src/hugo/max_flow.h
author alpar
Wed, 04 Aug 2004 18:51:51 +0000
changeset 751 e742d383fffc
parent 745 d976ba609099
child 757 8680351d0c28
permissions -rw-r--r--
- Trimmed in order to work with gcc-3.4
- The number of executions of the tests can be controlled by command arg.
alpar@726
     1
// -*- C++ -*-
jacint@749
     2
#ifndef HUGO_MAX_FLOW_H
jacint@749
     3
#define HUGO_MAX_FLOW_H
alpar@726
     4
alpar@726
     5
#include <vector>
alpar@726
     6
#include <queue>
alpar@726
     7
alpar@726
     8
#include <hugo/graph_wrapper.h>
alpar@726
     9
#include <hugo/invalid.h>
alpar@726
    10
#include <hugo/maps.h>
alpar@726
    11
alpar@726
    12
/// \file
alpar@726
    13
/// \ingroup galgs
alpar@726
    14
alpar@726
    15
namespace hugo {
alpar@726
    16
alpar@726
    17
  /// \addtogroup galgs
alpar@726
    18
  /// @{                                                                                                                                        
alpar@726
    19
  ///Maximum flow algorithms class.
alpar@726
    20
alpar@726
    21
  ///This class provides various algorithms for finding a flow of
alpar@726
    22
  ///maximum value in a directed graph. The \e source node, the \e
alpar@726
    23
  ///target node, the \e capacity of the edges and the \e starting \e
alpar@726
    24
  ///flow value of the edges should be passed to the algorithm through the
alpar@726
    25
  ///constructor. It is possible to change these quantities using the
alpar@726
    26
  ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
alpar@726
    27
  ///\ref resetFlow. Before any subsequent runs of any algorithm of
alpar@726
    28
  ///the class \ref resetFlow should be called. 
alpar@726
    29
alpar@726
    30
  ///After running an algorithm of the class, the actual flow value 
alpar@726
    31
  ///can be obtained by calling \ref flowValue(). The minimum
alpar@726
    32
  ///value cut can be written into a \c node map of \c bools by
alpar@726
    33
  ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
alpar@726
    34
  ///the inclusionwise minimum and maximum of the minimum value
alpar@726
    35
  ///cuts, resp.)                                                                                                                               
alpar@726
    36
  ///\param Graph The directed graph type the algorithm runs on.
alpar@726
    37
  ///\param Num The number type of the capacities and the flow values.
alpar@726
    38
  ///\param CapMap The capacity map type.
alpar@726
    39
  ///\param FlowMap The flow map type.                                                                                                           
alpar@726
    40
  ///\author Marton Makai, Jacint Szabo 
alpar@726
    41
  template <typename Graph, typename Num,
alpar@726
    42
	    typename CapMap=typename Graph::template EdgeMap<Num>,
alpar@726
    43
            typename FlowMap=typename Graph::template EdgeMap<Num> >
alpar@726
    44
  class MaxFlow {
alpar@726
    45
  protected:
alpar@726
    46
    typedef typename Graph::Node Node;
alpar@726
    47
    typedef typename Graph::NodeIt NodeIt;
alpar@726
    48
    typedef typename Graph::EdgeIt EdgeIt;
alpar@726
    49
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@726
    50
    typedef typename Graph::InEdgeIt InEdgeIt;
alpar@726
    51
alpar@726
    52
    typedef typename std::vector<Node> VecFirst;
alpar@726
    53
    typedef typename Graph::template NodeMap<Node> NNMap;
alpar@726
    54
    typedef typename std::vector<Node> VecNode;
alpar@726
    55
alpar@726
    56
    const Graph* g;
alpar@726
    57
    Node s;
alpar@726
    58
    Node t;
alpar@726
    59
    const CapMap* capacity;
alpar@726
    60
    FlowMap* flow;
alpar@726
    61
    int n;      //the number of nodes of G
alpar@726
    62
    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
alpar@726
    63
    //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
alpar@726
    64
    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
alpar@726
    65
    typedef typename ResGW::Edge ResGWEdge;
alpar@726
    66
    typedef typename Graph::template NodeMap<int> ReachedMap;
alpar@726
    67
alpar@726
    68
alpar@726
    69
    //level works as a bool map in augmenting path algorithms and is
alpar@726
    70
    //used by bfs for storing reached information.  In preflow, it
alpar@726
    71
    //shows the levels of nodes.     
alpar@726
    72
    ReachedMap level;
alpar@726
    73
alpar@726
    74
    //excess is needed only in preflow
alpar@726
    75
    typename Graph::template NodeMap<Num> excess;
alpar@726
    76
alpar@726
    77
    // constants used for heuristics
alpar@726
    78
    static const int H0=20;
alpar@726
    79
    static const int H1=1;
alpar@726
    80
alpar@726
    81
  public:
alpar@726
    82
alpar@726
    83
    ///Indicates the property of the starting flow.
alpar@726
    84
alpar@726
    85
    ///Indicates the property of the starting flow. The meanings are as follows:
alpar@726
    86
    ///- \c ZERO_FLOW: constant zero flow
alpar@726
    87
    ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
alpar@726
    88
    ///the sum of the out-flows in every node except the \e source and
alpar@726
    89
    ///the \e target.
alpar@726
    90
    ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
alpar@726
    91
    ///least the sum of the out-flows in every node except the \e source.
alpar@726
    92
    ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
alpar@726
    93
    ///set to the constant zero flow in the beginning of the algorithm in this case.
alpar@726
    94
    enum FlowEnum{
alpar@726
    95
      ZERO_FLOW,
alpar@726
    96
      GEN_FLOW,
alpar@726
    97
      PRE_FLOW,
alpar@726
    98
      NO_FLOW
alpar@726
    99
    };
alpar@726
   100
alpar@726
   101
    enum StatusEnum {
alpar@726
   102
      AFTER_NOTHING,
alpar@726
   103
      AFTER_AUGMENTING,
alpar@726
   104
      AFTER_FAST_AUGMENTING, 
alpar@726
   105
      AFTER_PRE_FLOW_PHASE_1,      
alpar@726
   106
      AFTER_PRE_FLOW_PHASE_2
alpar@726
   107
    };
alpar@726
   108
jacint@749
   109
    /// Do not needle this flag only if necessary.
alpar@726
   110
    StatusEnum status;
alpar@726
   111
alpar@726
   112
//     int number_of_augmentations;
alpar@726
   113
alpar@726
   114
alpar@726
   115
//     template<typename IntMap>
alpar@726
   116
//     class TrickyReachedMap {
alpar@726
   117
//     protected:
alpar@726
   118
//       IntMap* map;
alpar@726
   119
//       int* number_of_augmentations;
alpar@726
   120
//     public:
alpar@726
   121
//       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
alpar@726
   122
// 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
alpar@726
   123
//       void set(const Node& n, bool b) {
alpar@726
   124
// 	if (b)
alpar@726
   125
// 	  map->set(n, *number_of_augmentations);
alpar@726
   126
// 	else 
alpar@726
   127
// 	  map->set(n, *number_of_augmentations-1);
alpar@726
   128
//       }
alpar@726
   129
//       bool operator[](const Node& n) const { 
alpar@726
   130
// 	return (*map)[n]==*number_of_augmentations; 
alpar@726
   131
//       }
alpar@726
   132
//     };
alpar@726
   133
    
alpar@726
   134
    ///Constructor
alpar@726
   135
alpar@726
   136
    ///\todo Document, please.
alpar@726
   137
    ///
alpar@726
   138
    MaxFlow(const Graph& _G, Node _s, Node _t,
marci@745
   139
	    const CapMap& _capacity, FlowMap& _flow) :
alpar@726
   140
      g(&_G), s(_s), t(_t), capacity(&_capacity),
alpar@726
   141
      flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
alpar@726
   142
      status(AFTER_NOTHING) { }
alpar@726
   143
alpar@726
   144
    ///Runs a maximum flow algorithm.
alpar@726
   145
alpar@726
   146
    ///Runs a preflow algorithm, which is the fastest maximum flow
alpar@726
   147
    ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
alpar@726
   148
    ///\pre The starting flow must be
alpar@726
   149
    /// - a constant zero flow if \c fe is \c ZERO_FLOW,
alpar@726
   150
    /// - an arbitary flow if \c fe is \c GEN_FLOW,
alpar@726
   151
    /// - an arbitary preflow if \c fe is \c PRE_FLOW,
alpar@726
   152
    /// - any map if \c fe is NO_FLOW.
alpar@726
   153
    void run(FlowEnum fe=ZERO_FLOW) {
alpar@726
   154
      preflow(fe);
alpar@726
   155
    }
alpar@726
   156
alpar@726
   157
                                                                              
alpar@726
   158
    ///Runs a preflow algorithm.  
alpar@726
   159
alpar@726
   160
    ///Runs a preflow algorithm. The preflow algorithms provide the
alpar@726
   161
    ///fastest way to compute a maximum flow in a directed graph.
alpar@726
   162
    ///\pre The starting flow must be
alpar@726
   163
    /// - a constant zero flow if \c fe is \c ZERO_FLOW,
alpar@726
   164
    /// - an arbitary flow if \c fe is \c GEN_FLOW,
alpar@726
   165
    /// - an arbitary preflow if \c fe is \c PRE_FLOW,
alpar@726
   166
    /// - any map if \c fe is NO_FLOW.
alpar@726
   167
    ///
alpar@726
   168
    ///\todo NO_FLOW should be the default flow.
alpar@726
   169
    void preflow(FlowEnum fe) {
alpar@726
   170
      preflowPhase1(fe);
alpar@726
   171
      preflowPhase2();
alpar@726
   172
    }
alpar@726
   173
    // Heuristics:
alpar@726
   174
    //   2 phase
alpar@726
   175
    //   gap
alpar@726
   176
    //   list 'level_list' on the nodes on level i implemented by hand
alpar@726
   177
    //   stack 'active' on the active nodes on level i                                                                                    
alpar@726
   178
    //   runs heuristic 'highest label' for H1*n relabels
alpar@726
   179
    //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
alpar@726
   180
    //   Parameters H0 and H1 are initialized to 20 and 1.
alpar@726
   181
alpar@726
   182
    ///Runs the first phase of the preflow algorithm.
alpar@726
   183
alpar@726
   184
    ///The preflow algorithm consists of two phases, this method runs the
alpar@726
   185
    ///first phase. After the first phase the maximum flow value and a
alpar@726
   186
    ///minimum value cut can already be computed, though a maximum flow
jacint@749
   187
    ///is not yet obtained. So after calling this method \ref flowValue
alpar@726
   188
    ///and \ref actMinCut gives proper results.
alpar@726
   189
    ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
alpar@726
   190
    ///give minimum value cuts unless calling \ref preflowPhase2.
alpar@726
   191
    ///\pre The starting flow must be
alpar@726
   192
    /// - a constant zero flow if \c fe is \c ZERO_FLOW,
alpar@726
   193
    /// - an arbitary flow if \c fe is \c GEN_FLOW,
alpar@726
   194
    /// - an arbitary preflow if \c fe is \c PRE_FLOW,
alpar@726
   195
    /// - any map if \c fe is NO_FLOW.
alpar@726
   196
    void preflowPhase1(FlowEnum fe)
alpar@726
   197
    {
alpar@726
   198
alpar@726
   199
      int heur0=(int)(H0*n);  //time while running 'bound decrease'
alpar@726
   200
      int heur1=(int)(H1*n);  //time while running 'highest label'
alpar@726
   201
      int heur=heur1;         //starting time interval (#of relabels)
alpar@726
   202
      int numrelabel=0;
alpar@726
   203
alpar@726
   204
      bool what_heur=1;
alpar@726
   205
      //It is 0 in case 'bound decrease' and 1 in case 'highest label'
alpar@726
   206
alpar@726
   207
      bool end=false;
alpar@726
   208
      //Needed for 'bound decrease', true means no active nodes are above bound
alpar@726
   209
      //b.
alpar@726
   210
alpar@726
   211
      int k=n-2;  //bound on the highest level under n containing a node
alpar@726
   212
      int b=k;    //bound on the highest level under n of an active node
alpar@726
   213
alpar@726
   214
      VecFirst first(n, INVALID);
alpar@726
   215
      NNMap next(*g, INVALID); //maybe INVALID is not needed
alpar@726
   216
alpar@726
   217
      NNMap left(*g, INVALID);
alpar@726
   218
      NNMap right(*g, INVALID);
alpar@726
   219
      VecNode level_list(n,INVALID);
alpar@726
   220
      //List of the nodes in level i<n, set to n.
alpar@726
   221
marci@745
   222
      preflowPreproc(fe, next, first, level_list, left, right);
alpar@726
   223
      //End of preprocessing
alpar@726
   224
alpar@726
   225
      //Push/relabel on the highest level active nodes.
alpar@726
   226
      while ( true ) {
alpar@726
   227
	if ( b == 0 ) {
alpar@726
   228
	  if ( !what_heur && !end && k > 0 ) {
alpar@726
   229
	    b=k;
alpar@726
   230
	    end=true;
alpar@726
   231
	  } else break;
alpar@726
   232
	}
alpar@726
   233
marci@745
   234
	if ( !g->valid(first[b]) ) --b;
alpar@726
   235
	else {
alpar@726
   236
	  end=false;
alpar@726
   237
	  Node w=first[b];
alpar@726
   238
	  first[b]=next[w];
marci@745
   239
	  int newlevel=push(w, next, first);
marci@745
   240
	  if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list,
alpar@726
   241
				       left, right, b, k, what_heur);
alpar@726
   242
alpar@726
   243
	  ++numrelabel;
alpar@726
   244
	  if ( numrelabel >= heur ) {
alpar@726
   245
	    numrelabel=0;
alpar@726
   246
	    if ( what_heur ) {
alpar@726
   247
	      what_heur=0;
alpar@726
   248
	      heur=heur0;
alpar@726
   249
	      end=false;
alpar@726
   250
	    } else {
alpar@726
   251
	      what_heur=1;
alpar@726
   252
	      heur=heur1;
alpar@726
   253
	      b=k;
alpar@726
   254
	    }
alpar@726
   255
	  }
alpar@726
   256
	}
alpar@726
   257
      }
alpar@726
   258
alpar@726
   259
      status=AFTER_PRE_FLOW_PHASE_1;
alpar@726
   260
    }
alpar@726
   261
alpar@726
   262
alpar@726
   263
    ///Runs the second phase of the preflow algorithm.
alpar@726
   264
alpar@726
   265
    ///The preflow algorithm consists of two phases, this method runs
alpar@726
   266
    ///the second phase. After calling \ref preflowPhase1 and then
alpar@726
   267
    ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
alpar@726
   268
    ///\ref minMinCut and \ref maxMinCut give proper results.
alpar@726
   269
    ///\pre \ref preflowPhase1 must be called before.
alpar@726
   270
    void preflowPhase2()
alpar@726
   271
    {
alpar@726
   272
alpar@726
   273
      int k=n-2;  //bound on the highest level under n containing a node
alpar@726
   274
      int b=k;    //bound on the highest level under n of an active node
alpar@726
   275
alpar@726
   276
    
alpar@726
   277
      VecFirst first(n, INVALID);
alpar@726
   278
      NNMap next(*g, INVALID); //maybe INVALID is not needed
alpar@726
   279
      level.set(s,0);
alpar@726
   280
      std::queue<Node> bfs_queue;
alpar@726
   281
      bfs_queue.push(s);
alpar@726
   282
alpar@726
   283
      while (!bfs_queue.empty()) {
alpar@726
   284
alpar@726
   285
	Node v=bfs_queue.front();
alpar@726
   286
	bfs_queue.pop();
alpar@726
   287
	int l=level[v]+1;
alpar@726
   288
alpar@726
   289
	InEdgeIt e;
alpar@726
   290
	for(g->first(e,v); g->valid(e); g->next(e)) {
alpar@726
   291
	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
alpar@726
   292
	  Node u=g->tail(e);
alpar@726
   293
	  if ( level[u] >= n ) {
alpar@726
   294
	    bfs_queue.push(u);
alpar@726
   295
	    level.set(u, l);
alpar@726
   296
	    if ( excess[u] > 0 ) {
alpar@726
   297
	      next.set(u,first[l]);
alpar@726
   298
	      first[l]=u;
alpar@726
   299
	    }
alpar@726
   300
	  }
alpar@726
   301
	}
alpar@726
   302
alpar@726
   303
	OutEdgeIt f;
alpar@726
   304
	for(g->first(f,v); g->valid(f); g->next(f)) {
alpar@726
   305
	  if ( 0 >= (*flow)[f] ) continue;
alpar@726
   306
	  Node u=g->head(f);
alpar@726
   307
	  if ( level[u] >= n ) {
alpar@726
   308
	    bfs_queue.push(u);
alpar@726
   309
	    level.set(u, l);
alpar@726
   310
	    if ( excess[u] > 0 ) {
alpar@726
   311
	      next.set(u,first[l]);
alpar@726
   312
	      first[l]=u;
alpar@726
   313
	    }
alpar@726
   314
	  }
alpar@726
   315
	}
alpar@726
   316
      }
alpar@726
   317
      b=n-2;
alpar@726
   318
alpar@726
   319
      while ( true ) {
alpar@726
   320
alpar@726
   321
	if ( b == 0 ) break;
alpar@726
   322
marci@745
   323
	if ( !g->valid(first[b]) ) --b;
alpar@726
   324
	else {
alpar@726
   325
alpar@726
   326
	  Node w=first[b];
alpar@726
   327
	  first[b]=next[w];
alpar@726
   328
	  int newlevel=push(w,next, first/*active*/);
alpar@726
   329
alpar@726
   330
	  //relabel
alpar@726
   331
	  if ( excess[w] > 0 ) {
alpar@726
   332
	    level.set(w,++newlevel);
alpar@726
   333
	    next.set(w,first[newlevel]);
alpar@726
   334
	    first[newlevel]=w;
alpar@726
   335
	    b=newlevel;
alpar@726
   336
	  }
jacint@749
   337
	} 
alpar@726
   338
      } // while(true)
alpar@726
   339
alpar@726
   340
      status=AFTER_PRE_FLOW_PHASE_2;
alpar@726
   341
    }
alpar@726
   342
alpar@726
   343
alpar@726
   344
    /// Returns the maximum value of a flow.
alpar@726
   345
alpar@726
   346
    /// Returns the maximum value of a flow, by counting the 
alpar@726
   347
    /// over-flow of the target node \ref t.
alpar@726
   348
    /// It can be called already after running \ref preflowPhase1.
alpar@726
   349
    Num flowValue() const {
alpar@726
   350
      Num a=0;
alpar@735
   351
      for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
alpar@735
   352
      for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
marci@745
   353
      return a;
alpar@726
   354
      //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
alpar@726
   355
    }
jacint@749
   356
alpar@726
   357
alpar@726
   358
    ///Returns a minimum value cut after calling \ref preflowPhase1.
alpar@726
   359
alpar@726
   360
    ///After the first phase of the preflow algorithm the maximum flow
alpar@726
   361
    ///value and a minimum value cut can already be computed. This
alpar@726
   362
    ///method can be called after running \ref preflowPhase1 for
alpar@726
   363
    ///obtaining a minimum value cut.
alpar@726
   364
    /// \warning Gives proper result only right after calling \ref
alpar@726
   365
    /// preflowPhase1.
alpar@726
   366
    /// \todo We have to make some status variable which shows the
alpar@726
   367
    /// actual state
alpar@726
   368
    /// of the class. This enables us to determine which methods are valid
alpar@726
   369
    /// for MinCut computation
alpar@726
   370
    template<typename _CutMap>
alpar@726
   371
    void actMinCut(_CutMap& M) const {
alpar@726
   372
      NodeIt v;
alpar@726
   373
      switch (status) {
alpar@726
   374
      case AFTER_PRE_FLOW_PHASE_1:
alpar@726
   375
	for(g->first(v); g->valid(v); g->next(v)) {
alpar@726
   376
	  if (level[v] < n) {
alpar@726
   377
	    M.set(v, false);
alpar@726
   378
	  } else {
alpar@726
   379
	    M.set(v, true);
alpar@726
   380
	  }
alpar@726
   381
	}
alpar@726
   382
	break;
alpar@726
   383
      case AFTER_PRE_FLOW_PHASE_2:
alpar@726
   384
      case AFTER_NOTHING:
marci@745
   385
      case AFTER_AUGMENTING:
marci@745
   386
      case AFTER_FAST_AUGMENTING:
alpar@726
   387
	minMinCut(M);
alpar@726
   388
	break;
alpar@726
   389
      }
alpar@726
   390
    }
alpar@726
   391
alpar@726
   392
    ///Returns the inclusionwise minimum of the minimum value cuts.
alpar@726
   393
alpar@726
   394
    ///Sets \c M to the characteristic vector of the minimum value cut
alpar@726
   395
    ///which is inclusionwise minimum. It is computed by processing
alpar@726
   396
    ///a bfs from the source node \c s in the residual graph.
alpar@726
   397
    ///\pre M should be a node map of bools initialized to false.
alpar@726
   398
    ///\pre \c flow must be a maximum flow.
alpar@726
   399
    template<typename _CutMap>
alpar@726
   400
    void minMinCut(_CutMap& M) const {
alpar@726
   401
      std::queue<Node> queue;
alpar@726
   402
alpar@726
   403
      M.set(s,true);
alpar@726
   404
      queue.push(s);
alpar@726
   405
alpar@726
   406
      while (!queue.empty()) {
alpar@726
   407
        Node w=queue.front();
alpar@726
   408
	queue.pop();
alpar@726
   409
alpar@726
   410
	OutEdgeIt e;
alpar@726
   411
	for(g->first(e,w) ; g->valid(e); g->next(e)) {
alpar@726
   412
	  Node v=g->head(e);
alpar@726
   413
	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
alpar@726
   414
	    queue.push(v);
alpar@726
   415
	    M.set(v, true);
alpar@726
   416
	  }
alpar@726
   417
	}
alpar@726
   418
alpar@726
   419
	InEdgeIt f;
alpar@726
   420
	for(g->first(f,w) ; g->valid(f); g->next(f)) {
alpar@726
   421
	  Node v=g->tail(f);
alpar@726
   422
	  if (!M[v] && (*flow)[f] > 0 ) {
alpar@726
   423
	    queue.push(v);
alpar@726
   424
	    M.set(v, true);
alpar@726
   425
	  }
alpar@726
   426
	}
alpar@726
   427
      }
alpar@726
   428
    }
alpar@726
   429
alpar@726
   430
    ///Returns the inclusionwise maximum of the minimum value cuts.
alpar@726
   431
alpar@726
   432
    ///Sets \c M to the characteristic vector of the minimum value cut
alpar@726
   433
    ///which is inclusionwise maximum. It is computed by processing a
alpar@726
   434
    ///backward bfs from the target node \c t in the residual graph.
alpar@726
   435
    ///\pre M should be a node map of bools initialized to false.
alpar@726
   436
    ///\pre \c flow must be a maximum flow. 
alpar@726
   437
    template<typename _CutMap>
alpar@726
   438
    void maxMinCut(_CutMap& M) const {
alpar@726
   439
alpar@726
   440
      NodeIt v;
alpar@726
   441
      for(g->first(v) ; g->valid(v); g->next(v)) {
alpar@726
   442
	M.set(v, true);
alpar@726
   443
      }
alpar@726
   444
alpar@726
   445
      std::queue<Node> queue;
alpar@726
   446
alpar@726
   447
      M.set(t,false);
alpar@726
   448
      queue.push(t);
alpar@726
   449
alpar@726
   450
      while (!queue.empty()) {
alpar@726
   451
        Node w=queue.front();
alpar@726
   452
	queue.pop();
alpar@726
   453
alpar@726
   454
	InEdgeIt e;
alpar@726
   455
	for(g->first(e,w) ; g->valid(e); g->next(e)) {
alpar@726
   456
	  Node v=g->tail(e);
alpar@726
   457
	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
alpar@726
   458
	    queue.push(v);
alpar@726
   459
	    M.set(v, false);
alpar@726
   460
	  }
alpar@726
   461
	}
alpar@726
   462
alpar@726
   463
	OutEdgeIt f;
alpar@726
   464
	for(g->first(f,w) ; g->valid(f); g->next(f)) {
alpar@726
   465
	  Node v=g->head(f);
alpar@726
   466
	  if (M[v] && (*flow)[f] > 0 ) {
alpar@726
   467
	    queue.push(v);
alpar@726
   468
	    M.set(v, false);
alpar@726
   469
	  }
alpar@726
   470
	}
alpar@726
   471
      }
alpar@726
   472
    }
alpar@726
   473
alpar@726
   474
    ///Returns a minimum value cut.
alpar@726
   475
alpar@726
   476
    ///Sets \c M to the characteristic vector of a minimum value cut.
alpar@726
   477
    ///\pre M should be a node map of bools initialized to false.
alpar@726
   478
    ///\pre \c flow must be a maximum flow.    
alpar@726
   479
    template<typename CutMap>
alpar@726
   480
    void minCut(CutMap& M) const { minMinCut(M); }
alpar@726
   481
alpar@726
   482
    ///Resets the source node to \c _s.
alpar@726
   483
alpar@726
   484
    ///Resets the source node to \c _s.
alpar@726
   485
    /// 
alpar@726
   486
    void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
alpar@726
   487
alpar@726
   488
    ///Resets the target node to \c _t.
alpar@726
   489
alpar@726
   490
    ///Resets the target node to \c _t.
alpar@726
   491
    ///
alpar@726
   492
    void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
alpar@726
   493
alpar@726
   494
    /// Resets the edge map of the capacities to _cap.
alpar@726
   495
alpar@726
   496
    /// Resets the edge map of the capacities to _cap.
alpar@726
   497
    /// 
alpar@726
   498
    void resetCap(const CapMap& _cap)
alpar@726
   499
    { capacity=&_cap; status=AFTER_NOTHING; }
alpar@726
   500
alpar@726
   501
    /// Resets the edge map of the flows to _flow.
alpar@726
   502
alpar@726
   503
    /// Resets the edge map of the flows to _flow.
alpar@726
   504
    /// 
alpar@726
   505
    void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
alpar@726
   506
alpar@726
   507
alpar@726
   508
  private:
alpar@726
   509
alpar@726
   510
    int push(Node w, NNMap& next, VecFirst& first) {
alpar@726
   511
alpar@726
   512
      int lev=level[w];
alpar@726
   513
      Num exc=excess[w];
alpar@726
   514
      int newlevel=n;       //bound on the next level of w
alpar@726
   515
alpar@726
   516
      OutEdgeIt e;
alpar@726
   517
      for(g->first(e,w); g->valid(e); g->next(e)) {
alpar@726
   518
alpar@726
   519
	if ( (*flow)[e] >= (*capacity)[e] ) continue;
alpar@726
   520
	Node v=g->head(e);
alpar@726
   521
alpar@726
   522
	if( lev > level[v] ) { //Push is allowed now
alpar@726
   523
alpar@726
   524
	  if ( excess[v]<=0 && v!=t && v!=s ) {
alpar@726
   525
	    next.set(v,first[level[v]]);
alpar@726
   526
	    first[level[v]]=v;
alpar@726
   527
	  }
alpar@726
   528
alpar@726
   529
	  Num cap=(*capacity)[e];
alpar@726
   530
	  Num flo=(*flow)[e];
alpar@726
   531
	  Num remcap=cap-flo;
alpar@726
   532
alpar@726
   533
	  if ( remcap >= exc ) { //A nonsaturating push.
alpar@726
   534
alpar@726
   535
	    flow->set(e, flo+exc);
alpar@726
   536
	    excess.set(v, excess[v]+exc);
alpar@726
   537
	    exc=0;
alpar@726
   538
	    break;
alpar@726
   539
alpar@726
   540
	  } else { //A saturating push.
alpar@726
   541
	    flow->set(e, cap);
alpar@726
   542
	    excess.set(v, excess[v]+remcap);
alpar@726
   543
	    exc-=remcap;
alpar@726
   544
	  }
alpar@726
   545
	} else if ( newlevel > level[v] ) newlevel = level[v];
alpar@726
   546
      } //for out edges wv
alpar@726
   547
alpar@726
   548
      if ( exc > 0 ) {
alpar@726
   549
	InEdgeIt e;
alpar@726
   550
	for(g->first(e,w); g->valid(e); g->next(e)) {
alpar@726
   551
alpar@726
   552
	  if( (*flow)[e] <= 0 ) continue;
alpar@726
   553
	  Node v=g->tail(e);
alpar@726
   554
alpar@726
   555
	  if( lev > level[v] ) { //Push is allowed now
alpar@726
   556
alpar@726
   557
	    if ( excess[v]<=0 && v!=t && v!=s ) {
alpar@726
   558
	      next.set(v,first[level[v]]);
alpar@726
   559
	      first[level[v]]=v;
alpar@726
   560
	    }
alpar@726
   561
alpar@726
   562
	    Num flo=(*flow)[e];
alpar@726
   563
alpar@726
   564
	    if ( flo >= exc ) { //A nonsaturating push.
alpar@726
   565
alpar@726
   566
	      flow->set(e, flo-exc);
alpar@726
   567
	      excess.set(v, excess[v]+exc);
alpar@726
   568
	      exc=0;
alpar@726
   569
	      break;
alpar@726
   570
	    } else {  //A saturating push.
alpar@726
   571
alpar@726
   572
	      excess.set(v, excess[v]+flo);
alpar@726
   573
	      exc-=flo;
alpar@726
   574
	      flow->set(e,0);
alpar@726
   575
	    }
alpar@726
   576
	  } else if ( newlevel > level[v] ) newlevel = level[v];
alpar@726
   577
	} //for in edges vw
alpar@726
   578
alpar@726
   579
      } // if w still has excess after the out edge for cycle
alpar@726
   580
alpar@726
   581
      excess.set(w, exc);
alpar@726
   582
alpar@726
   583
      return newlevel;
alpar@726
   584
    }
alpar@726
   585
alpar@726
   586
jacint@749
   587
alpar@726
   588
    void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
alpar@726
   589
			VecNode& level_list, NNMap& left, NNMap& right)
alpar@726
   590
    {
jacint@749
   591
      switch (fe) { //setting excess
jacint@749
   592
	case NO_FLOW: 
jacint@749
   593
	{
jacint@749
   594
	  EdgeIt e;
jacint@749
   595
	  for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
jacint@749
   596
	  
jacint@749
   597
	  NodeIt v;
jacint@749
   598
	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
jacint@749
   599
	  break;
jacint@749
   600
	}
jacint@749
   601
	case ZERO_FLOW: 
jacint@749
   602
	{
jacint@749
   603
	  NodeIt v;
jacint@749
   604
	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
jacint@749
   605
	  break;
jacint@749
   606
	}
jacint@749
   607
	case GEN_FLOW:
jacint@749
   608
	{
jacint@749
   609
	  NodeIt v;
jacint@749
   610
	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
jacint@749
   611
jacint@749
   612
	  Num exc=0;
jacint@749
   613
	  InEdgeIt e;
jacint@749
   614
	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
jacint@749
   615
	  OutEdgeIt f;
jacint@749
   616
	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
jacint@749
   617
	  excess.set(t,exc);
jacint@749
   618
	  break;
jacint@749
   619
	}
jacint@749
   620
	default: break;
jacint@749
   621
      }
jacint@749
   622
jacint@749
   623
      NodeIt v;
jacint@749
   624
      for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
jacint@749
   625
      //setting each node to level n
jacint@749
   626
      
alpar@726
   627
      std::queue<Node> bfs_queue;
alpar@726
   628
jacint@749
   629
alpar@726
   630
      switch (fe) {
jacint@749
   631
      case NO_FLOW:   //flow is already set to const zero
alpar@726
   632
      case ZERO_FLOW:
alpar@726
   633
	{
alpar@726
   634
	  //Reverse_bfs from t, to find the starting level.
alpar@726
   635
	  level.set(t,0);
alpar@726
   636
	  bfs_queue.push(t);
alpar@726
   637
alpar@726
   638
	  while (!bfs_queue.empty()) {
alpar@726
   639
alpar@726
   640
	    Node v=bfs_queue.front();
alpar@726
   641
	    bfs_queue.pop();
alpar@726
   642
	    int l=level[v]+1;
alpar@726
   643
alpar@726
   644
	    InEdgeIt e;
alpar@726
   645
	    for(g->first(e,v); g->valid(e); g->next(e)) {
alpar@726
   646
	      Node w=g->tail(e);
alpar@726
   647
	      if ( level[w] == n && w != s ) {
alpar@726
   648
		bfs_queue.push(w);
alpar@726
   649
		Node z=level_list[l];
alpar@726
   650
		if ( g->valid(z) ) left.set(z,w);
alpar@726
   651
		right.set(w,z);
alpar@726
   652
		level_list[l]=w;
alpar@726
   653
		level.set(w, l);
alpar@726
   654
	      }
alpar@726
   655
	    }
alpar@726
   656
	  }
alpar@726
   657
alpar@726
   658
	  //the starting flow
alpar@726
   659
	  OutEdgeIt e;
alpar@726
   660
	  for(g->first(e,s); g->valid(e); g->next(e))
alpar@726
   661
	    {
alpar@726
   662
	      Num c=(*capacity)[e];
alpar@726
   663
	      if ( c <= 0 ) continue;
alpar@726
   664
	      Node w=g->head(e);
alpar@726
   665
	      if ( level[w] < n ) {
jacint@749
   666
		if ( excess[w] <= 0 && w!=t ) //putting into the stack
jacint@749
   667
		  { 
alpar@726
   668
		    next.set(w,first[level[w]]);
alpar@726
   669
		    first[level[w]]=w;
alpar@726
   670
		  }
alpar@726
   671
		flow->set(e, c);
alpar@726
   672
		excess.set(w, excess[w]+c);
alpar@726
   673
	      }
alpar@726
   674
	    }
alpar@726
   675
	  break;
alpar@726
   676
	}
alpar@726
   677
alpar@726
   678
      case GEN_FLOW:
jacint@749
   679
	{
jacint@749
   680
	  //Reverse_bfs from t in the residual graph,
jacint@749
   681
	  //to find the starting level.
jacint@749
   682
	  level.set(t,0);
jacint@749
   683
	  bfs_queue.push(t);
jacint@749
   684
jacint@749
   685
	  while (!bfs_queue.empty()) {
jacint@749
   686
jacint@749
   687
	    Node v=bfs_queue.front();
jacint@749
   688
	    bfs_queue.pop();
jacint@749
   689
	    int l=level[v]+1;
jacint@749
   690
jacint@749
   691
	    InEdgeIt e;
jacint@749
   692
	    for(g->first(e,v); g->valid(e); g->next(e)) {
jacint@749
   693
	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
jacint@749
   694
	      Node w=g->tail(e);
jacint@749
   695
	      if ( level[w] == n && w != s ) {
jacint@749
   696
		bfs_queue.push(w);
jacint@749
   697
		Node z=level_list[l];
jacint@749
   698
		if ( g->valid(z) ) left.set(z,w);
jacint@749
   699
		right.set(w,z);
jacint@749
   700
		level_list[l]=w;
jacint@749
   701
		level.set(w, l);
jacint@749
   702
	      }
jacint@749
   703
	    }
jacint@749
   704
jacint@749
   705
	    OutEdgeIt f;
jacint@749
   706
	    for(g->first(f,v); g->valid(f); g->next(f)) {
jacint@749
   707
	      if ( 0 >= (*flow)[f] ) continue;
jacint@749
   708
	      Node w=g->head(f);
jacint@749
   709
	      if ( level[w] == n && w != s ) {
jacint@749
   710
		bfs_queue.push(w);
jacint@749
   711
		Node z=level_list[l];
jacint@749
   712
		if ( g->valid(z) ) left.set(z,w);
jacint@749
   713
		right.set(w,z);
jacint@749
   714
		level_list[l]=w;
jacint@749
   715
		level.set(w, l);
jacint@749
   716
	      }
jacint@749
   717
	    }
jacint@749
   718
	  }
jacint@749
   719
jacint@749
   720
	  //the starting flow
jacint@749
   721
	  OutEdgeIt e;
jacint@749
   722
	  for(g->first(e,s); g->valid(e); g->next(e))
jacint@749
   723
	    {
jacint@749
   724
	      Num rem=(*capacity)[e]-(*flow)[e];
jacint@749
   725
	      if ( rem <= 0 ) continue;
jacint@749
   726
	      Node w=g->head(e);
jacint@749
   727
	      if ( level[w] < n ) {
jacint@749
   728
		if ( excess[w] <= 0 && w!=t ) //putting into the stack
jacint@749
   729
		  {
jacint@749
   730
		    next.set(w,first[level[w]]);
jacint@749
   731
		    first[level[w]]=w;
jacint@749
   732
		  }   
jacint@749
   733
		flow->set(e, (*capacity)[e]);
jacint@749
   734
		excess.set(w, excess[w]+rem);
jacint@749
   735
	      }
jacint@749
   736
	    }
jacint@749
   737
jacint@749
   738
	  InEdgeIt f;
jacint@749
   739
	  for(g->first(f,s); g->valid(f); g->next(f))
jacint@749
   740
	    {
jacint@749
   741
	      if ( (*flow)[f] <= 0 ) continue;
jacint@749
   742
	      Node w=g->tail(f);
jacint@749
   743
	      if ( level[w] < n ) {
jacint@749
   744
		if ( excess[w] <= 0 && w!=t )
jacint@749
   745
		  {
jacint@749
   746
		    next.set(w,first[level[w]]);
jacint@749
   747
		    first[level[w]]=w;
jacint@749
   748
		  }  
jacint@749
   749
		excess.set(w, excess[w]+(*flow)[f]);
jacint@749
   750
		flow->set(f, 0);
jacint@749
   751
	      }
jacint@749
   752
	    }
jacint@749
   753
	  break;
jacint@749
   754
	} //case GEN_FLOW
jacint@749
   755
    
alpar@726
   756
      case PRE_FLOW:
alpar@726
   757
	{
alpar@726
   758
	  //Reverse_bfs from t in the residual graph,
alpar@726
   759
	  //to find the starting level.
alpar@726
   760
	  level.set(t,0);
alpar@726
   761
	  bfs_queue.push(t);
alpar@726
   762
alpar@726
   763
	  while (!bfs_queue.empty()) {
alpar@726
   764
alpar@726
   765
	    Node v=bfs_queue.front();
alpar@726
   766
	    bfs_queue.pop();
alpar@726
   767
	    int l=level[v]+1;
alpar@726
   768
alpar@726
   769
	    InEdgeIt e;
alpar@726
   770
	    for(g->first(e,v); g->valid(e); g->next(e)) {
alpar@726
   771
	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
alpar@726
   772
	      Node w=g->tail(e);
alpar@726
   773
	      if ( level[w] == n && w != s ) {
alpar@726
   774
		bfs_queue.push(w);
alpar@726
   775
		Node z=level_list[l];
alpar@726
   776
		if ( g->valid(z) ) left.set(z,w);
alpar@726
   777
		right.set(w,z);
alpar@726
   778
		level_list[l]=w;
alpar@726
   779
		level.set(w, l);
alpar@726
   780
	      }
alpar@726
   781
	    }
alpar@726
   782
alpar@726
   783
	    OutEdgeIt f;
alpar@726
   784
	    for(g->first(f,v); g->valid(f); g->next(f)) {
alpar@726
   785
	      if ( 0 >= (*flow)[f] ) continue;
alpar@726
   786
	      Node w=g->head(f);
alpar@726
   787
	      if ( level[w] == n && w != s ) {
alpar@726
   788
		bfs_queue.push(w);
alpar@726
   789
		Node z=level_list[l];
alpar@726
   790
		if ( g->valid(z) ) left.set(z,w);
alpar@726
   791
		right.set(w,z);
alpar@726
   792
		level_list[l]=w;
alpar@726
   793
		level.set(w, l);
alpar@726
   794
	      }
alpar@726
   795
	    }
alpar@726
   796
	  }
alpar@726
   797
alpar@726
   798
alpar@726
   799
	  //the starting flow
alpar@726
   800
	  OutEdgeIt e;
alpar@726
   801
	  for(g->first(e,s); g->valid(e); g->next(e))
alpar@726
   802
	    {
alpar@726
   803
	      Num rem=(*capacity)[e]-(*flow)[e];
alpar@726
   804
	      if ( rem <= 0 ) continue;
alpar@726
   805
	      Node w=g->head(e);
alpar@726
   806
	      if ( level[w] < n ) {
alpar@726
   807
		flow->set(e, (*capacity)[e]);
alpar@726
   808
		excess.set(w, excess[w]+rem);
alpar@726
   809
	      }
alpar@726
   810
	    }
alpar@726
   811
alpar@726
   812
	  InEdgeIt f;
alpar@726
   813
	  for(g->first(f,s); g->valid(f); g->next(f))
alpar@726
   814
	    {
alpar@726
   815
	      if ( (*flow)[f] <= 0 ) continue;
alpar@726
   816
	      Node w=g->tail(f);
alpar@726
   817
	      if ( level[w] < n ) {
alpar@726
   818
		excess.set(w, excess[w]+(*flow)[f]);
alpar@726
   819
		flow->set(f, 0);
alpar@726
   820
	      }
alpar@726
   821
	    }
jacint@749
   822
	  
jacint@749
   823
	  NodeIt w; //computing the excess
jacint@749
   824
	  for(g->first(w); g->valid(w); g->next(w)) {
jacint@749
   825
	    Num exc=0;
jacint@749
   826
jacint@749
   827
	    InEdgeIt e;
jacint@749
   828
	    for(g->first(e,w); g->valid(e); g->next(e)) exc+=(*flow)[e];
jacint@749
   829
	    OutEdgeIt f;
jacint@749
   830
	    for(g->first(f,w); g->valid(f); g->next(f)) exc-=(*flow)[f];
jacint@749
   831
jacint@749
   832
	    excess.set(w,exc);
jacint@749
   833
jacint@749
   834
	    //putting the active nodes into the stack
jacint@749
   835
	    int lev=level[w];
jacint@749
   836
	    if ( exc > 0 && lev < n && w != t ) 
jacint@749
   837
	      {
jacint@749
   838
		next.set(w,first[lev]);
jacint@749
   839
		first[lev]=w;
jacint@749
   840
	      }
jacint@749
   841
	  }
alpar@726
   842
	  break;
alpar@726
   843
	} //case PRE_FLOW
alpar@726
   844
      }
alpar@726
   845
    } //preflowPreproc
alpar@726
   846
alpar@726
   847
alpar@726
   848
    void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
alpar@726
   849
		 VecNode& level_list, NNMap& left,
alpar@726
   850
		 NNMap& right, int& b, int& k, bool what_heur )
alpar@726
   851
    {
alpar@726
   852
alpar@726
   853
      Num lev=level[w];
alpar@726
   854
alpar@726
   855
      Node right_n=right[w];
alpar@726
   856
      Node left_n=left[w];
alpar@726
   857
alpar@726
   858
      //unlacing starts
alpar@726
   859
      if ( g->valid(right_n) ) {
alpar@726
   860
	if ( g->valid(left_n) ) {
alpar@726
   861
	  right.set(left_n, right_n);
alpar@726
   862
	  left.set(right_n, left_n);
alpar@726
   863
	} else {
alpar@726
   864
	  level_list[lev]=right_n;
alpar@726
   865
	  left.set(right_n, INVALID);
alpar@726
   866
	}
alpar@726
   867
      } else {
alpar@726
   868
	if ( g->valid(left_n) ) {
alpar@726
   869
	  right.set(left_n, INVALID);
alpar@726
   870
	} else {
alpar@726
   871
	  level_list[lev]=INVALID;
alpar@726
   872
	}
alpar@726
   873
      }
alpar@726
   874
      //unlacing ends
alpar@726
   875
alpar@726
   876
      if ( !g->valid(level_list[lev]) ) {
alpar@726
   877
alpar@726
   878
	//gapping starts
alpar@726
   879
	for (int i=lev; i!=k ; ) {
alpar@726
   880
	  Node v=level_list[++i];
alpar@726
   881
	  while ( g->valid(v) ) {
alpar@726
   882
	    level.set(v,n);
alpar@726
   883
	    v=right[v];
alpar@726
   884
	  }
alpar@726
   885
	  level_list[i]=INVALID;
alpar@726
   886
	  if ( !what_heur ) first[i]=INVALID;
alpar@726
   887
	}
alpar@726
   888
alpar@726
   889
	level.set(w,n);
alpar@726
   890
	b=lev-1;
alpar@726
   891
	k=b;
alpar@726
   892
	//gapping ends
alpar@726
   893
alpar@726
   894
      } else {
alpar@726
   895
alpar@726
   896
	if ( newlevel == n ) level.set(w,n);
alpar@726
   897
	else {
alpar@726
   898
	  level.set(w,++newlevel);
alpar@726
   899
	  next.set(w,first[newlevel]);
alpar@726
   900
	  first[newlevel]=w;
alpar@726
   901
	  if ( what_heur ) b=newlevel;
alpar@726
   902
	  if ( k < newlevel ) ++k;      //now k=newlevel
alpar@726
   903
	  Node z=level_list[newlevel];
alpar@726
   904
	  if ( g->valid(z) ) left.set(z,w);
alpar@726
   905
	  right.set(w,z);
alpar@726
   906
	  left.set(w,INVALID);
alpar@726
   907
	  level_list[newlevel]=w;
alpar@726
   908
	}
alpar@726
   909
      }
alpar@726
   910
    } //relabel
jacint@749
   911
jacint@749
   912
    void printexcess() {////
jacint@749
   913
      std::cout << "Excesses:" <<std::endl;
jacint@749
   914
jacint@749
   915
      NodeIt v;
jacint@749
   916
      for(g->first(v); g->valid(v); g->next(v)) {
jacint@749
   917
	std::cout << 1+(g->id(v)) << ":" << excess[v]<<std::endl; 
jacint@749
   918
      }
jacint@749
   919
    }
jacint@749
   920
jacint@749
   921
 void printlevel() {////
jacint@749
   922
      std::cout << "Levels:" <<std::endl;
jacint@749
   923
jacint@749
   924
      NodeIt v;
jacint@749
   925
      for(g->first(v); g->valid(v); g->next(v)) {
jacint@749
   926
	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
jacint@749
   927
      }
jacint@749
   928
    }
jacint@749
   929
jacint@749
   930
void printactive() {////
jacint@749
   931
      std::cout << "Levels:" <<std::endl;
jacint@749
   932
jacint@749
   933
      NodeIt v;
jacint@749
   934
      for(g->first(v); g->valid(v); g->next(v)) {
jacint@749
   935
	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
jacint@749
   936
      }
jacint@749
   937
    }
jacint@749
   938
jacint@749
   939
alpar@726
   940
  };  //class MaxFlow
alpar@726
   941
} //namespace hugo
alpar@726
   942
alpar@726
   943
#endif //HUGO_MAX_FLOW_H
alpar@726
   944
alpar@726
   945
alpar@726
   946
alpar@726
   947