src/work/peter/hierarchygraph.h
author deba
Mon, 07 Feb 2005 15:40:34 +0000
changeset 1139 f59038affc7e
parent 986 e997802b855c
permissions -rw-r--r--
Changing first to iterators.
hegyi@677
     1
// -*- c++ -*-
alpar@921
     2
#ifndef LEMON_NET_GRAPH_H
alpar@921
     3
#define LEMON_NET_GRAPH_H
hegyi@677
     4
hegyi@677
     5
///\file
hegyi@677
     6
///\brief Declaration of HierarchyGraph.
hegyi@677
     7
alpar@921
     8
#include <lemon/invalid.h>
alpar@921
     9
#include <lemon/maps.h>
hegyi@677
    10
alpar@921
    11
/// The namespace of LEMON
alpar@921
    12
namespace lemon
hegyi@691
    13
{
hegyi@677
    14
hegyi@677
    15
  // @defgroup empty_graph The HierarchyGraph class
hegyi@677
    16
  // @{
hegyi@677
    17
hegyi@677
    18
  /// A graph class in that a simple edge can represent a path.
hegyi@690
    19
hegyi@677
    20
  /// This class provides common features of a graph structure
hegyi@677
    21
  /// that represents a network. You can handle with it layers. This
hegyi@677
    22
  /// means that a node in one layer can be a complete network in a nother
hegyi@677
    23
  /// layer.
hegyi@677
    24
hegyi@691
    25
  template < class Gact, class Gsub > class HierarchyGraph
hegyi@677
    26
  {
hegyi@677
    27
hegyi@677
    28
  public:
hegyi@677
    29
hegyi@677
    30
    /// The actual layer
hegyi@677
    31
    Gact actuallayer;
hegyi@677
    32
hegyi@677
    33
hegyi@690
    34
    /// Map of the subnetworks in the sublayer
hegyi@690
    35
    /// The appropriate edge nodes are also stored here
hegyi@677
    36
hegyi@690
    37
    class SubNetwork
hegyi@690
    38
    {
hegyi@690
    39
hegyi@690
    40
      struct actedgesubnodestruct
hegyi@690
    41
      {
hegyi@691
    42
	typename Gact::Edge actedge;
hegyi@691
    43
	typename Gsub::Node subnode;
hegyi@690
    44
      };
hegyi@690
    45
hegyi@690
    46
      int edgenumber;
hegyi@690
    47
      bool connectable;
hegyi@691
    48
      Gact *actuallayer;
hegyi@690
    49
      typename Gact::Node * actuallayernode;
hegyi@691
    50
      Gsub *subnetwork;
hegyi@691
    51
      actedgesubnodestruct *assignments;
hegyi@690
    52
hegyi@690
    53
    public:
hegyi@690
    54
hegyi@691
    55
      int addAssignment (typename Gact::Edge actedge,
hegyi@691
    56
			 typename Gsub::Node subnode)
hegyi@690
    57
      {
hegyi@691
    58
	if (!(actuallayer->valid (actedge)))
hegyi@691
    59
	  {
hegyi@691
    60
	    cerr << "The given edge is not in the given network!" << endl;
hegyi@691
    61
	    return -1;
hegyi@691
    62
	  }
alpar@986
    63
	else if ((actuallayer->id (actuallayer->source (actedge)) !=
hegyi@691
    64
		  actuallayer->id (*actuallayernode))
alpar@986
    65
		 && (actuallayer->id (actuallayer->target (actedge)) !=
hegyi@691
    66
		     actuallayer->id (*actuallayernode)))
hegyi@691
    67
	  {
hegyi@691
    68
	    cerr << "The given edge does not connect to the given node!" <<
hegyi@691
    69
	      endl;
hegyi@691
    70
	    return -1;
hegyi@691
    71
	  }
hegyi@690
    72
hegyi@691
    73
	if (!(subnetwork->valid (subnode)))
hegyi@691
    74
	  {
hegyi@691
    75
	    cerr << "The given node is not in the given network!" << endl;
hegyi@691
    76
	    return -1;
hegyi@691
    77
	  }
hegyi@690
    78
hegyi@691
    79
	int i = 0;
hegyi@690
    80
	//while in the array there is valid note that is not equvivalent with the one that would be noted increase i
hegyi@691
    81
	while ((i < edgenumber)
hegyi@691
    82
	       && (actuallayer->valid (assignments[i].actedge))
hegyi@691
    83
	       && (assignments[i].actedge != actedge))
hegyi@691
    84
	  i++;
hegyi@691
    85
	if (assignments[i].actedge == actedge)
hegyi@691
    86
	  {
hegyi@691
    87
	    cout << "Warning: Redefinement of assigment!!!" << endl;
hegyi@691
    88
	  }
hegyi@691
    89
	if (i == edgenumber)
hegyi@691
    90
	  {
hegyi@691
    91
	    cout <<
hegyi@691
    92
	      "This case can't be!!! (because there should be the guven edge in the array already and the cycle had to stop)"
hegyi@691
    93
	      << endl;
hegyi@691
    94
	  }
hegyi@690
    95
	//if(!(actuallayer->valid(assignments[i].actedge)))   //this condition is necessary if we do not obey redefinition
hegyi@690
    96
	{
hegyi@691
    97
	  assignments[i].actedge = actedge;
hegyi@691
    98
	  assignments[i].subnode = subnode;
hegyi@690
    99
	}
hegyi@690
   100
hegyi@690
   101
	/// If to all of the edges a subnode is assigned then the subnetwork is connectable (attachable?)
hegyi@690
   102
	/// We do not need to check for further attributes, because to notice an assignment we need
hegyi@690
   103
	/// all of them to be correctly initialised before.
hegyi@691
   104
	if (i == edgenumber - 1)
hegyi@691
   105
	  connectable = 1;
hegyi@690
   106
hegyi@690
   107
	return 0;
hegyi@690
   108
      }
hegyi@690
   109
hegyi@691
   110
      int setSubNetwork (Gsub * sn)
hegyi@690
   111
      {
hegyi@691
   112
	subnetwork = sn;
hegyi@690
   113
	return 0;
hegyi@690
   114
      }
hegyi@690
   115
hegyi@691
   116
      int setActualLayer (Gact * al)
hegyi@690
   117
      {
hegyi@691
   118
	actuallayer = al;
hegyi@690
   119
	return 0;
hegyi@690
   120
      }
hegyi@690
   121
hegyi@691
   122
      int setActualLayerNode (typename Gact::Node * aln)
hegyi@690
   123
      {
hegyi@690
   124
	typename Gact::InEdgeIt iei;
hegyi@690
   125
	typename Gact::OutEdgeIt oei;
hegyi@690
   126
hegyi@691
   127
	actuallayernode = aln;
hegyi@690
   128
hegyi@691
   129
	edgenumber = 0;
hegyi@690
   130
hegyi@691
   131
	if (actuallayer)
hegyi@690
   132
	  {
hegyi@691
   133
	    for (iei = actuallayer->first (iei, (*actuallayernode));
hegyi@691
   134
		 ((actuallayer->valid (iei))
alpar@986
   135
		  && (actuallayer->target (iei) == (*actuallayernode)));
hegyi@691
   136
		 actuallayer->next (iei))
hegyi@691
   137
	      {
hegyi@691
   138
		cout << actuallayer->id (actuallayer->
alpar@986
   139
					 source (iei)) << " " << actuallayer->
alpar@986
   140
		  id (actuallayer->target (iei)) << endl;
hegyi@691
   141
		edgenumber++;
hegyi@691
   142
	      }
hegyi@691
   143
	    //cout << "Number of in-edges: " << edgenumber << endl;
hegyi@691
   144
	    for (oei = actuallayer->first (oei, (*actuallayernode));
hegyi@691
   145
		 ((actuallayer->valid (oei))
alpar@986
   146
		  && (actuallayer->source (oei) == (*actuallayernode)));
hegyi@691
   147
		 actuallayer->next (oei))
hegyi@691
   148
	      {
hegyi@691
   149
		cout << actuallayer->id (actuallayer->
alpar@986
   150
					 source (oei)) << " " << actuallayer->
alpar@986
   151
		  id (actuallayer->target (oei)) << endl;
hegyi@691
   152
		edgenumber++;
hegyi@691
   153
	      }
hegyi@691
   154
	    //cout << "Number of in+out-edges: " << edgenumber << endl;
hegyi@691
   155
	    assignments = new actedgesubnodestruct[edgenumber];
hegyi@691
   156
	    for (int i = 0; i < edgenumber; i++)
hegyi@691
   157
	      {
hegyi@691
   158
		assignments[i].actedge = INVALID;
hegyi@691
   159
		assignments[i].subnode = INVALID;
hegyi@691
   160
	      }
hegyi@690
   161
	  }
hegyi@691
   162
	else
hegyi@690
   163
	  {
hegyi@691
   164
	    cerr << "There is no actual layer defined yet!" << endl;
hegyi@691
   165
	    return -1;
hegyi@690
   166
	  }
hegyi@690
   167
hegyi@690
   168
	return 0;
hegyi@690
   169
      }
hegyi@690
   170
hegyi@691
   171
    SubNetwork ():edgenumber (0), connectable (false), actuallayer (NULL),
hegyi@691
   172
	actuallayernode (NULL), subnetwork (NULL),
hegyi@691
   173
	assignments (NULL)
hegyi@690
   174
      {
hegyi@690
   175
      }
hegyi@690
   176
hegyi@690
   177
    };
hegyi@690
   178
hegyi@691
   179
    typename Gact::template NodeMap < SubNetwork > subnetworks;
hegyi@677
   180
hegyi@677
   181
hegyi@677
   182
    /// Defalult constructor.
hegyi@677
   183
    /// We don't need any extra lines, because the actuallayer
hegyi@677
   184
    /// variable has run its constructor, when we have created this class
hegyi@677
   185
    /// So only the two maps has to be initialised here.
hegyi@691
   186
  HierarchyGraph ():subnetworks (actuallayer)
hegyi@677
   187
    {
hegyi@677
   188
    }
hegyi@677
   189
hegyi@677
   190
hegyi@677
   191
    ///Copy consructor.
hegyi@691
   192
  HierarchyGraph (const HierarchyGraph < Gact, Gsub > &HG):actuallayer (HG.actuallayer),
hegyi@691
   193
      subnetworks
hegyi@691
   194
      (actuallayer)
hegyi@677
   195
    {
hegyi@677
   196
    }
hegyi@677
   197
hegyi@690
   198
hegyi@677
   199
    /// The base type of the node iterators.
hegyi@677
   200
hegyi@677
   201
    /// This is the base type of each node iterators,
hegyi@677
   202
    /// thus each kind of node iterator will convert to this.
hegyi@677
   203
    /// The Node type of the HierarchyGraph is the Node type of the actual layer.
hegyi@677
   204
    typedef typename Gact::Node Node;
hegyi@677
   205
hegyi@690
   206
hegyi@677
   207
    /// This iterator goes through each node.
hegyi@677
   208
hegyi@677
   209
    /// Its usage is quite simple, for example you can count the number
hegyi@677
   210
    /// of nodes in graph \c G of type \c Graph like this:
hegyi@677
   211
    /// \code
hegyi@677
   212
    ///int count=0;
hegyi@677
   213
    ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
hegyi@677
   214
    /// \endcode
hegyi@677
   215
    /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
hegyi@677
   216
    typedef typename Gact::NodeIt NodeIt;
hegyi@690
   217
hegyi@690
   218
hegyi@677
   219
    /// The base type of the edge iterators.
hegyi@677
   220
    /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
hegyi@691
   221
    typedef typename Gact::Edge Edge;
hegyi@677
   222
hegyi@690
   223
hegyi@677
   224
    /// This iterator goes trough the outgoing edges of a node.
hegyi@677
   225
hegyi@677
   226
    /// This iterator goes trough the \e outgoing edges of a certain node
hegyi@677
   227
    /// of a graph.
hegyi@677
   228
    /// Its usage is quite simple, for example you can count the number
hegyi@677
   229
    /// of outgoing edges of a node \c n
hegyi@677
   230
    /// in graph \c G of type \c Graph as follows.
hegyi@677
   231
    /// \code
hegyi@677
   232
    ///int count=0;
hegyi@677
   233
    ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
hegyi@677
   234
    /// \endcode
hegyi@677
   235
    /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
hegyi@677
   236
    typedef typename Gact::OutEdgeIt OutEdgeIt;
hegyi@677
   237
hegyi@677
   238
hegyi@677
   239
    /// This iterator goes trough the incoming edges of a node.
hegyi@677
   240
hegyi@677
   241
    /// This iterator goes trough the \e incoming edges of a certain node
hegyi@677
   242
    /// of a graph.
hegyi@677
   243
    /// Its usage is quite simple, for example you can count the number
hegyi@677
   244
    /// of outgoing edges of a node \c n
hegyi@677
   245
    /// in graph \c G of type \c Graph as follows.
hegyi@677
   246
    /// \code
hegyi@677
   247
    ///int count=0;
hegyi@677
   248
    ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
hegyi@677
   249
    /// \endcode
hegyi@677
   250
    /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
hegyi@677
   251
    typedef typename Gact::InEdgeIt InEdgeIt;
hegyi@677
   252
hegyi@677
   253
hegyi@677
   254
    /// This iterator goes through each edge.
hegyi@677
   255
hegyi@677
   256
    /// This iterator goes through each edge of a graph.
hegyi@677
   257
    /// Its usage is quite simple, for example you can count the number
hegyi@677
   258
    /// of edges in a graph \c G of type \c Graph as follows:
hegyi@677
   259
    /// \code
hegyi@677
   260
    ///int count=0;
hegyi@677
   261
    ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
hegyi@677
   262
    /// \endcode
hegyi@677
   263
    /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
hegyi@677
   264
    typedef typename Gact::EdgeIt EdgeIt;
hegyi@677
   265
hegyi@677
   266
hegyi@677
   267
    /// First node of the graph.
hegyi@677
   268
hegyi@677
   269
    /// \retval i the first node.
hegyi@677
   270
    /// \return the first node.
hegyi@691
   271
    typename Gact::NodeIt & first (typename Gact::NodeIt & i) const
hegyi@691
   272
    {
hegyi@691
   273
      return actuallayer.first (i);
hegyi@691
   274
    }
hegyi@677
   275
hegyi@677
   276
hegyi@677
   277
    /// The first incoming edge.
hegyi@691
   278
    typename Gact::InEdgeIt & first (typename Gact::InEdgeIt & i,
hegyi@691
   279
				     typename Gact::Node) const
hegyi@691
   280
    {
hegyi@691
   281
      return actuallayer.first (i);
hegyi@691
   282
    }
hegyi@677
   283
hegyi@677
   284
hegyi@677
   285
    /// The first outgoing edge.
hegyi@691
   286
    typename Gact::OutEdgeIt & first (typename Gact::OutEdgeIt & i,
hegyi@691
   287
				      typename Gact::Node) const
hegyi@691
   288
    {
hegyi@691
   289
      return actuallayer.first (i);
hegyi@691
   290
    }
hegyi@677
   291
hegyi@677
   292
hegyi@677
   293
    //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
hegyi@677
   294
    /// The first edge of the Graph.
hegyi@691
   295
    typename Gact::EdgeIt & first (typename Gact::EdgeIt & i) const
hegyi@691
   296
    {
hegyi@691
   297
      return actuallayer.first (i);
hegyi@691
   298
    }
hegyi@677
   299
hegyi@677
   300
hegyi@677
   301
//     Node getNext(Node) const {}
hegyi@677
   302
//     InEdgeIt getNext(InEdgeIt) const {}
hegyi@677
   303
//     OutEdgeIt getNext(OutEdgeIt) const {}
hegyi@677
   304
//     //SymEdgeIt getNext(SymEdgeIt) const {}
hegyi@677
   305
//     EdgeIt getNext(EdgeIt) const {}
hegyi@677
   306
hegyi@677
   307
hegyi@677
   308
    /// Go to the next node.
hegyi@691
   309
    typename Gact::NodeIt & next (typename Gact::NodeIt & i) const
hegyi@691
   310
    {
hegyi@691
   311
      return actuallayer.next (i);
hegyi@691
   312
    }
hegyi@677
   313
    /// Go to the next incoming edge.
hegyi@691
   314
    typename Gact::InEdgeIt & next (typename Gact::InEdgeIt & i) const
hegyi@691
   315
    {
hegyi@691
   316
      return actuallayer.next (i);
hegyi@691
   317
    }
hegyi@677
   318
    /// Go to the next outgoing edge.
hegyi@691
   319
    typename Gact::OutEdgeIt & next (typename Gact::OutEdgeIt & i) const
hegyi@691
   320
    {
hegyi@691
   321
      return actuallayer.next (i);
hegyi@691
   322
    }
hegyi@677
   323
    //SymEdgeIt &next(SymEdgeIt &) const {}
hegyi@677
   324
    /// Go to the next edge.
hegyi@691
   325
    typename Gact::EdgeIt & next (typename Gact::EdgeIt & i) const
hegyi@691
   326
    {
hegyi@691
   327
      return actuallayer.next (i);
hegyi@691
   328
    }
hegyi@677
   329
alpar@986
   330
    ///Gives back the target node of an edge.
alpar@986
   331
    typename Gact::Node target (typename Gact::Edge edge) const
hegyi@691
   332
    {
alpar@986
   333
      return actuallayer.target (edge);
hegyi@691
   334
    }
alpar@986
   335
    ///Gives back the source node of an edge.
alpar@986
   336
    typename Gact::Node source (typename Gact::Edge edge) const
hegyi@691
   337
    {
alpar@986
   338
      return actuallayer.source (edge);
hegyi@691
   339
    }
hegyi@690
   340
hegyi@677
   341
    //   Node aNode(InEdgeIt) const {}
hegyi@677
   342
    //   Node aNode(OutEdgeIt) const {}
hegyi@677
   343
    //   Node aNode(SymEdgeIt) const {}
hegyi@677
   344
hegyi@677
   345
    //   Node bNode(InEdgeIt) const {}
hegyi@677
   346
    //   Node bNode(OutEdgeIt) const {}
hegyi@677
   347
    //   Node bNode(SymEdgeIt) const {}
hegyi@677
   348
hegyi@677
   349
    /// Checks if a node iterator is valid
hegyi@677
   350
hegyi@677
   351
    ///\todo Maybe, it would be better if iterator converted to
hegyi@677
   352
    ///bool directly, as Jacint prefers.
hegyi@691
   353
    bool valid (const typename Gact::Node & node) const
hegyi@691
   354
    {
hegyi@691
   355
      return actuallayer.valid (node);
hegyi@691
   356
    }
hegyi@677
   357
    /// Checks if an edge iterator is valid
hegyi@677
   358
hegyi@677
   359
    ///\todo Maybe, it would be better if iterator converted to
hegyi@677
   360
    ///bool directly, as Jacint prefers.
hegyi@691
   361
    bool valid (const typename Gact::Edge & edge) const
hegyi@691
   362
    {
hegyi@691
   363
      return actuallayer.valid (edge);
hegyi@691
   364
    }
hegyi@677
   365
hegyi@677
   366
    ///Gives back the \e id of a node.
hegyi@677
   367
hegyi@677
   368
    ///\warning Not all graph structures provide this feature.
hegyi@677
   369
    ///
hegyi@691
   370
    int id (const typename Gact::Node & node) const
hegyi@691
   371
    {
hegyi@691
   372
      return actuallayer.id (node);
hegyi@691
   373
    }
hegyi@677
   374
    ///Gives back the \e id of an edge.
hegyi@677
   375
hegyi@677
   376
    ///\warning Not all graph structures provide this feature.
hegyi@677
   377
    ///
hegyi@691
   378
    int id (const typename Gact::Edge & edge) const
hegyi@691
   379
    {
hegyi@691
   380
      return actuallayer.id (edge);
hegyi@691
   381
    }
hegyi@677
   382
hegyi@677
   383
    //void setInvalid(Node &) const {};
hegyi@677
   384
    //void setInvalid(Edge &) const {};
hegyi@690
   385
hegyi@677
   386
    ///Add a new node to the graph.
hegyi@677
   387
hegyi@677
   388
    /// \return the new node.
hegyi@677
   389
    ///
hegyi@691
   390
    typename Gact::Node addNode ()
hegyi@691
   391
    {
hegyi@691
   392
      return actuallayer.addNode ();
hegyi@691
   393
    }
hegyi@677
   394
    ///Add a new edge to the graph.
hegyi@677
   395
alpar@986
   396
    ///Add a new edge to the graph with source node \c source
alpar@986
   397
    ///and target node \c target.
hegyi@677
   398
    ///\return the new edge.
hegyi@691
   399
    typename Gact::Edge addEdge (typename Gact::Node node1,
hegyi@691
   400
				 typename Gact::Node node2)
hegyi@691
   401
    {
hegyi@691
   402
      return actuallayer.addEdge (node1, node2);
hegyi@691
   403
    }
hegyi@690
   404
hegyi@677
   405
    /// Resets the graph.
hegyi@677
   406
hegyi@677
   407
    /// This function deletes all edges and nodes of the graph.
hegyi@677
   408
    /// It also frees the memory allocated to store them.
hegyi@691
   409
    void clear ()
hegyi@691
   410
    {
hegyi@691
   411
      actuallayer.clear ();
hegyi@691
   412
    }
hegyi@677
   413
hegyi@691
   414
    int nodeNum () const
hegyi@691
   415
    {
hegyi@691
   416
      return actuallayer.nodeNum ();
hegyi@691
   417
    }
hegyi@691
   418
    int edgeNum () const
hegyi@691
   419
    {
hegyi@691
   420
      return actuallayer.edgeNum ();
hegyi@691
   421
    }
hegyi@677
   422
hegyi@677
   423
    ///Read/write/reference map of the nodes to type \c T.
hegyi@677
   424
hegyi@677
   425
    ///Read/write/reference map of the nodes to type \c T.
alpar@880
   426
    /// \sa MemoryMap
hegyi@677
   427
    /// \todo We may need copy constructor
hegyi@677
   428
    /// \todo We may need conversion from other nodetype
hegyi@677
   429
    /// \todo We may need operator=
hegyi@677
   430
    /// \warning Making maps that can handle bool type (NodeMap<bool>)
hegyi@677
   431
    /// needs extra attention!
hegyi@677
   432
hegyi@691
   433
    template < class T > class NodeMap
hegyi@677
   434
    {
hegyi@677
   435
    public:
alpar@987
   436
      typedef T Value;
alpar@987
   437
      typedef Node Key;
hegyi@677
   438
hegyi@691
   439
      NodeMap (const HierarchyGraph &)
hegyi@691
   440
      {
hegyi@691
   441
      }
hegyi@691
   442
      NodeMap (const HierarchyGraph &, T)
hegyi@691
   443
      {
hegyi@691
   444
      }
hegyi@677
   445
hegyi@691
   446
      template < typename TT > NodeMap (const NodeMap < TT > &)
hegyi@691
   447
      {
hegyi@691
   448
      }
hegyi@677
   449
hegyi@677
   450
      /// Sets the value of a node.
hegyi@677
   451
hegyi@677
   452
      /// Sets the value associated with node \c i to the value \c t.
hegyi@677
   453
      ///
hegyi@691
   454
      void set (Node, T)
hegyi@691
   455
      {
hegyi@691
   456
      }
hegyi@677
   457
      // Gets the value of a node.
hegyi@677
   458
      //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
hegyi@691
   459
      T & operator[](Node)
hegyi@691
   460
      {
hegyi@691
   461
	return *(T *) 0;
hegyi@691
   462
      }
hegyi@691
   463
      const T & operator[] (Node) const
hegyi@691
   464
      {
hegyi@691
   465
	return *(T *) 0;
hegyi@691
   466
      }
hegyi@677
   467
hegyi@677
   468
      /// Updates the map if the graph has been changed
hegyi@677
   469
hegyi@677
   470
      /// \todo Do we need this?
hegyi@677
   471
      ///
hegyi@691
   472
      void update ()
hegyi@691
   473
      {
hegyi@691
   474
      }
hegyi@691
   475
      void update (T a)
hegyi@691
   476
      {
hegyi@691
   477
      }				//FIXME: Is it necessary
hegyi@677
   478
    };
hegyi@677
   479
hegyi@677
   480
    ///Read/write/reference map of the edges to type \c T.
hegyi@677
   481
hegyi@677
   482
    ///Read/write/reference map of the edges to type \c T.
hegyi@677
   483
    ///It behaves exactly in the same way as \ref NodeMap.
hegyi@677
   484
    /// \sa NodeMap
alpar@880
   485
    /// \sa MemoryMap
hegyi@677
   486
    /// \todo We may need copy constructor
hegyi@677
   487
    /// \todo We may need conversion from other edgetype
hegyi@677
   488
    /// \todo We may need operator=
hegyi@691
   489
    template < class T > class EdgeMap
hegyi@677
   490
    {
hegyi@677
   491
    public:
alpar@987
   492
      typedef T Value;
alpar@987
   493
      typedef Edge Key;
hegyi@677
   494
hegyi@691
   495
      EdgeMap (const HierarchyGraph &)
hegyi@691
   496
      {
hegyi@691
   497
      }
hegyi@691
   498
      EdgeMap (const HierarchyGraph &, T)
hegyi@691
   499
      {
hegyi@691
   500
      }
hegyi@690
   501
hegyi@677
   502
      ///\todo It can copy between different types.
hegyi@677
   503
      ///
hegyi@691
   504
      template < typename TT > EdgeMap (const EdgeMap < TT > &)
hegyi@691
   505
      {
hegyi@691
   506
      }
hegyi@677
   507
hegyi@691
   508
      void set (Edge, T)
hegyi@691
   509
      {
hegyi@691
   510
      }
hegyi@677
   511
      //T get(Edge) const {return *(T*)0;}
hegyi@691
   512
      T & operator[](Edge)
hegyi@691
   513
      {
hegyi@691
   514
	return *(T *) 0;
hegyi@691
   515
      }
hegyi@691
   516
      const T & operator[] (Edge) const
hegyi@691
   517
      {
hegyi@691
   518
	return *(T *) 0;
hegyi@691
   519
      }
hegyi@690
   520
hegyi@691
   521
      void update ()
hegyi@691
   522
      {
hegyi@691
   523
      }
hegyi@691
   524
      void update (T a)
hegyi@691
   525
      {
hegyi@691
   526
      }				//FIXME: Is it necessary
hegyi@677
   527
    };
hegyi@677
   528
  };
hegyi@677
   529
alpar@826
   530
  /// An empty erasable graph class.
hegyi@690
   531
alpar@826
   532
  /// This class provides all the common features of an \e erasable graph
hegyi@677
   533
  /// structure,
hegyi@677
   534
  /// however completely without implementations and real data structures
hegyi@677
   535
  /// behind the interface.
hegyi@677
   536
  /// All graph algorithms should compile with this class, but it will not
hegyi@677
   537
  /// run properly, of course.
hegyi@677
   538
  ///
hegyi@677
   539
  /// \todo This blabla could be replaced by a sepatate description about
alpar@880
   540
  /// s.
hegyi@677
   541
  ///
hegyi@677
   542
  /// It can be used for checking the interface compatibility,
hegyi@677
   543
  /// or it can serve as a skeleton of a new graph structure.
hegyi@690
   544
  ///
hegyi@677
   545
  /// Also, you will find here the full documentation of a certain graph
hegyi@677
   546
  /// feature, the documentation of a real graph imlementation
hegyi@677
   547
  /// like @ref ListGraph or
hegyi@677
   548
  /// @ref SmartGraph will just refer to this structure.
alpar@826
   549
template < typename Gact, typename Gsub > class ErasableHierarchyGraph:public HierarchyGraph < Gact,
hegyi@691
   550
    Gsub
hegyi@691
   551
    >
hegyi@677
   552
  {
hegyi@677
   553
  public:
hegyi@677
   554
    /// Deletes a node.
hegyi@691
   555
    void erase (typename Gact::Node n)
hegyi@691
   556
    {
hegyi@691
   557
      actuallayer.erase (n);
hegyi@691
   558
    }
hegyi@677
   559
    /// Deletes an edge.
hegyi@691
   560
    void erase (typename Gact::Edge e)
hegyi@691
   561
    {
hegyi@691
   562
      actuallayer.erase (e);
hegyi@691
   563
    }
hegyi@677
   564
hegyi@677
   565
    /// Defalult constructor.
alpar@826
   566
    ErasableHierarchyGraph ()
hegyi@691
   567
    {
hegyi@691
   568
    }
hegyi@677
   569
    ///Copy consructor.
alpar@826
   570
    ErasableHierarchyGraph (const HierarchyGraph < Gact, Gsub > &EPG)
hegyi@691
   571
    {
hegyi@691
   572
    }
hegyi@677
   573
  };
hegyi@677
   574
hegyi@690
   575
hegyi@677
   576
  // @}
hegyi@677
   577
alpar@921
   578
}				//namespace lemon
hegyi@677
   579
hegyi@677
   580
alpar@921
   581
#endif // LEMON_SKELETON_GRAPH_H