1218
  1081
    ///\brief \ref named-templ-param "Named parameter"
alpar@1218
  1082
    ///function for setting DistMap type
alpar@1218
  1083
    ///
alpar@1218
  1084
    /// \ref named-templ-param "Named parameter"
alpar@1218
  1085
    ///function for setting DistMap type
alpar@1218
  1086
    ///
alpar@1218
  1087
    template<class T>
alpar@1218
  1088
    BfsWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@1218
  1089
    {
alpar@1218
  1090
      Base::_dist=(void *)&t;
alpar@1218
  1091
      return BfsWizard<DefDistMapBase<T> >(*this);
alpar@1218
  1092
    }
alpar@1218
  1093
    
alpar@1218
  1094
    /// Sets the source node, from which the Bfs algorithm runs.
alpar@1218
  1095
alpar@1218
  1096
    /// Sets the source node, from which the Bfs algorithm runs.
alpar@1218
  1097
    /// \param s is the source node.
alpar@1218
  1098
    BfsWizard<TR> &source(Node s) 
alpar@1218
  1099
    {
alpar@1218
  1100
      Base::_source=s;
alpar@1218
  1101
      return *this;
alpar@1218
  1102
    }
alpar@774
  1103
    
alpar@774
  1104
  };
alpar@774
  1105
  
alpar@1218
  1106
  ///Function type interface for Bfs algorithm.
alpar@1218
  1107
alpar@1218
  1108
  /// \ingroup flowalgs
alpar@1218
  1109
  ///Function type interface for Bfs algorithm.
alpar@1218
  1110
  ///
alpar@1218
  1111
  ///This function also has several
alpar@1218
  1112
  ///\ref named-templ-func-param "named parameters",
alpar@1218
  1113
  ///they are declared as the members of class \ref BfsWizard.
alpar@1218
  1114
  ///The following
alpar@1218
  1115
  ///example shows how to use these parameters.
alpar@1218
  1116
  ///\code
alpar@1218
  1117
  ///  bfs(g,source).predMap(preds).run();
alpar@1218
  1118
  ///\endcode
alpar@1218
  1119
  ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
alpar@1218
  1120
  ///to the end of the parameter list.
alpar@1218
  1121
  ///\sa BfsWizard
alpar@1218
  1122
  ///\sa Bfs
alpar@1218
  1123
  template<class GR>
alpar@1218
  1124
  BfsWizard<BfsWizardBase<GR> >
alpar@1218
  1125
  bfs(const GR &g,typename GR::Node s=INVALID)
alpar@1218
  1126
  {
alpar@1218
  1127
    return BfsWizard<BfsWizardBase<GR> >(g,s);
alpar@1218
  1128
  }
alpar@1218
  1129
alpar@921
  1130
} //END OF NAMESPACE LEMON
alpar@774
  1131
alpar@774
  1132
#endif
alpar@774
  1133