deba@2440
|
1 |
/* -*- C++ -*-
|
deba@2440
|
2 |
*
|
deba@2440
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
deba@2440
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
deba@2440
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@2440
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@2440
|
8 |
*
|
deba@2440
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@2440
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@2440
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@2440
|
12 |
*
|
deba@2440
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@2440
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@2440
|
15 |
* purpose.
|
deba@2440
|
16 |
*
|
deba@2440
|
17 |
*/
|
deba@2440
|
18 |
|
deba@2440
|
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H
|
deba@2440
|
20 |
#define LEMON_NETWORK_SIMPLEX_H
|
deba@2440
|
21 |
|
deba@2440
|
22 |
/// \ingroup min_cost_flow
|
deba@2440
|
23 |
///
|
deba@2440
|
24 |
/// \file
|
kpeter@2575
|
25 |
/// \brief Network simplex algorithm for finding a minimum cost flow.
|
deba@2440
|
26 |
|
kpeter@2575
|
27 |
#include <vector>
|
deba@2440
|
28 |
#include <limits>
|
kpeter@2575
|
29 |
|
kpeter@2509
|
30 |
#include <lemon/graph_adaptor.h>
|
kpeter@2509
|
31 |
#include <lemon/graph_utils.h>
|
deba@2440
|
32 |
#include <lemon/smart_graph.h>
|
kpeter@2575
|
33 |
#include <lemon/math.h>
|
deba@2440
|
34 |
|
deba@2440
|
35 |
namespace lemon {
|
deba@2440
|
36 |
|
deba@2440
|
37 |
/// \addtogroup min_cost_flow
|
deba@2440
|
38 |
/// @{
|
deba@2440
|
39 |
|
deba@2440
|
40 |
/// \brief Implementation of the network simplex algorithm for
|
deba@2440
|
41 |
/// finding a minimum cost flow.
|
deba@2440
|
42 |
///
|
kpeter@2556
|
43 |
/// \ref NetworkSimplex implements the network simplex algorithm for
|
kpeter@2556
|
44 |
/// finding a minimum cost flow.
|
deba@2440
|
45 |
///
|
kpeter@2575
|
46 |
/// \tparam Graph The directed graph type the algorithm runs on.
|
kpeter@2575
|
47 |
/// \tparam LowerMap The type of the lower bound map.
|
kpeter@2575
|
48 |
/// \tparam CapacityMap The type of the capacity (upper bound) map.
|
kpeter@2575
|
49 |
/// \tparam CostMap The type of the cost (length) map.
|
kpeter@2575
|
50 |
/// \tparam SupplyMap The type of the supply map.
|
deba@2440
|
51 |
///
|
deba@2440
|
52 |
/// \warning
|
kpeter@2575
|
53 |
/// - Edge capacities and costs should be \e non-negative \e integers.
|
kpeter@2575
|
54 |
/// - Supply values should be \e signed \e integers.
|
kpeter@2581
|
55 |
/// - The value types of the maps should be convertible to each other.
|
kpeter@2581
|
56 |
/// - \c CostMap::Value must be signed type.
|
kpeter@2575
|
57 |
///
|
kpeter@2575
|
58 |
/// \note \ref NetworkSimplex provides six different pivot rule
|
kpeter@2575
|
59 |
/// implementations that significantly affect the efficiency of the
|
kpeter@2575
|
60 |
/// algorithm.
|
kpeter@2575
|
61 |
/// By default a combined pivot rule is used, which is the fastest
|
kpeter@2575
|
62 |
/// implementation according to our benchmark tests.
|
kpeter@2575
|
63 |
/// Another pivot rule can be selected using \ref run() function
|
kpeter@2575
|
64 |
/// with the proper parameter.
|
deba@2440
|
65 |
///
|
deba@2440
|
66 |
/// \author Peter Kovacs
|
deba@2440
|
67 |
|
kpeter@2533
|
68 |
template < typename Graph,
|
kpeter@2533
|
69 |
typename LowerMap = typename Graph::template EdgeMap<int>,
|
kpeter@2575
|
70 |
typename CapacityMap = typename Graph::template EdgeMap<int>,
|
kpeter@2533
|
71 |
typename CostMap = typename Graph::template EdgeMap<int>,
|
kpeter@2575
|
72 |
typename SupplyMap = typename Graph::template NodeMap<int> >
|
deba@2440
|
73 |
class NetworkSimplex
|
deba@2440
|
74 |
{
|
deba@2440
|
75 |
typedef typename CapacityMap::Value Capacity;
|
deba@2440
|
76 |
typedef typename CostMap::Value Cost;
|
deba@2440
|
77 |
typedef typename SupplyMap::Value Supply;
|
deba@2440
|
78 |
|
deba@2440
|
79 |
typedef SmartGraph SGraph;
|
kpeter@2556
|
80 |
GRAPH_TYPEDEFS(typename SGraph);
|
deba@2440
|
81 |
|
deba@2440
|
82 |
typedef typename SGraph::template EdgeMap<Capacity> SCapacityMap;
|
deba@2440
|
83 |
typedef typename SGraph::template EdgeMap<Cost> SCostMap;
|
deba@2440
|
84 |
typedef typename SGraph::template NodeMap<Supply> SSupplyMap;
|
deba@2440
|
85 |
typedef typename SGraph::template NodeMap<Cost> SPotentialMap;
|
deba@2440
|
86 |
|
deba@2440
|
87 |
typedef typename SGraph::template NodeMap<int> IntNodeMap;
|
deba@2440
|
88 |
typedef typename SGraph::template NodeMap<bool> BoolNodeMap;
|
deba@2440
|
89 |
typedef typename SGraph::template NodeMap<Node> NodeNodeMap;
|
deba@2440
|
90 |
typedef typename SGraph::template NodeMap<Edge> EdgeNodeMap;
|
deba@2440
|
91 |
typedef typename SGraph::template EdgeMap<int> IntEdgeMap;
|
deba@2440
|
92 |
|
deba@2440
|
93 |
typedef typename Graph::template NodeMap<Node> NodeRefMap;
|
deba@2440
|
94 |
typedef typename Graph::template EdgeMap<Edge> EdgeRefMap;
|
deba@2440
|
95 |
|
deba@2440
|
96 |
public:
|
deba@2440
|
97 |
|
kpeter@2556
|
98 |
/// The type of the flow map.
|
deba@2440
|
99 |
typedef typename Graph::template EdgeMap<Capacity> FlowMap;
|
kpeter@2556
|
100 |
/// The type of the potential map.
|
deba@2440
|
101 |
typedef typename Graph::template NodeMap<Cost> PotentialMap;
|
deba@2440
|
102 |
|
kpeter@2575
|
103 |
public:
|
deba@2440
|
104 |
|
kpeter@2575
|
105 |
/// Enum type to select the pivot rule used by \ref run().
|
kpeter@2575
|
106 |
enum PivotRuleEnum {
|
kpeter@2575
|
107 |
FIRST_ELIGIBLE_PIVOT,
|
kpeter@2575
|
108 |
BEST_ELIGIBLE_PIVOT,
|
kpeter@2575
|
109 |
BLOCK_SEARCH_PIVOT,
|
kpeter@2575
|
110 |
LIMITED_SEARCH_PIVOT,
|
kpeter@2575
|
111 |
CANDIDATE_LIST_PIVOT,
|
kpeter@2575
|
112 |
COMBINED_PIVOT
|
kpeter@2575
|
113 |
};
|
kpeter@2575
|
114 |
|
kpeter@2575
|
115 |
private:
|
kpeter@2575
|
116 |
|
kpeter@2575
|
117 |
/// \brief Map adaptor class for handling reduced edge costs.
|
kpeter@2575
|
118 |
///
|
kpeter@2556
|
119 |
/// Map adaptor class for handling reduced edge costs.
|
deba@2440
|
120 |
class ReducedCostMap : public MapBase<Edge, Cost>
|
deba@2440
|
121 |
{
|
deba@2440
|
122 |
private:
|
deba@2440
|
123 |
|
kpeter@2575
|
124 |
const SGraph &_gr;
|
kpeter@2575
|
125 |
const SCostMap &_cost_map;
|
kpeter@2575
|
126 |
const SPotentialMap &_pot_map;
|
deba@2440
|
127 |
|
deba@2440
|
128 |
public:
|
deba@2440
|
129 |
|
kpeter@2575
|
130 |
///\e
|
kpeter@2575
|
131 |
ReducedCostMap( const SGraph &gr,
|
kpeter@2575
|
132 |
const SCostMap &cost_map,
|
kpeter@2575
|
133 |
const SPotentialMap &pot_map ) :
|
kpeter@2579
|
134 |
_gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
|
deba@2440
|
135 |
|
kpeter@2575
|
136 |
///\e
|
kpeter@2509
|
137 |
Cost operator[](const Edge &e) const {
|
kpeter@2575
|
138 |
return _cost_map[e] + _pot_map[_gr.source(e)]
|
kpeter@2575
|
139 |
- _pot_map[_gr.target(e)];
|
deba@2440
|
140 |
}
|
deba@2440
|
141 |
|
deba@2440
|
142 |
}; //class ReducedCostMap
|
deba@2440
|
143 |
|
kpeter@2575
|
144 |
private:
|
deba@2440
|
145 |
|
kpeter@2575
|
146 |
/// \brief Implementation of the "First Eligible" pivot rule for the
|
kpeter@2575
|
147 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
148 |
///
|
kpeter@2575
|
149 |
/// This class implements the "First Eligible" pivot rule
|
kpeter@2575
|
150 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
151 |
class FirstEligiblePivotRule
|
kpeter@2575
|
152 |
{
|
kpeter@2575
|
153 |
private:
|
deba@2440
|
154 |
|
kpeter@2575
|
155 |
NetworkSimplex &_ns;
|
kpeter@2575
|
156 |
EdgeIt _next_edge;
|
deba@2440
|
157 |
|
kpeter@2575
|
158 |
public:
|
deba@2440
|
159 |
|
kpeter@2575
|
160 |
/// Constructor.
|
kpeter@2575
|
161 |
FirstEligiblePivotRule(NetworkSimplex &ns) :
|
kpeter@2575
|
162 |
_ns(ns), _next_edge(ns._graph) {}
|
kpeter@2575
|
163 |
|
kpeter@2575
|
164 |
/// Finds the next entering edge.
|
kpeter@2575
|
165 |
bool findEnteringEdge() {
|
kpeter@2575
|
166 |
for (EdgeIt e = _next_edge; e != INVALID; ++e) {
|
kpeter@2575
|
167 |
if (_ns._state[e] * _ns._red_cost[e] < 0) {
|
kpeter@2575
|
168 |
_ns._in_edge = e;
|
kpeter@2575
|
169 |
_next_edge = ++e;
|
kpeter@2575
|
170 |
return true;
|
kpeter@2575
|
171 |
}
|
kpeter@2575
|
172 |
}
|
kpeter@2575
|
173 |
for (EdgeIt e(_ns._graph); e != _next_edge; ++e) {
|
kpeter@2575
|
174 |
if (_ns._state[e] * _ns._red_cost[e] < 0) {
|
kpeter@2575
|
175 |
_ns._in_edge = e;
|
kpeter@2575
|
176 |
_next_edge = ++e;
|
kpeter@2575
|
177 |
return true;
|
kpeter@2575
|
178 |
}
|
kpeter@2575
|
179 |
}
|
kpeter@2575
|
180 |
return false;
|
kpeter@2575
|
181 |
}
|
kpeter@2575
|
182 |
}; //class FirstEligiblePivotRule
|
kpeter@2575
|
183 |
|
kpeter@2575
|
184 |
/// \brief Implementation of the "Best Eligible" pivot rule for the
|
kpeter@2575
|
185 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
186 |
///
|
kpeter@2575
|
187 |
/// This class implements the "Best Eligible" pivot rule
|
kpeter@2575
|
188 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
189 |
class BestEligiblePivotRule
|
kpeter@2575
|
190 |
{
|
kpeter@2575
|
191 |
private:
|
kpeter@2575
|
192 |
|
kpeter@2575
|
193 |
NetworkSimplex &_ns;
|
kpeter@2575
|
194 |
|
kpeter@2575
|
195 |
public:
|
kpeter@2575
|
196 |
|
kpeter@2575
|
197 |
/// Constructor.
|
kpeter@2575
|
198 |
BestEligiblePivotRule(NetworkSimplex &ns) : _ns(ns) {}
|
kpeter@2575
|
199 |
|
kpeter@2575
|
200 |
/// Finds the next entering edge.
|
kpeter@2575
|
201 |
bool findEnteringEdge() {
|
kpeter@2575
|
202 |
Cost min = 0;
|
kpeter@2575
|
203 |
for (EdgeIt e(_ns._graph); e != INVALID; ++e) {
|
kpeter@2575
|
204 |
if (_ns._state[e] * _ns._red_cost[e] < min) {
|
kpeter@2575
|
205 |
min = _ns._state[e] * _ns._red_cost[e];
|
kpeter@2575
|
206 |
_ns._in_edge = e;
|
kpeter@2575
|
207 |
}
|
kpeter@2575
|
208 |
}
|
kpeter@2575
|
209 |
return min < 0;
|
kpeter@2575
|
210 |
}
|
kpeter@2575
|
211 |
}; //class BestEligiblePivotRule
|
kpeter@2575
|
212 |
|
kpeter@2575
|
213 |
/// \brief Implementation of the "Block Search" pivot rule for the
|
kpeter@2575
|
214 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
215 |
///
|
kpeter@2575
|
216 |
/// This class implements the "Block Search" pivot rule
|
kpeter@2575
|
217 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
218 |
class BlockSearchPivotRule
|
kpeter@2575
|
219 |
{
|
kpeter@2575
|
220 |
private:
|
kpeter@2575
|
221 |
|
kpeter@2575
|
222 |
NetworkSimplex &_ns;
|
kpeter@2575
|
223 |
EdgeIt _next_edge, _min_edge;
|
kpeter@2575
|
224 |
int _block_size;
|
kpeter@2575
|
225 |
|
kpeter@2575
|
226 |
static const int MIN_BLOCK_SIZE = 10;
|
kpeter@2575
|
227 |
|
kpeter@2575
|
228 |
public:
|
kpeter@2575
|
229 |
|
kpeter@2575
|
230 |
/// Constructor.
|
kpeter@2575
|
231 |
BlockSearchPivotRule(NetworkSimplex &ns) :
|
kpeter@2575
|
232 |
_ns(ns), _next_edge(ns._graph), _min_edge(ns._graph)
|
kpeter@2575
|
233 |
{
|
kpeter@2575
|
234 |
_block_size = 2 * int(sqrt(countEdges(_ns._graph)));
|
kpeter@2575
|
235 |
if (_block_size < MIN_BLOCK_SIZE) _block_size = MIN_BLOCK_SIZE;
|
kpeter@2575
|
236 |
}
|
kpeter@2575
|
237 |
|
kpeter@2575
|
238 |
/// Finds the next entering edge.
|
kpeter@2575
|
239 |
bool findEnteringEdge() {
|
kpeter@2575
|
240 |
Cost curr, min = 0;
|
kpeter@2575
|
241 |
int cnt = 0;
|
kpeter@2575
|
242 |
for (EdgeIt e = _next_edge; e != INVALID; ++e) {
|
kpeter@2575
|
243 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) {
|
kpeter@2575
|
244 |
min = curr;
|
kpeter@2575
|
245 |
_min_edge = e;
|
kpeter@2575
|
246 |
}
|
kpeter@2575
|
247 |
if (++cnt == _block_size) {
|
kpeter@2575
|
248 |
if (min < 0) break;
|
kpeter@2575
|
249 |
cnt = 0;
|
kpeter@2575
|
250 |
}
|
kpeter@2575
|
251 |
}
|
kpeter@2575
|
252 |
if (min == 0) {
|
kpeter@2575
|
253 |
for (EdgeIt e(_ns._graph); e != _next_edge; ++e) {
|
kpeter@2575
|
254 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) {
|
kpeter@2575
|
255 |
min = curr;
|
kpeter@2575
|
256 |
_min_edge = e;
|
kpeter@2575
|
257 |
}
|
kpeter@2575
|
258 |
if (++cnt == _block_size) {
|
kpeter@2575
|
259 |
if (min < 0) break;
|
kpeter@2575
|
260 |
cnt = 0;
|
kpeter@2575
|
261 |
}
|
kpeter@2575
|
262 |
}
|
kpeter@2575
|
263 |
}
|
kpeter@2575
|
264 |
_ns._in_edge = _min_edge;
|
kpeter@2575
|
265 |
_next_edge = ++_min_edge;
|
kpeter@2575
|
266 |
return min < 0;
|
kpeter@2575
|
267 |
}
|
kpeter@2575
|
268 |
}; //class BlockSearchPivotRule
|
kpeter@2575
|
269 |
|
kpeter@2575
|
270 |
/// \brief Implementation of the "Limited Search" pivot rule for the
|
kpeter@2575
|
271 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
272 |
///
|
kpeter@2575
|
273 |
/// This class implements the "Limited Search" pivot rule
|
kpeter@2575
|
274 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
275 |
class LimitedSearchPivotRule
|
kpeter@2575
|
276 |
{
|
kpeter@2575
|
277 |
private:
|
kpeter@2575
|
278 |
|
kpeter@2575
|
279 |
NetworkSimplex &_ns;
|
kpeter@2575
|
280 |
EdgeIt _next_edge, _min_edge;
|
kpeter@2575
|
281 |
int _sample_size;
|
kpeter@2575
|
282 |
|
kpeter@2575
|
283 |
static const int MIN_SAMPLE_SIZE = 10;
|
kpeter@2575
|
284 |
static const double SAMPLE_SIZE_FACTOR = 0.0015;
|
kpeter@2575
|
285 |
|
kpeter@2575
|
286 |
public:
|
kpeter@2575
|
287 |
|
kpeter@2575
|
288 |
/// Constructor.
|
kpeter@2575
|
289 |
LimitedSearchPivotRule(NetworkSimplex &ns) :
|
kpeter@2575
|
290 |
_ns(ns), _next_edge(ns._graph), _min_edge(ns._graph)
|
kpeter@2575
|
291 |
{
|
kpeter@2575
|
292 |
_sample_size = int(SAMPLE_SIZE_FACTOR * countEdges(_ns._graph));
|
kpeter@2575
|
293 |
if (_sample_size < MIN_SAMPLE_SIZE)
|
kpeter@2575
|
294 |
_sample_size = MIN_SAMPLE_SIZE;
|
kpeter@2575
|
295 |
}
|
kpeter@2575
|
296 |
|
kpeter@2575
|
297 |
/// Finds the next entering edge.
|
kpeter@2575
|
298 |
bool findEnteringEdge() {
|
kpeter@2575
|
299 |
Cost curr, min = 0;
|
kpeter@2575
|
300 |
int cnt = 0;
|
kpeter@2575
|
301 |
for (EdgeIt e = _next_edge; e != INVALID; ++e) {
|
kpeter@2575
|
302 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) {
|
kpeter@2575
|
303 |
min = curr;
|
kpeter@2575
|
304 |
_min_edge = e;
|
kpeter@2575
|
305 |
}
|
kpeter@2575
|
306 |
if (curr < 0 && ++cnt == _sample_size) break;
|
kpeter@2575
|
307 |
}
|
kpeter@2575
|
308 |
if (min == 0) {
|
kpeter@2575
|
309 |
for (EdgeIt e(_ns._graph); e != _next_edge; ++e) {
|
kpeter@2575
|
310 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) {
|
kpeter@2575
|
311 |
min = curr;
|
kpeter@2575
|
312 |
_min_edge = e;
|
kpeter@2575
|
313 |
}
|
kpeter@2575
|
314 |
if (curr < 0 && ++cnt == _sample_size) break;
|
kpeter@2575
|
315 |
}
|
kpeter@2575
|
316 |
}
|
kpeter@2575
|
317 |
_ns._in_edge = _min_edge;
|
kpeter@2575
|
318 |
_next_edge = ++_min_edge;
|
kpeter@2575
|
319 |
return min < 0;
|
kpeter@2575
|
320 |
}
|
kpeter@2575
|
321 |
}; //class LimitedSearchPivotRule
|
kpeter@2575
|
322 |
|
kpeter@2575
|
323 |
/// \brief Implementation of the "Candidate List" pivot rule for the
|
kpeter@2575
|
324 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
325 |
///
|
kpeter@2575
|
326 |
/// This class implements the "Candidate List" pivot rule
|
kpeter@2575
|
327 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@2575
|
328 |
class CandidateListPivotRule
|
kpeter@2575
|
329 |
{
|
kpeter@2575
|
330 |
private:
|
kpeter@2575
|
331 |
|
kpeter@2575
|
332 |
NetworkSimplex &_ns;
|
kpeter@2575
|
333 |
|
kpeter@2575
|
334 |
// The list of candidate edges.
|
kpeter@2575
|
335 |
std::vector<Edge> _candidates;
|
kpeter@2575
|
336 |
// The maximum length of the edge list.
|
kpeter@2575
|
337 |
int _list_length;
|
kpeter@2575
|
338 |
// The maximum number of minor iterations between two major
|
kpeter@2575
|
339 |
// itarations.
|
kpeter@2575
|
340 |
int _minor_limit;
|
kpeter@2575
|
341 |
|
kpeter@2575
|
342 |
int _minor_count;
|
kpeter@2575
|
343 |
EdgeIt _next_edge;
|
kpeter@2575
|
344 |
|
kpeter@2575
|
345 |
static const double LIST_LENGTH_FACTOR = 0.002;
|
kpeter@2575
|
346 |
static const double MINOR_LIMIT_FACTOR = 0.1;
|
kpeter@2575
|
347 |
static const int MIN_LIST_LENGTH = 10;
|
kpeter@2575
|
348 |
static const int MIN_MINOR_LIMIT = 2;
|
kpeter@2575
|
349 |
|
kpeter@2575
|
350 |
public:
|
kpeter@2575
|
351 |
|
kpeter@2575
|
352 |
/// Constructor.
|
kpeter@2575
|
353 |
CandidateListPivotRule(NetworkSimplex &ns) :
|
kpeter@2575
|
354 |
_ns(ns), _next_edge(ns._graph)
|
kpeter@2575
|
355 |
{
|
kpeter@2575
|
356 |
int edge_num = countEdges(_ns._graph);
|
kpeter@2575
|
357 |
_minor_count = 0;
|
kpeter@2575
|
358 |
_list_length = int(edge_num * LIST_LENGTH_FACTOR);
|
kpeter@2575
|
359 |
if (_list_length < MIN_LIST_LENGTH)
|
kpeter@2575
|
360 |
_list_length = MIN_LIST_LENGTH;
|
kpeter@2575
|
361 |
_minor_limit = int(_list_length * MINOR_LIMIT_FACTOR);
|
kpeter@2575
|
362 |
if (_minor_limit < MIN_MINOR_LIMIT)
|
kpeter@2575
|
363 |
_minor_limit = MIN_MINOR_LIMIT;
|
kpeter@2575
|
364 |
}
|
kpeter@2575
|
365 |
|
kpeter@2575
|
366 |
/// Finds the next entering edge.
|
kpeter@2575
|
367 |
bool findEnteringEdge() {
|
kpeter@2575
|
368 |
Cost min, curr;
|
kpeter@2575
|
369 |
if (_minor_count < _minor_limit && _candidates.size() > 0) {
|
kpeter@2575
|
370 |
// Minor iteration
|
kpeter@2575
|
371 |
++_minor_count;
|
kpeter@2575
|
372 |
Edge e;
|
kpeter@2575
|
373 |
min = 0;
|
kpeter@2575
|
374 |
for (int i = 0; i < int(_candidates.size()); ++i) {
|
kpeter@2575
|
375 |
e = _candidates[i];
|
kpeter@2575
|
376 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) {
|
kpeter@2575
|
377 |
min = curr;
|
kpeter@2575
|
378 |
_ns._in_edge = e;
|
kpeter@2575
|
379 |
}
|
kpeter@2575
|
380 |
}
|
kpeter@2575
|
381 |
if (min < 0) return true;
|
kpeter@2575
|
382 |
}
|
kpeter@2575
|
383 |
|
kpeter@2575
|
384 |
// Major iteration
|
kpeter@2575
|
385 |
_candidates.clear();
|
kpeter@2575
|
386 |
EdgeIt e = _next_edge;
|
kpeter@2575
|
387 |
min = 0;
|
kpeter@2575
|
388 |
for ( ; e != INVALID; ++e) {
|
kpeter@2575
|
389 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < 0) {
|
kpeter@2575
|
390 |
_candidates.push_back(e);
|
kpeter@2575
|
391 |
if (curr < min) {
|
kpeter@2575
|
392 |
min = curr;
|
kpeter@2575
|
393 |
_ns._in_edge = e;
|
kpeter@2575
|
394 |
}
|
kpeter@2575
|
395 |
if (int(_candidates.size()) == _list_length) break;
|
kpeter@2575
|
396 |
}
|
kpeter@2575
|
397 |
}
|
kpeter@2575
|
398 |
if (int(_candidates.size()) < _list_length) {
|
kpeter@2575
|
399 |
for (e = EdgeIt(_ns._graph); e != _next_edge; ++e) {
|
kpeter@2575
|
400 |
if ((curr = _ns._state[e] * _ns._red_cost[e]) < 0) {
|
kpeter@2575
|
401 |
_candidates.push_back(e);
|
kpeter@2575
|
402 |
if (curr < min) {
|
kpeter@2575
|
403 |
min = curr;
|
kpeter@2575
|
404 |
_ns._in_edge = e;
|
kpeter@2575
|
405 |
}
|
kpeter@2575
|
406 |
if (int(_candidates.size()) == _list_length) break;
|
kpeter@2575
|
407 |
}
|
kpeter@2575
|
408 |
}
|
kpeter@2575
|
409 |
}
|
kpeter@2575
|
410 |
if (_candidates.size() == 0) return false;
|
kpeter@2575
|
411 |
_minor_count = 1;
|
kpeter@2575
|
412 |
_next_edge = ++e;
|
kpeter@2575
|
413 |
return true;
|
kpeter@2575
|
414 |
}
|
kpeter@2575
|
415 |
}; //class CandidateListPivotRule
|
kpeter@2575
|
416 |
|
kpeter@2575
|
417 |
private:
|
kpeter@2575
|
418 |
|
kpeter@2579
|
419 |
// State constants for edges
|
kpeter@2579
|
420 |
enum EdgeStateEnum {
|
kpeter@2579
|
421 |
STATE_UPPER = -1,
|
kpeter@2579
|
422 |
STATE_TREE = 0,
|
kpeter@2579
|
423 |
STATE_LOWER = 1
|
kpeter@2579
|
424 |
};
|
kpeter@2575
|
425 |
|
kpeter@2575
|
426 |
// Constant for the combined pivot rule.
|
kpeter@2575
|
427 |
static const int COMBINED_PIVOT_MAX_DEG = 5;
|
kpeter@2575
|
428 |
|
kpeter@2575
|
429 |
private:
|
kpeter@2575
|
430 |
|
kpeter@2575
|
431 |
// The directed graph the algorithm runs on
|
kpeter@2575
|
432 |
SGraph _graph;
|
kpeter@2575
|
433 |
// The original graph
|
kpeter@2575
|
434 |
const Graph &_graph_ref;
|
kpeter@2575
|
435 |
// The original lower bound map
|
kpeter@2575
|
436 |
const LowerMap *_lower;
|
kpeter@2575
|
437 |
// The capacity map
|
kpeter@2575
|
438 |
SCapacityMap _capacity;
|
kpeter@2575
|
439 |
// The cost map
|
kpeter@2575
|
440 |
SCostMap _cost;
|
kpeter@2575
|
441 |
// The supply map
|
kpeter@2575
|
442 |
SSupplyMap _supply;
|
kpeter@2575
|
443 |
bool _valid_supply;
|
kpeter@2575
|
444 |
|
kpeter@2575
|
445 |
// Edge map of the current flow
|
kpeter@2575
|
446 |
SCapacityMap _flow;
|
kpeter@2575
|
447 |
// Node map of the current potentials
|
kpeter@2575
|
448 |
SPotentialMap _potential;
|
kpeter@2575
|
449 |
|
kpeter@2575
|
450 |
// The depth node map of the spanning tree structure
|
kpeter@2575
|
451 |
IntNodeMap _depth;
|
kpeter@2575
|
452 |
// The parent node map of the spanning tree structure
|
kpeter@2575
|
453 |
NodeNodeMap _parent;
|
kpeter@2575
|
454 |
// The pred_edge node map of the spanning tree structure
|
kpeter@2575
|
455 |
EdgeNodeMap _pred_edge;
|
kpeter@2575
|
456 |
// The thread node map of the spanning tree structure
|
kpeter@2575
|
457 |
NodeNodeMap _thread;
|
kpeter@2575
|
458 |
// The forward node map of the spanning tree structure
|
kpeter@2575
|
459 |
BoolNodeMap _forward;
|
kpeter@2575
|
460 |
// The state edge map
|
kpeter@2575
|
461 |
IntEdgeMap _state;
|
kpeter@2575
|
462 |
// The root node of the starting spanning tree
|
kpeter@2575
|
463 |
Node _root;
|
kpeter@2575
|
464 |
|
kpeter@2575
|
465 |
// The reduced cost map
|
kpeter@2575
|
466 |
ReducedCostMap _red_cost;
|
kpeter@2575
|
467 |
|
kpeter@2575
|
468 |
// Members for handling the original graph
|
kpeter@2581
|
469 |
FlowMap *_flow_result;
|
kpeter@2581
|
470 |
PotentialMap *_potential_result;
|
kpeter@2581
|
471 |
bool _local_flow;
|
kpeter@2581
|
472 |
bool _local_potential;
|
kpeter@2575
|
473 |
NodeRefMap _node_ref;
|
kpeter@2575
|
474 |
EdgeRefMap _edge_ref;
|
deba@2440
|
475 |
|
kpeter@2556
|
476 |
// The entering edge of the current pivot iteration.
|
kpeter@2575
|
477 |
Edge _in_edge;
|
kpeter@2575
|
478 |
|
kpeter@2556
|
479 |
// Temporary nodes used in the current pivot iteration.
|
kpeter@2556
|
480 |
Node join, u_in, v_in, u_out, v_out;
|
kpeter@2556
|
481 |
Node right, first, second, last;
|
kpeter@2556
|
482 |
Node stem, par_stem, new_stem;
|
kpeter@2556
|
483 |
// The maximum augment amount along the found cycle in the current
|
kpeter@2556
|
484 |
// pivot iteration.
|
kpeter@2556
|
485 |
Capacity delta;
|
deba@2440
|
486 |
|
deba@2440
|
487 |
public :
|
deba@2440
|
488 |
|
kpeter@2581
|
489 |
/// \brief General constructor (with lower bounds).
|
deba@2440
|
490 |
///
|
kpeter@2581
|
491 |
/// General constructor (with lower bounds).
|
deba@2440
|
492 |
///
|
kpeter@2575
|
493 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2575
|
494 |
/// \param lower The lower bounds of the edges.
|
kpeter@2575
|
495 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2575
|
496 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2575
|
497 |
/// \param supply The supply values of the nodes (signed).
|
kpeter@2575
|
498 |
NetworkSimplex( const Graph &graph,
|
kpeter@2575
|
499 |
const LowerMap &lower,
|
kpeter@2575
|
500 |
const CapacityMap &capacity,
|
kpeter@2575
|
501 |
const CostMap &cost,
|
kpeter@2575
|
502 |
const SupplyMap &supply ) :
|
kpeter@2575
|
503 |
_graph(), _graph_ref(graph), _lower(&lower), _capacity(_graph),
|
kpeter@2575
|
504 |
_cost(_graph), _supply(_graph), _flow(_graph),
|
kpeter@2575
|
505 |
_potential(_graph), _depth(_graph), _parent(_graph),
|
kpeter@2575
|
506 |
_pred_edge(_graph), _thread(_graph), _forward(_graph),
|
kpeter@2575
|
507 |
_state(_graph), _red_cost(_graph, _cost, _potential),
|
kpeter@2581
|
508 |
_flow_result(0), _potential_result(0),
|
kpeter@2581
|
509 |
_local_flow(false), _local_potential(false),
|
kpeter@2575
|
510 |
_node_ref(graph), _edge_ref(graph)
|
deba@2440
|
511 |
{
|
deba@2440
|
512 |
// Checking the sum of supply values
|
deba@2440
|
513 |
Supply sum = 0;
|
kpeter@2575
|
514 |
for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n)
|
kpeter@2575
|
515 |
sum += supply[n];
|
kpeter@2575
|
516 |
if (!(_valid_supply = sum == 0)) return;
|
deba@2440
|
517 |
|
kpeter@2575
|
518 |
// Copying _graph_ref to _graph
|
kpeter@2575
|
519 |
_graph.reserveNode(countNodes(_graph_ref) + 1);
|
kpeter@2575
|
520 |
_graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref));
|
kpeter@2575
|
521 |
copyGraph(_graph, _graph_ref)
|
kpeter@2575
|
522 |
.edgeMap(_cost, cost)
|
kpeter@2575
|
523 |
.nodeRef(_node_ref)
|
kpeter@2575
|
524 |
.edgeRef(_edge_ref)
|
kpeter@2556
|
525 |
.run();
|
deba@2440
|
526 |
|
kpeter@2556
|
527 |
// Removing non-zero lower bounds
|
kpeter@2575
|
528 |
for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) {
|
kpeter@2575
|
529 |
_capacity[_edge_ref[e]] = capacity[e] - lower[e];
|
deba@2440
|
530 |
}
|
kpeter@2575
|
531 |
for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) {
|
kpeter@2575
|
532 |
Supply s = supply[n];
|
kpeter@2575
|
533 |
for (typename Graph::InEdgeIt e(_graph_ref, n); e != INVALID; ++e)
|
kpeter@2575
|
534 |
s += lower[e];
|
kpeter@2575
|
535 |
for (typename Graph::OutEdgeIt e(_graph_ref, n); e != INVALID; ++e)
|
kpeter@2575
|
536 |
s -= lower[e];
|
kpeter@2575
|
537 |
_supply[_node_ref[n]] = s;
|
deba@2440
|
538 |
}
|
deba@2440
|
539 |
}
|
deba@2440
|
540 |
|
kpeter@2581
|
541 |
/// \brief General constructor (without lower bounds).
|
deba@2440
|
542 |
///
|
kpeter@2581
|
543 |
/// General constructor (without lower bounds).
|
deba@2440
|
544 |
///
|
kpeter@2575
|
545 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2575
|
546 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2575
|
547 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2575
|
548 |
/// \param supply The supply values of the nodes (signed).
|
kpeter@2575
|
549 |
NetworkSimplex( const Graph &graph,
|
kpeter@2575
|
550 |
const CapacityMap &capacity,
|
kpeter@2575
|
551 |
const CostMap &cost,
|
kpeter@2575
|
552 |
const SupplyMap &supply ) :
|
kpeter@2575
|
553 |
_graph(), _graph_ref(graph), _lower(NULL), _capacity(_graph),
|
kpeter@2575
|
554 |
_cost(_graph), _supply(_graph), _flow(_graph),
|
kpeter@2575
|
555 |
_potential(_graph), _depth(_graph), _parent(_graph),
|
kpeter@2575
|
556 |
_pred_edge(_graph), _thread(_graph), _forward(_graph),
|
kpeter@2575
|
557 |
_state(_graph), _red_cost(_graph, _cost, _potential),
|
kpeter@2581
|
558 |
_flow_result(0), _potential_result(0),
|
kpeter@2581
|
559 |
_local_flow(false), _local_potential(false),
|
kpeter@2575
|
560 |
_node_ref(graph), _edge_ref(graph)
|
deba@2440
|
561 |
{
|
deba@2440
|
562 |
// Checking the sum of supply values
|
deba@2440
|
563 |
Supply sum = 0;
|
kpeter@2575
|
564 |
for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n)
|
kpeter@2575
|
565 |
sum += supply[n];
|
kpeter@2575
|
566 |
if (!(_valid_supply = sum == 0)) return;
|
deba@2440
|
567 |
|
kpeter@2575
|
568 |
// Copying _graph_ref to graph
|
kpeter@2575
|
569 |
copyGraph(_graph, _graph_ref)
|
kpeter@2575
|
570 |
.edgeMap(_capacity, capacity)
|
kpeter@2575
|
571 |
.edgeMap(_cost, cost)
|
kpeter@2575
|
572 |
.nodeMap(_supply, supply)
|
kpeter@2575
|
573 |
.nodeRef(_node_ref)
|
kpeter@2575
|
574 |
.edgeRef(_edge_ref)
|
kpeter@2556
|
575 |
.run();
|
deba@2440
|
576 |
}
|
deba@2440
|
577 |
|
kpeter@2581
|
578 |
/// \brief Simple constructor (with lower bounds).
|
deba@2440
|
579 |
///
|
kpeter@2581
|
580 |
/// Simple constructor (with lower bounds).
|
deba@2440
|
581 |
///
|
kpeter@2575
|
582 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2575
|
583 |
/// \param lower The lower bounds of the edges.
|
kpeter@2575
|
584 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2575
|
585 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2575
|
586 |
/// \param s The source node.
|
kpeter@2575
|
587 |
/// \param t The target node.
|
kpeter@2575
|
588 |
/// \param flow_value The required amount of flow from node \c s
|
kpeter@2575
|
589 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
kpeter@2575
|
590 |
NetworkSimplex( const Graph &graph,
|
kpeter@2575
|
591 |
const LowerMap &lower,
|
kpeter@2575
|
592 |
const CapacityMap &capacity,
|
kpeter@2575
|
593 |
const CostMap &cost,
|
kpeter@2575
|
594 |
typename Graph::Node s,
|
kpeter@2575
|
595 |
typename Graph::Node t,
|
kpeter@2575
|
596 |
typename SupplyMap::Value flow_value ) :
|
kpeter@2575
|
597 |
_graph(), _graph_ref(graph), _lower(&lower), _capacity(_graph),
|
kpeter@2575
|
598 |
_cost(_graph), _supply(_graph), _flow(_graph),
|
kpeter@2575
|
599 |
_potential(_graph), _depth(_graph), _parent(_graph),
|
kpeter@2575
|
600 |
_pred_edge(_graph), _thread(_graph), _forward(_graph),
|
kpeter@2575
|
601 |
_state(_graph), _red_cost(_graph, _cost, _potential),
|
kpeter@2581
|
602 |
_flow_result(0), _potential_result(0),
|
kpeter@2581
|
603 |
_local_flow(false), _local_potential(false),
|
kpeter@2575
|
604 |
_node_ref(graph), _edge_ref(graph)
|
deba@2440
|
605 |
{
|
kpeter@2575
|
606 |
// Copying _graph_ref to graph
|
kpeter@2575
|
607 |
copyGraph(_graph, _graph_ref)
|
kpeter@2575
|
608 |
.edgeMap(_cost, cost)
|
kpeter@2575
|
609 |
.nodeRef(_node_ref)
|
kpeter@2575
|
610 |
.edgeRef(_edge_ref)
|
kpeter@2556
|
611 |
.run();
|
deba@2440
|
612 |
|
kpeter@2556
|
613 |
// Removing non-zero lower bounds
|
kpeter@2575
|
614 |
for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) {
|
kpeter@2575
|
615 |
_capacity[_edge_ref[e]] = capacity[e] - lower[e];
|
deba@2440
|
616 |
}
|
kpeter@2575
|
617 |
for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) {
|
kpeter@2575
|
618 |
Supply sum = 0;
|
kpeter@2575
|
619 |
if (n == s) sum = flow_value;
|
kpeter@2575
|
620 |
if (n == t) sum = -flow_value;
|
kpeter@2575
|
621 |
for (typename Graph::InEdgeIt e(_graph_ref, n); e != INVALID; ++e)
|
kpeter@2575
|
622 |
sum += lower[e];
|
kpeter@2575
|
623 |
for (typename Graph::OutEdgeIt e(_graph_ref, n); e != INVALID; ++e)
|
kpeter@2575
|
624 |
sum -= lower[e];
|
kpeter@2575
|
625 |
_supply[_node_ref[n]] = sum;
|
deba@2440
|
626 |
}
|
kpeter@2575
|
627 |
_valid_supply = true;
|
deba@2440
|
628 |
}
|
deba@2440
|
629 |
|
kpeter@2581
|
630 |
/// \brief Simple constructor (without lower bounds).
|
deba@2440
|
631 |
///
|
kpeter@2581
|
632 |
/// Simple constructor (without lower bounds).
|
deba@2440
|
633 |
///
|
kpeter@2575
|
634 |
/// \param graph The directed graph the algorithm runs on.
|
kpeter@2575
|
635 |
/// \param capacity The capacities (upper bounds) of the edges.
|
kpeter@2575
|
636 |
/// \param cost The cost (length) values of the edges.
|
kpeter@2575
|
637 |
/// \param s The source node.
|
kpeter@2575
|
638 |
/// \param t The target node.
|
kpeter@2575
|
639 |
/// \param flow_value The required amount of flow from node \c s
|
kpeter@2575
|
640 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
kpeter@2575
|
641 |
NetworkSimplex( const Graph &graph,
|
kpeter@2575
|
642 |
const CapacityMap &capacity,
|
kpeter@2575
|
643 |
const CostMap &cost,
|
kpeter@2575
|
644 |
typename Graph::Node s,
|
kpeter@2575
|
645 |
typename Graph::Node t,
|
kpeter@2575
|
646 |
typename SupplyMap::Value flow_value ) :
|
kpeter@2575
|
647 |
_graph(), _graph_ref(graph), _lower(NULL), _capacity(_graph),
|
kpeter@2575
|
648 |
_cost(_graph), _supply(_graph, 0), _flow(_graph),
|
kpeter@2575
|
649 |
_potential(_graph), _depth(_graph), _parent(_graph),
|
kpeter@2575
|
650 |
_pred_edge(_graph), _thread(_graph), _forward(_graph),
|
kpeter@2575
|
651 |
_state(_graph), _red_cost(_graph, _cost, _potential),
|
kpeter@2581
|
652 |
_flow_result(0), _potential_result(0),
|
kpeter@2581
|
653 |
_local_flow(false), _local_potential(false),
|
kpeter@2575
|
654 |
_node_ref(graph), _edge_ref(graph)
|
deba@2440
|
655 |
{
|
kpeter@2575
|
656 |
// Copying _graph_ref to graph
|
kpeter@2575
|
657 |
copyGraph(_graph, _graph_ref)
|
kpeter@2575
|
658 |
.edgeMap(_capacity, capacity)
|
kpeter@2575
|
659 |
.edgeMap(_cost, cost)
|
kpeter@2575
|
660 |
.nodeRef(_node_ref)
|
kpeter@2575
|
661 |
.edgeRef(_edge_ref)
|
kpeter@2556
|
662 |
.run();
|
kpeter@2575
|
663 |
_supply[_node_ref[s]] = flow_value;
|
kpeter@2575
|
664 |
_supply[_node_ref[t]] = -flow_value;
|
kpeter@2575
|
665 |
_valid_supply = true;
|
deba@2440
|
666 |
}
|
deba@2440
|
667 |
|
kpeter@2581
|
668 |
/// Destructor.
|
kpeter@2581
|
669 |
~NetworkSimplex() {
|
kpeter@2581
|
670 |
if (_local_flow) delete _flow_result;
|
kpeter@2581
|
671 |
if (_local_potential) delete _potential_result;
|
kpeter@2581
|
672 |
}
|
kpeter@2581
|
673 |
|
kpeter@2581
|
674 |
/// \brief Sets the flow map.
|
kpeter@2581
|
675 |
///
|
kpeter@2581
|
676 |
/// Sets the flow map.
|
kpeter@2581
|
677 |
///
|
kpeter@2581
|
678 |
/// \return \c (*this)
|
kpeter@2581
|
679 |
NetworkSimplex& flowMap(FlowMap &map) {
|
kpeter@2581
|
680 |
if (_local_flow) {
|
kpeter@2581
|
681 |
delete _flow_result;
|
kpeter@2581
|
682 |
_local_flow = false;
|
kpeter@2581
|
683 |
}
|
kpeter@2581
|
684 |
_flow_result = ↦
|
kpeter@2581
|
685 |
return *this;
|
kpeter@2581
|
686 |
}
|
kpeter@2581
|
687 |
|
kpeter@2581
|
688 |
/// \brief Sets the potential map.
|
kpeter@2581
|
689 |
///
|
kpeter@2581
|
690 |
/// Sets the potential map.
|
kpeter@2581
|
691 |
///
|
kpeter@2581
|
692 |
/// \return \c (*this)
|
kpeter@2581
|
693 |
NetworkSimplex& potentialMap(PotentialMap &map) {
|
kpeter@2581
|
694 |
if (_local_potential) {
|
kpeter@2581
|
695 |
delete _potential_result;
|
kpeter@2581
|
696 |
_local_potential = false;
|
kpeter@2581
|
697 |
}
|
kpeter@2581
|
698 |
_potential_result = ↦
|
kpeter@2581
|
699 |
return *this;
|
kpeter@2581
|
700 |
}
|
kpeter@2581
|
701 |
|
kpeter@2581
|
702 |
/// \name Execution control
|
kpeter@2581
|
703 |
/// The only way to execute the algorithm is to call the run()
|
kpeter@2581
|
704 |
/// function.
|
kpeter@2581
|
705 |
|
kpeter@2581
|
706 |
/// @{
|
kpeter@2581
|
707 |
|
kpeter@2556
|
708 |
/// \brief Runs the algorithm.
|
kpeter@2556
|
709 |
///
|
kpeter@2556
|
710 |
/// Runs the algorithm.
|
kpeter@2556
|
711 |
///
|
kpeter@2575
|
712 |
/// \param pivot_rule The pivot rule that is used during the
|
kpeter@2575
|
713 |
/// algorithm.
|
kpeter@2575
|
714 |
///
|
kpeter@2575
|
715 |
/// The available pivot rules:
|
kpeter@2575
|
716 |
///
|
kpeter@2575
|
717 |
/// - FIRST_ELIGIBLE_PIVOT The next eligible edge is selected in
|
kpeter@2575
|
718 |
/// a wraparound fashion in every iteration
|
kpeter@2575
|
719 |
/// (\ref FirstEligiblePivotRule).
|
kpeter@2575
|
720 |
///
|
kpeter@2575
|
721 |
/// - BEST_ELIGIBLE_PIVOT The best eligible edge is selected in
|
kpeter@2575
|
722 |
/// every iteration (\ref BestEligiblePivotRule).
|
kpeter@2575
|
723 |
///
|
kpeter@2575
|
724 |
/// - BLOCK_SEARCH_PIVOT A specified number of edges are examined in
|
kpeter@2575
|
725 |
/// every iteration in a wraparound fashion and the best eligible
|
kpeter@2575
|
726 |
/// edge is selected from this block (\ref BlockSearchPivotRule).
|
kpeter@2575
|
727 |
///
|
kpeter@2575
|
728 |
/// - LIMITED_SEARCH_PIVOT A specified number of eligible edges are
|
kpeter@2575
|
729 |
/// examined in every iteration in a wraparound fashion and the best
|
kpeter@2575
|
730 |
/// one is selected from them (\ref LimitedSearchPivotRule).
|
kpeter@2575
|
731 |
///
|
kpeter@2575
|
732 |
/// - CANDIDATE_LIST_PIVOT In major iterations a candidate list is
|
kpeter@2575
|
733 |
/// built from eligible edges and it is used for edge selection in
|
kpeter@2575
|
734 |
/// the following minor iterations (\ref CandidateListPivotRule).
|
kpeter@2575
|
735 |
///
|
kpeter@2575
|
736 |
/// - COMBINED_PIVOT This is a combined version of the two fastest
|
kpeter@2575
|
737 |
/// pivot rules.
|
kpeter@2575
|
738 |
/// For rather sparse graphs \ref LimitedSearchPivotRule
|
kpeter@2575
|
739 |
/// "Limited Search" implementation is used, otherwise
|
kpeter@2575
|
740 |
/// \ref BlockSearchPivotRule "Block Search" pivot rule is used.
|
kpeter@2575
|
741 |
/// According to our benchmark tests this combined method is the
|
kpeter@2575
|
742 |
/// most efficient.
|
kpeter@2575
|
743 |
///
|
kpeter@2556
|
744 |
/// \return \c true if a feasible flow can be found.
|
kpeter@2575
|
745 |
bool run(PivotRuleEnum pivot_rule = COMBINED_PIVOT) {
|
kpeter@2575
|
746 |
return init() && start(pivot_rule);
|
kpeter@2556
|
747 |
}
|
kpeter@2556
|
748 |
|
kpeter@2581
|
749 |
/// @}
|
kpeter@2581
|
750 |
|
kpeter@2581
|
751 |
/// \name Query Functions
|
kpeter@2581
|
752 |
/// The result of the algorithm can be obtained using these
|
kpeter@2581
|
753 |
/// functions.
|
kpeter@2581
|
754 |
/// \n run() must be called before using them.
|
kpeter@2581
|
755 |
|
kpeter@2581
|
756 |
/// @{
|
kpeter@2581
|
757 |
|
kpeter@2575
|
758 |
/// \brief Returns a const reference to the edge map storing the
|
kpeter@2575
|
759 |
/// found flow.
|
deba@2440
|
760 |
///
|
kpeter@2575
|
761 |
/// Returns a const reference to the edge map storing the found flow.
|
deba@2440
|
762 |
///
|
deba@2440
|
763 |
/// \pre \ref run() must be called before using this function.
|
deba@2440
|
764 |
const FlowMap& flowMap() const {
|
kpeter@2581
|
765 |
return *_flow_result;
|
deba@2440
|
766 |
}
|
deba@2440
|
767 |
|
kpeter@2575
|
768 |
/// \brief Returns a const reference to the node map storing the
|
kpeter@2575
|
769 |
/// found potentials (the dual solution).
|
deba@2440
|
770 |
///
|
kpeter@2575
|
771 |
/// Returns a const reference to the node map storing the found
|
kpeter@2575
|
772 |
/// potentials (the dual solution).
|
deba@2440
|
773 |
///
|
deba@2440
|
774 |
/// \pre \ref run() must be called before using this function.
|
deba@2440
|
775 |
const PotentialMap& potentialMap() const {
|
kpeter@2581
|
776 |
return *_potential_result;
|
kpeter@2581
|
777 |
}
|
kpeter@2581
|
778 |
|
kpeter@2588
|
779 |
/// \brief Returns the flow on the given edge.
|
kpeter@2581
|
780 |
///
|
kpeter@2588
|
781 |
/// Returns the flow on the given edge.
|
kpeter@2581
|
782 |
///
|
kpeter@2581
|
783 |
/// \pre \ref run() must be called before using this function.
|
kpeter@2581
|
784 |
Capacity flow(const typename Graph::Edge& edge) const {
|
kpeter@2581
|
785 |
return (*_flow_result)[edge];
|
kpeter@2581
|
786 |
}
|
kpeter@2581
|
787 |
|
kpeter@2588
|
788 |
/// \brief Returns the potential of the given node.
|
kpeter@2581
|
789 |
///
|
kpeter@2588
|
790 |
/// Returns the potential of the given node.
|
kpeter@2581
|
791 |
///
|
kpeter@2581
|
792 |
/// \pre \ref run() must be called before using this function.
|
kpeter@2581
|
793 |
Cost potential(const typename Graph::Node& node) const {
|
kpeter@2581
|
794 |
return (*_potential_result)[node];
|
deba@2440
|
795 |
}
|
deba@2440
|
796 |
|
deba@2440
|
797 |
/// \brief Returns the total cost of the found flow.
|
deba@2440
|
798 |
///
|
deba@2440
|
799 |
/// Returns the total cost of the found flow. The complexity of the
|
deba@2440
|
800 |
/// function is \f$ O(e) \f$.
|
deba@2440
|
801 |
///
|
deba@2440
|
802 |
/// \pre \ref run() must be called before using this function.
|
deba@2440
|
803 |
Cost totalCost() const {
|
deba@2440
|
804 |
Cost c = 0;
|
kpeter@2575
|
805 |
for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e)
|
kpeter@2581
|
806 |
c += (*_flow_result)[e] * _cost[_edge_ref[e]];
|
deba@2440
|
807 |
return c;
|
deba@2440
|
808 |
}
|
deba@2440
|
809 |
|
kpeter@2581
|
810 |
/// @}
|
kpeter@2581
|
811 |
|
kpeter@2575
|
812 |
private:
|
deba@2440
|
813 |
|
deba@2440
|
814 |
/// \brief Extends the underlaying graph and initializes all the
|
deba@2440
|
815 |
/// node and edge maps.
|
deba@2440
|
816 |
bool init() {
|
kpeter@2575
|
817 |
if (!_valid_supply) return false;
|
deba@2440
|
818 |
|
kpeter@2581
|
819 |
// Initializing result maps
|
kpeter@2581
|
820 |
if (!_flow_result) {
|
kpeter@2581
|
821 |
_flow_result = new FlowMap(_graph_ref);
|
kpeter@2581
|
822 |
_local_flow = true;
|
kpeter@2581
|
823 |
}
|
kpeter@2581
|
824 |
if (!_potential_result) {
|
kpeter@2581
|
825 |
_potential_result = new PotentialMap(_graph_ref);
|
kpeter@2581
|
826 |
_local_potential = true;
|
kpeter@2581
|
827 |
}
|
kpeter@2581
|
828 |
|
deba@2440
|
829 |
// Initializing state and flow maps
|
kpeter@2575
|
830 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
kpeter@2575
|
831 |
_flow[e] = 0;
|
kpeter@2575
|
832 |
_state[e] = STATE_LOWER;
|
deba@2440
|
833 |
}
|
deba@2440
|
834 |
|
deba@2440
|
835 |
// Adding an artificial root node to the graph
|
kpeter@2575
|
836 |
_root = _graph.addNode();
|
kpeter@2575
|
837 |
_parent[_root] = INVALID;
|
kpeter@2575
|
838 |
_pred_edge[_root] = INVALID;
|
kpeter@2575
|
839 |
_depth[_root] = 0;
|
kpeter@2575
|
840 |
_supply[_root] = 0;
|
kpeter@2575
|
841 |
_potential[_root] = 0;
|
deba@2440
|
842 |
|
deba@2440
|
843 |
// Adding artificial edges to the graph and initializing the node
|
deba@2440
|
844 |
// maps of the spanning tree data structure
|
kpeter@2575
|
845 |
Node last = _root;
|
deba@2440
|
846 |
Edge e;
|
deba@2440
|
847 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4;
|
kpeter@2575
|
848 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
kpeter@2575
|
849 |
if (u == _root) continue;
|
kpeter@2575
|
850 |
_thread[last] = u;
|
kpeter@2556
|
851 |
last = u;
|
kpeter@2575
|
852 |
_parent[u] = _root;
|
kpeter@2575
|
853 |
_depth[u] = 1;
|
kpeter@2575
|
854 |
if (_supply[u] >= 0) {
|
kpeter@2575
|
855 |
e = _graph.addEdge(u, _root);
|
kpeter@2575
|
856 |
_flow[e] = _supply[u];
|
kpeter@2575
|
857 |
_forward[u] = true;
|
kpeter@2575
|
858 |
_potential[u] = -max_cost;
|
kpeter@2556
|
859 |
} else {
|
kpeter@2575
|
860 |
e = _graph.addEdge(_root, u);
|
kpeter@2575
|
861 |
_flow[e] = -_supply[u];
|
kpeter@2575
|
862 |
_forward[u] = false;
|
kpeter@2575
|
863 |
_potential[u] = max_cost;
|
kpeter@2556
|
864 |
}
|
kpeter@2575
|
865 |
_cost[e] = max_cost;
|
kpeter@2575
|
866 |
_capacity[e] = std::numeric_limits<Capacity>::max();
|
kpeter@2575
|
867 |
_state[e] = STATE_TREE;
|
kpeter@2575
|
868 |
_pred_edge[u] = e;
|
deba@2440
|
869 |
}
|
kpeter@2575
|
870 |
_thread[last] = _root;
|
deba@2440
|
871 |
|
kpeter@2575
|
872 |
return true;
|
deba@2440
|
873 |
}
|
deba@2440
|
874 |
|
kpeter@2575
|
875 |
/// Finds the join node.
|
kpeter@2575
|
876 |
Node findJoinNode() {
|
kpeter@2575
|
877 |
Node u = _graph.source(_in_edge);
|
kpeter@2575
|
878 |
Node v = _graph.target(_in_edge);
|
kpeter@2575
|
879 |
while (u != v) {
|
kpeter@2575
|
880 |
if (_depth[u] == _depth[v]) {
|
kpeter@2575
|
881 |
u = _parent[u];
|
kpeter@2575
|
882 |
v = _parent[v];
|
kpeter@2556
|
883 |
}
|
kpeter@2575
|
884 |
else if (_depth[u] > _depth[v]) u = _parent[u];
|
kpeter@2575
|
885 |
else v = _parent[v];
|
deba@2440
|
886 |
}
|
deba@2440
|
887 |
return u;
|
deba@2440
|
888 |
}
|
deba@2440
|
889 |
|
deba@2440
|
890 |
/// \brief Finds the leaving edge of the cycle. Returns \c true if
|
deba@2440
|
891 |
/// the leaving edge is not the same as the entering edge.
|
deba@2440
|
892 |
bool findLeavingEdge() {
|
deba@2440
|
893 |
// Initializing first and second nodes according to the direction
|
deba@2440
|
894 |
// of the cycle
|
kpeter@2575
|
895 |
if (_state[_in_edge] == STATE_LOWER) {
|
kpeter@2575
|
896 |
first = _graph.source(_in_edge);
|
kpeter@2575
|
897 |
second = _graph.target(_in_edge);
|
deba@2440
|
898 |
} else {
|
kpeter@2575
|
899 |
first = _graph.target(_in_edge);
|
kpeter@2575
|
900 |
second = _graph.source(_in_edge);
|
deba@2440
|
901 |
}
|
kpeter@2575
|
902 |
delta = _capacity[_in_edge];
|
deba@2440
|
903 |
bool result = false;
|
deba@2440
|
904 |
Capacity d;
|
deba@2440
|
905 |
Edge e;
|
deba@2440
|
906 |
|
deba@2440
|
907 |
// Searching the cycle along the path form the first node to the
|
deba@2440
|
908 |
// root node
|
kpeter@2575
|
909 |
for (Node u = first; u != join; u = _parent[u]) {
|
kpeter@2575
|
910 |
e = _pred_edge[u];
|
kpeter@2575
|
911 |
d = _forward[u] ? _flow[e] : _capacity[e] - _flow[e];
|
kpeter@2556
|
912 |
if (d < delta) {
|
kpeter@2556
|
913 |
delta = d;
|
kpeter@2556
|
914 |
u_out = u;
|
kpeter@2556
|
915 |
u_in = first;
|
kpeter@2556
|
916 |
v_in = second;
|
kpeter@2556
|
917 |
result = true;
|
kpeter@2556
|
918 |
}
|
deba@2440
|
919 |
}
|
deba@2440
|
920 |
// Searching the cycle along the path form the second node to the
|
deba@2440
|
921 |
// root node
|
kpeter@2575
|
922 |
for (Node u = second; u != join; u = _parent[u]) {
|
kpeter@2575
|
923 |
e = _pred_edge[u];
|
kpeter@2575
|
924 |
d = _forward[u] ? _capacity[e] - _flow[e] : _flow[e];
|
kpeter@2556
|
925 |
if (d <= delta) {
|
kpeter@2556
|
926 |
delta = d;
|
kpeter@2556
|
927 |
u_out = u;
|
kpeter@2556
|
928 |
u_in = second;
|
kpeter@2556
|
929 |
v_in = first;
|
kpeter@2556
|
930 |
result = true;
|
kpeter@2556
|
931 |
}
|
deba@2440
|
932 |
}
|
deba@2440
|
933 |
return result;
|
deba@2440
|
934 |
}
|
deba@2440
|
935 |
|
kpeter@2575
|
936 |
/// Changes \c flow and \c state edge maps.
|
deba@2440
|
937 |
void changeFlows(bool change) {
|
deba@2440
|
938 |
// Augmenting along the cycle
|
deba@2440
|
939 |
if (delta > 0) {
|
kpeter@2575
|
940 |
Capacity val = _state[_in_edge] * delta;
|
kpeter@2575
|
941 |
_flow[_in_edge] += val;
|
kpeter@2575
|
942 |
for (Node u = _graph.source(_in_edge); u != join; u = _parent[u]) {
|
kpeter@2575
|
943 |
_flow[_pred_edge[u]] += _forward[u] ? -val : val;
|
kpeter@2556
|
944 |
}
|
kpeter@2575
|
945 |
for (Node u = _graph.target(_in_edge); u != join; u = _parent[u]) {
|
kpeter@2575
|
946 |
_flow[_pred_edge[u]] += _forward[u] ? val : -val;
|
kpeter@2556
|
947 |
}
|
deba@2440
|
948 |
}
|
deba@2440
|
949 |
// Updating the state of the entering and leaving edges
|
deba@2440
|
950 |
if (change) {
|
kpeter@2575
|
951 |
_state[_in_edge] = STATE_TREE;
|
kpeter@2575
|
952 |
_state[_pred_edge[u_out]] =
|
kpeter@2575
|
953 |
(_flow[_pred_edge[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
|
deba@2440
|
954 |
} else {
|
kpeter@2575
|
955 |
_state[_in_edge] = -_state[_in_edge];
|
deba@2440
|
956 |
}
|
deba@2440
|
957 |
}
|
deba@2440
|
958 |
|
kpeter@2575
|
959 |
/// Updates \c thread and \c parent node maps.
|
deba@2440
|
960 |
void updateThreadParent() {
|
deba@2440
|
961 |
Node u;
|
kpeter@2575
|
962 |
v_out = _parent[u_out];
|
deba@2440
|
963 |
|
deba@2440
|
964 |
// Handling the case when join and v_out coincide
|
deba@2440
|
965 |
bool par_first = false;
|
deba@2440
|
966 |
if (join == v_out) {
|
kpeter@2575
|
967 |
for (u = join; u != u_in && u != v_in; u = _thread[u]) ;
|
kpeter@2556
|
968 |
if (u == v_in) {
|
kpeter@2556
|
969 |
par_first = true;
|
kpeter@2575
|
970 |
while (_thread[u] != u_out) u = _thread[u];
|
kpeter@2556
|
971 |
first = u;
|
kpeter@2556
|
972 |
}
|
deba@2440
|
973 |
}
|
deba@2440
|
974 |
|
deba@2440
|
975 |
// Finding the last successor of u_in (u) and the node after it
|
deba@2440
|
976 |
// (right) according to the thread index
|
kpeter@2575
|
977 |
for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ;
|
kpeter@2575
|
978 |
right = _thread[u];
|
kpeter@2575
|
979 |
if (_thread[v_in] == u_out) {
|
kpeter@2575
|
980 |
for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ;
|
kpeter@2575
|
981 |
if (last == u_out) last = _thread[last];
|
deba@2440
|
982 |
}
|
kpeter@2575
|
983 |
else last = _thread[v_in];
|
deba@2440
|
984 |
|
deba@2440
|
985 |
// Updating stem nodes
|
kpeter@2575
|
986 |
_thread[v_in] = stem = u_in;
|
deba@2440
|
987 |
par_stem = v_in;
|
deba@2440
|
988 |
while (stem != u_out) {
|
kpeter@2575
|
989 |
_thread[u] = new_stem = _parent[stem];
|
deba@2440
|
990 |
|
kpeter@2556
|
991 |
// Finding the node just before the stem node (u) according to
|
kpeter@2556
|
992 |
// the original thread index
|
kpeter@2575
|
993 |
for (u = new_stem; _thread[u] != stem; u = _thread[u]) ;
|
kpeter@2575
|
994 |
_thread[u] = right;
|
deba@2440
|
995 |
|
kpeter@2556
|
996 |
// Changing the parent node of stem and shifting stem and
|
kpeter@2556
|
997 |
// par_stem nodes
|
kpeter@2575
|
998 |
_parent[stem] = par_stem;
|
kpeter@2556
|
999 |
par_stem = stem;
|
kpeter@2556
|
1000 |
stem = new_stem;
|
deba@2440
|
1001 |
|
kpeter@2556
|
1002 |
// Finding the last successor of stem (u) and the node after it
|
kpeter@2556
|
1003 |
// (right) according to the thread index
|
kpeter@2575
|
1004 |
for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ;
|
kpeter@2575
|
1005 |
right = _thread[u];
|
deba@2440
|
1006 |
}
|
kpeter@2575
|
1007 |
_parent[u_out] = par_stem;
|
kpeter@2575
|
1008 |
_thread[u] = last;
|
deba@2440
|
1009 |
|
deba@2440
|
1010 |
if (join == v_out && par_first) {
|
kpeter@2575
|
1011 |
if (first != v_in) _thread[first] = right;
|
deba@2440
|
1012 |
} else {
|
kpeter@2575
|
1013 |
for (u = v_out; _thread[u] != u_out; u = _thread[u]) ;
|
kpeter@2575
|
1014 |
_thread[u] = right;
|
deba@2440
|
1015 |
}
|
deba@2440
|
1016 |
}
|
deba@2440
|
1017 |
|
kpeter@2575
|
1018 |
/// Updates \c pred_edge and \c forward node maps.
|
deba@2440
|
1019 |
void updatePredEdge() {
|
deba@2440
|
1020 |
Node u = u_out, v;
|
deba@2440
|
1021 |
while (u != u_in) {
|
kpeter@2575
|
1022 |
v = _parent[u];
|
kpeter@2575
|
1023 |
_pred_edge[u] = _pred_edge[v];
|
kpeter@2575
|
1024 |
_forward[u] = !_forward[v];
|
kpeter@2556
|
1025 |
u = v;
|
deba@2440
|
1026 |
}
|
kpeter@2575
|
1027 |
_pred_edge[u_in] = _in_edge;
|
kpeter@2575
|
1028 |
_forward[u_in] = (u_in == _graph.source(_in_edge));
|
deba@2440
|
1029 |
}
|
deba@2440
|
1030 |
|
kpeter@2575
|
1031 |
/// Updates \c depth and \c potential node maps.
|
deba@2440
|
1032 |
void updateDepthPotential() {
|
kpeter@2575
|
1033 |
_depth[u_in] = _depth[v_in] + 1;
|
kpeter@2575
|
1034 |
_potential[u_in] = _forward[u_in] ?
|
kpeter@2575
|
1035 |
_potential[v_in] - _cost[_pred_edge[u_in]] :
|
kpeter@2575
|
1036 |
_potential[v_in] + _cost[_pred_edge[u_in]];
|
deba@2440
|
1037 |
|
kpeter@2575
|
1038 |
Node u = _thread[u_in], v;
|
deba@2440
|
1039 |
while (true) {
|
kpeter@2575
|
1040 |
v = _parent[u];
|
kpeter@2556
|
1041 |
if (v == INVALID) break;
|
kpeter@2575
|
1042 |
_depth[u] = _depth[v] + 1;
|
kpeter@2575
|
1043 |
_potential[u] = _forward[u] ?
|
kpeter@2575
|
1044 |
_potential[v] - _cost[_pred_edge[u]] :
|
kpeter@2575
|
1045 |
_potential[v] + _cost[_pred_edge[u]];
|
kpeter@2575
|
1046 |
if (_depth[u] <= _depth[v_in]) break;
|
kpeter@2575
|
1047 |
u = _thread[u];
|
deba@2440
|
1048 |
}
|
deba@2440
|
1049 |
}
|
deba@2440
|
1050 |
|
kpeter@2575
|
1051 |
/// Executes the algorithm.
|
kpeter@2575
|
1052 |
bool start(PivotRuleEnum pivot_rule) {
|
kpeter@2575
|
1053 |
switch (pivot_rule) {
|
kpeter@2575
|
1054 |
case FIRST_ELIGIBLE_PIVOT:
|
kpeter@2575
|
1055 |
return start<FirstEligiblePivotRule>();
|
kpeter@2575
|
1056 |
case BEST_ELIGIBLE_PIVOT:
|
kpeter@2575
|
1057 |
return start<BestEligiblePivotRule>();
|
kpeter@2575
|
1058 |
case BLOCK_SEARCH_PIVOT:
|
kpeter@2575
|
1059 |
return start<BlockSearchPivotRule>();
|
kpeter@2575
|
1060 |
case LIMITED_SEARCH_PIVOT:
|
kpeter@2575
|
1061 |
return start<LimitedSearchPivotRule>();
|
kpeter@2575
|
1062 |
case CANDIDATE_LIST_PIVOT:
|
kpeter@2575
|
1063 |
return start<CandidateListPivotRule>();
|
kpeter@2575
|
1064 |
case COMBINED_PIVOT:
|
kpeter@2575
|
1065 |
if ( countEdges(_graph) / countNodes(_graph) <=
|
kpeter@2575
|
1066 |
COMBINED_PIVOT_MAX_DEG )
|
kpeter@2575
|
1067 |
return start<LimitedSearchPivotRule>();
|
kpeter@2575
|
1068 |
else
|
kpeter@2575
|
1069 |
return start<BlockSearchPivotRule>();
|
kpeter@2575
|
1070 |
}
|
kpeter@2575
|
1071 |
return false;
|
kpeter@2575
|
1072 |
}
|
kpeter@2575
|
1073 |
|
kpeter@2575
|
1074 |
template<class PivotRuleImplementation>
|
deba@2440
|
1075 |
bool start() {
|
kpeter@2575
|
1076 |
PivotRuleImplementation pivot(*this);
|
kpeter@2575
|
1077 |
|
kpeter@2575
|
1078 |
// Executing the network simplex algorithm
|
kpeter@2575
|
1079 |
while (pivot.findEnteringEdge()) {
|
kpeter@2556
|
1080 |
join = findJoinNode();
|
kpeter@2556
|
1081 |
bool change = findLeavingEdge();
|
kpeter@2556
|
1082 |
changeFlows(change);
|
kpeter@2556
|
1083 |
if (change) {
|
kpeter@2556
|
1084 |
updateThreadParent();
|
kpeter@2556
|
1085 |
updatePredEdge();
|
kpeter@2556
|
1086 |
updateDepthPotential();
|
kpeter@2556
|
1087 |
}
|
deba@2440
|
1088 |
}
|
deba@2440
|
1089 |
|
kpeter@2575
|
1090 |
// Checking if the flow amount equals zero on all the artificial
|
kpeter@2575
|
1091 |
// edges
|
kpeter@2575
|
1092 |
for (InEdgeIt e(_graph, _root); e != INVALID; ++e)
|
kpeter@2575
|
1093 |
if (_flow[e] > 0) return false;
|
kpeter@2575
|
1094 |
for (OutEdgeIt e(_graph, _root); e != INVALID; ++e)
|
kpeter@2575
|
1095 |
if (_flow[e] > 0) return false;
|
deba@2440
|
1096 |
|
kpeter@2575
|
1097 |
// Copying flow values to _flow_result
|
kpeter@2575
|
1098 |
if (_lower) {
|
kpeter@2575
|
1099 |
for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e)
|
kpeter@2581
|
1100 |
(*_flow_result)[e] = (*_lower)[e] + _flow[_edge_ref[e]];
|
deba@2440
|
1101 |
} else {
|
kpeter@2575
|
1102 |
for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e)
|
kpeter@2581
|
1103 |
(*_flow_result)[e] = _flow[_edge_ref[e]];
|
deba@2440
|
1104 |
}
|
kpeter@2575
|
1105 |
// Copying potential values to _potential_result
|
kpeter@2575
|
1106 |
for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n)
|
kpeter@2581
|
1107 |
(*_potential_result)[n] = _potential[_node_ref[n]];
|
deba@2440
|
1108 |
|
deba@2440
|
1109 |
return true;
|
deba@2440
|
1110 |
}
|
deba@2440
|
1111 |
|
deba@2440
|
1112 |
}; //class NetworkSimplex
|
deba@2440
|
1113 |
|
deba@2440
|
1114 |
///@}
|
deba@2440
|
1115 |
|
deba@2440
|
1116 |
} //namespace lemon
|
deba@2440
|
1117 |
|
deba@2440
|
1118 |
#endif //LEMON_NETWORK_SIMPLEX_H
|