lemon/bezier.h
author ladanyi
Wed, 12 Jul 2006 10:49:17 +0000
changeset 2131 e81cd2898f7a
parent 1875 98698b69a902
permissions -rw-r--r--
New, less general installation instructions.
alpar@1073
     1
/* -*- C++ -*-
alpar@1073
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@1073
     8
 *
alpar@1073
     9
 * Permission to use, modify and distribute this software is granted
alpar@1073
    10
 * provided that this copyright notice appears in all copies. For
alpar@1073
    11
 * precise terms see the accompanying LICENSE file.
alpar@1073
    12
 *
alpar@1073
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@1073
    14
 * express or implied, and with no claim as to its suitability for any
alpar@1073
    15
 * purpose.
alpar@1073
    16
 *
alpar@1073
    17
 */
alpar@1073
    18
alpar@1073
    19
#ifndef LEMON_BEZIER_H
alpar@1073
    20
#define LEMON_BEZIER_H
alpar@1073
    21
alpar@1073
    22
///\ingroup misc
alpar@1073
    23
///\file
alpar@1073
    24
///\brief Classes to compute with Bezier curves.
alpar@1073
    25
///
alpar@1084
    26
///Up to now this file is used internally by \ref graph_to_eps.h
alpar@1073
    27
///
alpar@1073
    28
///\author Alpar Juttner
alpar@1073
    29
alpar@1073
    30
#include<lemon/xy.h>
alpar@1073
    31
alpar@1073
    32
namespace lemon {
alpar@1073
    33
alpar@1073
    34
class BezierBase {
alpar@1073
    35
public:
alpar@1073
    36
  typedef xy<double> xy;
alpar@1073
    37
protected:
alpar@1073
    38
  static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
alpar@1073
    39
};
alpar@1073
    40
alpar@1073
    41
class Bezier1 : public BezierBase
alpar@1073
    42
{
alpar@1073
    43
public:
alpar@1073
    44
  xy p1,p2;
alpar@1073
    45
alpar@1073
    46
  Bezier1() {}
alpar@1073
    47
  Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
alpar@1073
    48
  
alpar@1073
    49
  xy operator()(double t) const
alpar@1073
    50
  {
alpar@1073
    51
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
alpar@1073
    52
    return conv(p1,p2,t);
alpar@1073
    53
  }
alpar@1073
    54
  Bezier1 before(double t) const
alpar@1073
    55
  {
alpar@1073
    56
    return Bezier1(p1,conv(p1,p2,t));
alpar@1073
    57
  }
alpar@1073
    58
  
alpar@1073
    59
  Bezier1 after(double t) const
alpar@1073
    60
  {
alpar@1073
    61
    return Bezier1(conv(p1,p2,t),p2);
alpar@1073
    62
  }
alpar@1084
    63
alpar@1548
    64
  Bezier1 revert() const { return Bezier1(p2,p1);}
alpar@1548
    65
  Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
alpar@1548
    66
  xy grad() const { return p2-p1; }
alpar@1548
    67
  xy norm() const { return rot90(p2-p1); }
alpar@1548
    68
  xy grad(double) const { return grad(); }
alpar@1548
    69
  xy norm(double t) const { return rot90(grad(t)); }
alpar@1073
    70
};
alpar@1073
    71
alpar@1073
    72
class Bezier2 : public BezierBase
alpar@1073
    73
{
alpar@1073
    74
public:
alpar@1073
    75
  xy p1,p2,p3;
alpar@1073
    76
alpar@1073
    77
  Bezier2() {}
alpar@1073
    78
  Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
alpar@1073
    79
  Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
alpar@1073
    80
  xy operator()(double t) const
alpar@1073
    81
  {
alpar@1073
    82
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
alpar@1073
    83
    return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
alpar@1073
    84
  }
alpar@1073
    85
  Bezier2 before(double t) const
alpar@1073
    86
  {
alpar@1073
    87
    xy q(conv(p1,p2,t));
alpar@1073
    88
    xy r(conv(p2,p3,t));
alpar@1073
    89
    return Bezier2(p1,q,conv(q,r,t));
alpar@1073
    90
  }
alpar@1073
    91
  
alpar@1073
    92
  Bezier2 after(double t) const
alpar@1073
    93
  {
alpar@1073
    94
    xy q(conv(p1,p2,t));
alpar@1073
    95
    xy r(conv(p2,p3,t));
alpar@1073
    96
    return Bezier2(conv(q,r,t),r,p3);
alpar@1073
    97
  }
alpar@1548
    98
  Bezier2 revert() const { return Bezier2(p3,p2,p1);}
alpar@1548
    99
  Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
alpar@1548
   100
  Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
alpar@1548
   101
  Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
alpar@1548
   102
  xy grad(double t) const { return grad()(t); }
alpar@1548
   103
  xy norm(double t) const { return rot90(grad(t)); }
alpar@1073
   104
};
alpar@1073
   105
alpar@1073
   106
class Bezier3 : public BezierBase
alpar@1073
   107
{
alpar@1073
   108
public:
alpar@1073
   109
  xy p1,p2,p3,p4;
alpar@1073
   110
alpar@1073
   111
  Bezier3() {}
alpar@1073
   112
  Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
alpar@1073
   113
  Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
alpar@1073
   114
			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
alpar@1073
   115
  Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
alpar@1073
   116
			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
alpar@1073
   117
  
alpar@1073
   118
  xy operator()(double t) const 
alpar@1073
   119
    {
alpar@1073
   120
      //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
alpar@1073
   121
      return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
alpar@1073
   122
	(3*t*t*(1-t))*p3+(t*t*t)*p4;
alpar@1073
   123
    }
alpar@1073
   124
  Bezier3 before(double t) const
alpar@1073
   125
    {
alpar@1073
   126
      xy p(conv(p1,p2,t));
alpar@1073
   127
      xy q(conv(p2,p3,t));
alpar@1073
   128
      xy r(conv(p3,p4,t));
alpar@1073
   129
      xy a(conv(p,q,t));
alpar@1073
   130
      xy b(conv(q,r,t));
alpar@1073
   131
      xy c(conv(a,b,t));
alpar@1073
   132
      return Bezier3(p1,p,a,c);
alpar@1073
   133
    }
alpar@1073
   134
  
alpar@1073
   135
  Bezier3 after(double t) const
alpar@1073
   136
    {
alpar@1073
   137
      xy p(conv(p1,p2,t));
alpar@1073
   138
      xy q(conv(p2,p3,t));
alpar@1073
   139
      xy r(conv(p3,p4,t));
alpar@1073
   140
      xy a(conv(p,q,t));
alpar@1073
   141
      xy b(conv(q,r,t));
alpar@1073
   142
      xy c(conv(a,b,t));
alpar@1073
   143
      return Bezier3(c,b,r,p4);
alpar@1073
   144
    }
alpar@1548
   145
  Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
alpar@1548
   146
  Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
alpar@1548
   147
  Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
alpar@1548
   148
  Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
alpar@1548
   149
				  3.0*rot90(p3-p2),
alpar@1548
   150
				  3.0*rot90(p4-p3)); }
alpar@1548
   151
  xy grad(double t) const { return grad()(t); }
alpar@1548
   152
  xy norm(double t) const { return rot90(grad(t)); }
alpar@1548
   153
alpar@1548
   154
  template<class R,class F,class S,class D>
alpar@1548
   155
  R recSplit(F &_f,const S &_s,D _d) const 
alpar@1548
   156
  {
alpar@1548
   157
    const xy a=(p1+p2)/2;
alpar@1548
   158
    const xy b=(p2+p3)/2;
alpar@1548
   159
    const xy c=(p3+p4)/2;
alpar@1548
   160
    const xy d=(a+b)/2;
alpar@1548
   161
    const xy e=(b+c)/2;
alpar@1548
   162
    const xy f=(d+e)/2;
alpar@1548
   163
    R f1=_f(Bezier3(p1,a,d,e),_d);
alpar@1548
   164
    R f2=_f(Bezier3(e,d,c,p4),_d);
alpar@1548
   165
    return _s(f1,f2);
alpar@1548
   166
  }
alpar@1548
   167
  
alpar@1073
   168
};
alpar@1073
   169
alpar@1073
   170
} //END OF NAMESPACE LEMON
alpar@1073
   171
alpar@1073
   172
#endif // LEMON_BEZIER_H