alpar@255
|
1 |
// -*- C++ -*-
|
alpar@255
|
2 |
|
alpar@255
|
3 |
/*
|
alpar@255
|
4 |
*template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
|
alpar@255
|
5 |
*
|
alpar@255
|
6 |
*Constructor:
|
alpar@255
|
7 |
*
|
alpar@255
|
8 |
*Dijkstra(Graph G, LengthMap length)
|
alpar@255
|
9 |
*
|
alpar@255
|
10 |
*
|
alpar@255
|
11 |
*Methods:
|
alpar@255
|
12 |
*
|
alpar@255
|
13 |
*void run(Node s)
|
alpar@255
|
14 |
*
|
alpar@255
|
15 |
*T dist(Node v) : After run(s) was run, it returns the distance from s to v.
|
alpar@255
|
16 |
* Returns T() if v is not reachable from s.
|
alpar@255
|
17 |
*
|
alpar@255
|
18 |
*Edge pred(Node v) : After run(s) was run, it returns the last
|
alpar@255
|
19 |
* edge of a shortest s-v path. It is INVALID for s and for
|
alpar@255
|
20 |
* the nodes not reachable from s.
|
alpar@255
|
21 |
*
|
alpar@255
|
22 |
*bool reached(Node v) : After run(s) was run, it is true iff v is
|
alpar@255
|
23 |
* reachable from s
|
alpar@255
|
24 |
*
|
alpar@255
|
25 |
*/
|
alpar@255
|
26 |
|
alpar@255
|
27 |
#ifndef HUGO_DIJKSTRA_H
|
alpar@255
|
28 |
#define HUGO_DIJKSTRA_H
|
alpar@255
|
29 |
|
alpar@255
|
30 |
///\file
|
alpar@255
|
31 |
///\brief Dijkstra algorithm.
|
alpar@255
|
32 |
|
alpar@257
|
33 |
#include <fib_heap.h>
|
klao@258
|
34 |
#include <bin_heap.h>
|
alpar@257
|
35 |
#include <invalid.h>
|
alpar@255
|
36 |
|
alpar@255
|
37 |
namespace hugo {
|
alpar@255
|
38 |
|
alpar@255
|
39 |
//Alpar: Changed the order of the parameters
|
alpar@255
|
40 |
|
alpar@255
|
41 |
///%Dijkstra algorithm class.
|
alpar@255
|
42 |
|
alpar@255
|
43 |
///This class provides an efficient implementation of %Dijkstra algorithm.
|
alpar@255
|
44 |
///The edge lengths are passed to the algorithm using a
|
alpar@255
|
45 |
///\ref ReadMapSkeleton "readable map",
|
alpar@255
|
46 |
///so it is easy to change it to any kind of length.
|
alpar@255
|
47 |
///
|
alpar@255
|
48 |
///The type of the length is determined by the \c ValueType of the length map.
|
alpar@255
|
49 |
///
|
alpar@255
|
50 |
///It is also possible to change the underlying priority heap.
|
alpar@255
|
51 |
///
|
alpar@255
|
52 |
///\param Graph The graph type the algorithm runs on.
|
alpar@255
|
53 |
///\param LengthMap This read-only
|
alpar@255
|
54 |
///EdgeMap
|
alpar@255
|
55 |
///determines the
|
alpar@255
|
56 |
///lengths of the edges. It is read once for each edge, so the map
|
alpar@255
|
57 |
///may involve in relatively time consuming process to compute the edge
|
alpar@255
|
58 |
///length if it is necessary. The default map type is
|
alpar@255
|
59 |
///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
|
alpar@255
|
60 |
///\param Heap The heap type used by the %Dijkstra
|
alpar@255
|
61 |
///algorithm. The default
|
alpar@255
|
62 |
///is using \ref BinHeap "binary heap".
|
alpar@255
|
63 |
|
alpar@255
|
64 |
#ifdef DOXYGEN
|
alpar@255
|
65 |
template <typename Graph,
|
alpar@255
|
66 |
typename LengthMap,
|
alpar@255
|
67 |
typename Heap>
|
alpar@255
|
68 |
#else
|
alpar@255
|
69 |
template <typename Graph,
|
alpar@255
|
70 |
typename LengthMap=typename Graph::EdgeMap<int>,
|
alpar@255
|
71 |
template <class,class,class> class Heap = BinHeap >
|
alpar@255
|
72 |
// typename Heap=BinHeap <typename Graph::Node,
|
alpar@255
|
73 |
// typename LengthMap::ValueType,
|
alpar@255
|
74 |
// typename Graph::NodeMap<int> > >
|
alpar@255
|
75 |
#endif
|
alpar@255
|
76 |
class Dijkstra{
|
alpar@255
|
77 |
public:
|
alpar@255
|
78 |
typedef typename Graph::Node Node;
|
alpar@255
|
79 |
typedef typename Graph::NodeIt NodeIt;
|
alpar@255
|
80 |
typedef typename Graph::Edge Edge;
|
alpar@255
|
81 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
alpar@255
|
82 |
|
alpar@255
|
83 |
typedef typename LengthMap::ValueType ValueType;
|
alpar@255
|
84 |
typedef typename Graph::NodeMap<Edge> PredMap;
|
alpar@255
|
85 |
typedef typename Graph::NodeMap<Node> PredNodeMap;
|
alpar@255
|
86 |
typedef typename Graph::NodeMap<ValueType> DistMap;
|
alpar@255
|
87 |
|
alpar@255
|
88 |
private:
|
alpar@255
|
89 |
const Graph& G;
|
alpar@255
|
90 |
const LengthMap& length;
|
alpar@255
|
91 |
PredMap predecessor;
|
alpar@255
|
92 |
//In place of reach:
|
alpar@255
|
93 |
PredNodeMap pred_node;
|
alpar@255
|
94 |
DistMap distance;
|
alpar@255
|
95 |
//I don't like this:
|
alpar@255
|
96 |
// //FIXME:
|
alpar@255
|
97 |
// typename Graph::NodeMap<bool> reach;
|
alpar@255
|
98 |
// //typename Graph::NodeMap<int> reach;
|
alpar@255
|
99 |
|
alpar@255
|
100 |
public :
|
alpar@255
|
101 |
|
alpar@255
|
102 |
/*
|
alpar@255
|
103 |
The distance of the nodes is 0.
|
alpar@255
|
104 |
*/
|
alpar@255
|
105 |
Dijkstra(Graph& _G, LengthMap& _length) :
|
alpar@255
|
106 |
G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
|
alpar@255
|
107 |
|
alpar@255
|
108 |
void run(Node s);
|
alpar@255
|
109 |
|
alpar@255
|
110 |
///The distance of a node from the source.
|
alpar@255
|
111 |
|
alpar@255
|
112 |
///Returns the distance of a node from the source.
|
alpar@255
|
113 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
114 |
///\warning If node \c v in unreachable from the source the return value
|
alpar@255
|
115 |
///of this funcion is undefined.
|
alpar@255
|
116 |
ValueType dist(Node v) const { return distance[v]; }
|
alpar@255
|
117 |
///Returns the edges of the shortest path tree.
|
alpar@255
|
118 |
|
alpar@255
|
119 |
///For a node \c v it returns the last edge of the shortest path
|
alpar@255
|
120 |
///from the source to \c v or INVALID if \c v is unreachable
|
alpar@255
|
121 |
///from the source.
|
alpar@255
|
122 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
123 |
Edge pred(Node v) const { return predecessor[v]; }
|
alpar@255
|
124 |
///Returns the nodes of the shortest paths.
|
alpar@255
|
125 |
|
alpar@255
|
126 |
///For a node \c v it returns the last but one node of the shortest path
|
alpar@255
|
127 |
///from the source to \c v or INVALID if \c v is unreachable
|
alpar@255
|
128 |
///from the source.
|
alpar@255
|
129 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
130 |
Node predNode(Node v) const { return pred_node[v]; }
|
alpar@255
|
131 |
|
alpar@255
|
132 |
///Returns a reference to the NodeMap of distances.
|
alpar@255
|
133 |
|
alpar@255
|
134 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
135 |
///
|
alpar@255
|
136 |
const DistMap &distMap() const { return distance;}
|
alpar@255
|
137 |
///Returns a reference to the shortest path tree map.
|
alpar@255
|
138 |
|
alpar@255
|
139 |
///Returns a reference to the NodeMap of the edges of the
|
alpar@255
|
140 |
///shortest path tree.
|
alpar@255
|
141 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
142 |
const PredMap &predMap() const { return predecessor;}
|
alpar@255
|
143 |
///Returns a reference to the map of nodes of shortest paths.
|
alpar@255
|
144 |
|
alpar@255
|
145 |
///Returns a reference to the NodeMap of the last but one nodes of the
|
alpar@255
|
146 |
///shortest paths.
|
alpar@255
|
147 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
148 |
const PredNodeMap &predNodeMap() const { return pred_node;}
|
alpar@255
|
149 |
|
alpar@255
|
150 |
// bool reached(Node v) { return reach[v]; }
|
alpar@255
|
151 |
|
alpar@255
|
152 |
///Checks if a node is reachable from the source.
|
alpar@255
|
153 |
|
alpar@255
|
154 |
///Returns \c true if \c v is reachable from the source.
|
alpar@255
|
155 |
///\warning the source node is reported to be unreached!
|
alpar@255
|
156 |
///\todo Is this what we want?
|
alpar@255
|
157 |
///\pre \ref run() must be called before using this function.
|
alpar@255
|
158 |
///
|
alpar@255
|
159 |
bool reached(Node v) { return G.valid(predecessor[v]); }
|
alpar@255
|
160 |
|
alpar@255
|
161 |
};
|
alpar@255
|
162 |
|
alpar@255
|
163 |
|
alpar@255
|
164 |
// **********************************************************************
|
alpar@255
|
165 |
// IMPLEMENTATIONS
|
alpar@255
|
166 |
// **********************************************************************
|
alpar@255
|
167 |
|
alpar@255
|
168 |
///Runs %Dijkstra algorithm from node the source.
|
alpar@255
|
169 |
|
alpar@255
|
170 |
///This method runs the %Dijkstra algorithm from a source node \c s
|
alpar@255
|
171 |
///in order to
|
alpar@255
|
172 |
///compute the
|
alpar@255
|
173 |
///shortest path to each node. The algorithm computes
|
alpar@255
|
174 |
///- The shortest path tree.
|
alpar@255
|
175 |
///- The distance of each node from the source.
|
alpar@255
|
176 |
template <typename Graph, typename LengthMap,
|
alpar@255
|
177 |
template<class,class,class> class Heap >
|
alpar@255
|
178 |
void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
|
alpar@255
|
179 |
|
alpar@255
|
180 |
NodeIt u;
|
alpar@255
|
181 |
for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
|
alpar@255
|
182 |
predecessor.set(u,INVALID);
|
alpar@255
|
183 |
pred_node.set(u,INVALID);
|
alpar@255
|
184 |
// If a node is unreacheable, then why should be the dist=0?
|
alpar@255
|
185 |
// distance.set(u,0);
|
alpar@255
|
186 |
// reach.set(u,false);
|
alpar@255
|
187 |
}
|
alpar@255
|
188 |
|
alpar@255
|
189 |
//We don't need it at all.
|
alpar@255
|
190 |
// //FIXME:
|
alpar@255
|
191 |
// typename Graph::NodeMap<bool> scanned(G,false);
|
alpar@255
|
192 |
// //typename Graph::NodeMap<int> scanned(G,false);
|
alpar@255
|
193 |
typename Graph::NodeMap<int> heap_map(G,-1);
|
alpar@255
|
194 |
|
alpar@255
|
195 |
//Heap heap(heap_map);
|
alpar@255
|
196 |
Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
|
alpar@255
|
197 |
|
alpar@255
|
198 |
heap.push(s,0);
|
alpar@255
|
199 |
// reach.set(s, true);
|
alpar@255
|
200 |
|
alpar@255
|
201 |
while ( !heap.empty() ) {
|
alpar@255
|
202 |
|
alpar@255
|
203 |
Node v=heap.top();
|
alpar@255
|
204 |
ValueType oldvalue=heap[v];
|
alpar@255
|
205 |
heap.pop();
|
alpar@255
|
206 |
distance.set(v, oldvalue);
|
alpar@255
|
207 |
|
athos@276
|
208 |
for(OutEdgeIt e = G.template first<OutEdgeIt>(v);
|
athos@276
|
209 |
G.valid(e); G.next(e)) {
|
alpar@255
|
210 |
Node w=G.head(e);
|
alpar@255
|
211 |
|
alpar@255
|
212 |
switch(heap.state(w)) {
|
alpar@255
|
213 |
case heap.PRE_HEAP:
|
alpar@255
|
214 |
// reach.set(w,true);
|
alpar@255
|
215 |
heap.push(w,oldvalue+length[e]);
|
alpar@255
|
216 |
predecessor.set(w,e);
|
alpar@255
|
217 |
pred_node.set(w,v);
|
alpar@255
|
218 |
break;
|
alpar@255
|
219 |
case heap.IN_HEAP:
|
alpar@255
|
220 |
if ( oldvalue+length[e] < heap[w] ) {
|
alpar@255
|
221 |
heap.decrease(w, oldvalue+length[e]);
|
alpar@255
|
222 |
predecessor.set(w,e);
|
alpar@255
|
223 |
pred_node.set(w,v);
|
alpar@255
|
224 |
}
|
alpar@255
|
225 |
break;
|
alpar@255
|
226 |
case heap.POST_HEAP:
|
alpar@255
|
227 |
break;
|
alpar@255
|
228 |
}
|
alpar@255
|
229 |
}
|
alpar@255
|
230 |
}
|
alpar@255
|
231 |
}
|
alpar@255
|
232 |
|
alpar@255
|
233 |
} //END OF NAMESPACE HUGO
|
alpar@255
|
234 |
|
alpar@255
|
235 |
#endif
|
alpar@255
|
236 |
|
alpar@255
|
237 |
|