athos@276
|
1 |
// -*- c++ -*-
|
athos@306
|
2 |
#ifndef HUGO_MINLENGTHPATHS_H
|
athos@306
|
3 |
#define HUGO_MINLENGTHPATHS_H
|
athos@276
|
4 |
|
alpar@430
|
5 |
///ingroup galgs
|
alpar@294
|
6 |
///\file
|
athos@306
|
7 |
///\brief An algorithm for finding k paths of minimal total length.
|
alpar@294
|
8 |
|
athos@276
|
9 |
#include <iostream>
|
athos@276
|
10 |
#include <dijkstra.h>
|
athos@276
|
11 |
#include <graph_wrapper.h>
|
athos@306
|
12 |
#include <maps.h>
|
athos@322
|
13 |
#include <vector>
|
athos@322
|
14 |
|
athos@306
|
15 |
|
athos@276
|
16 |
namespace hugo {
|
athos@276
|
17 |
|
alpar@430
|
18 |
/// \addtogroup galgs
|
alpar@430
|
19 |
/// @{
|
athos@322
|
20 |
|
klao@310
|
21 |
///\brief Implementation of an algorithm for finding k paths between 2 nodes
|
athos@306
|
22 |
/// of minimal total length
|
klao@310
|
23 |
///
|
klao@310
|
24 |
/// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
|
klao@310
|
25 |
/// an algorithm which finds k edge-disjoint paths
|
klao@310
|
26 |
/// from a given source node to a given target node in an
|
klao@310
|
27 |
/// edge-weighted directed graph having minimal total weigth (length).
|
athos@276
|
28 |
|
klao@310
|
29 |
template <typename Graph, typename LengthMap>
|
athos@306
|
30 |
class MinLengthPaths {
|
athos@276
|
31 |
|
klao@310
|
32 |
typedef typename LengthMap::ValueType Length;
|
athos@276
|
33 |
|
athos@276
|
34 |
typedef typename Graph::Node Node;
|
athos@276
|
35 |
typedef typename Graph::NodeIt NodeIt;
|
athos@276
|
36 |
typedef typename Graph::Edge Edge;
|
athos@276
|
37 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
athos@306
|
38 |
typedef typename Graph::EdgeMap<int> EdgeIntMap;
|
athos@306
|
39 |
|
athos@306
|
40 |
typedef ConstMap<Edge,int> ConstMap;
|
athos@306
|
41 |
|
marci@330
|
42 |
typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
|
athos@276
|
43 |
|
athos@306
|
44 |
|
athos@306
|
45 |
class ModLengthMap {
|
klao@310
|
46 |
typedef typename ResGraphType::NodeMap<Length> NodeMap;
|
athos@306
|
47 |
const ResGraphType& G;
|
klao@310
|
48 |
const EdgeIntMap& rev;
|
klao@310
|
49 |
const LengthMap &ol;
|
klao@310
|
50 |
const NodeMap &pot;
|
athos@306
|
51 |
public :
|
athos@306
|
52 |
typedef typename LengthMap::KeyType KeyType;
|
athos@306
|
53 |
typedef typename LengthMap::ValueType ValueType;
|
athos@306
|
54 |
|
athos@306
|
55 |
ValueType operator[](typename ResGraphType::Edge e) const {
|
athos@322
|
56 |
//if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
|
athos@322
|
57 |
// std::cout<<"Negative length!!"<<std::endl;
|
athos@322
|
58 |
//}
|
athos@306
|
59 |
return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
|
athos@306
|
60 |
}
|
athos@306
|
61 |
|
klao@310
|
62 |
ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev,
|
klao@310
|
63 |
const LengthMap &o, const NodeMap &p) :
|
athos@306
|
64 |
G(_G), rev(_rev), ol(o), pot(p){};
|
athos@306
|
65 |
};
|
athos@306
|
66 |
|
athos@306
|
67 |
|
athos@276
|
68 |
const Graph& G;
|
athos@276
|
69 |
const LengthMap& length;
|
athos@276
|
70 |
|
alpar@328
|
71 |
//auxiliary variables
|
athos@322
|
72 |
|
athos@314
|
73 |
//The value is 1 iff the edge is reversed.
|
athos@314
|
74 |
//If the algorithm has finished, the edges of the seeked paths are
|
athos@314
|
75 |
//exactly those that are reversed
|
athos@306
|
76 |
EdgeIntMap reversed;
|
athos@276
|
77 |
|
athos@322
|
78 |
//Container to store found paths
|
athos@322
|
79 |
std::vector< std::vector<Edge> > paths;
|
athos@322
|
80 |
|
athos@276
|
81 |
public :
|
klao@310
|
82 |
|
athos@276
|
83 |
|
athos@306
|
84 |
MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
|
athos@306
|
85 |
length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
|
athos@276
|
86 |
|
alpar@294
|
87 |
|
alpar@329
|
88 |
///Runs the algorithm.
|
alpar@329
|
89 |
|
alpar@329
|
90 |
///Runs the algorithm.
|
athos@306
|
91 |
///Returns k if there are at least k edge-disjoint paths from s to t.
|
alpar@329
|
92 |
///Otherwise it returns the number of found edge-disjoint paths from s to t.
|
athos@306
|
93 |
int run(Node s, Node t, int k) {
|
athos@306
|
94 |
ConstMap const1map(1);
|
athos@276
|
95 |
|
athos@314
|
96 |
//We need a residual graph, in which some of the edges are reversed
|
marci@330
|
97 |
ResGraphType res_graph(G, const1map, reversed);
|
athos@306
|
98 |
|
athos@306
|
99 |
//Initialize the copy of the Dijkstra potential to zero
|
klao@310
|
100 |
typename ResGraphType::NodeMap<Length> dijkstra_dist(res_graph);
|
klao@310
|
101 |
ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
|
athos@306
|
102 |
|
athos@306
|
103 |
Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
|
athos@322
|
104 |
|
athos@322
|
105 |
int i;
|
athos@322
|
106 |
for (i=0; i<k; ++i){
|
athos@276
|
107 |
dijkstra.run(s);
|
athos@276
|
108 |
if (!dijkstra.reached(t)){
|
athos@314
|
109 |
//There are no k paths from s to t
|
athos@322
|
110 |
break;
|
athos@276
|
111 |
};
|
athos@306
|
112 |
|
athos@306
|
113 |
{
|
athos@306
|
114 |
//We have to copy the potential
|
athos@306
|
115 |
typename ResGraphType::NodeIt n;
|
athos@306
|
116 |
for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
|
athos@306
|
117 |
dijkstra_dist[n] += dijkstra.distMap()[n];
|
athos@306
|
118 |
}
|
athos@306
|
119 |
}
|
athos@306
|
120 |
|
athos@306
|
121 |
|
athos@276
|
122 |
//Reversing the sortest path
|
athos@276
|
123 |
Node n=t;
|
athos@276
|
124 |
Edge e;
|
athos@276
|
125 |
while (n!=s){
|
athos@291
|
126 |
e = dijkstra.pred(n);
|
athos@291
|
127 |
n = dijkstra.predNode(n);
|
athos@276
|
128 |
reversed[e] = 1-reversed[e];
|
athos@276
|
129 |
}
|
athos@276
|
130 |
|
athos@276
|
131 |
|
athos@276
|
132 |
}
|
athos@322
|
133 |
|
athos@322
|
134 |
//Let's find the paths
|
athos@322
|
135 |
//We put the paths into vectors (just for now). In the meantime we lose
|
athos@322
|
136 |
//the information stored in 'reversed'
|
athos@322
|
137 |
//We suppose the lengths to be positive now.
|
athos@322
|
138 |
paths.clear();
|
athos@322
|
139 |
paths.resize(k);
|
athos@322
|
140 |
for (int j=0; j<i; ++j){
|
athos@322
|
141 |
Node n=s;
|
athos@322
|
142 |
OutEdgeIt e;
|
athos@322
|
143 |
|
athos@322
|
144 |
while (n!=t){
|
athos@322
|
145 |
|
athos@322
|
146 |
|
athos@322
|
147 |
G.first(e,n);
|
athos@322
|
148 |
|
athos@322
|
149 |
while (!reversed[e]){
|
athos@322
|
150 |
G.next(e);
|
athos@322
|
151 |
}
|
athos@322
|
152 |
n = G.head(e);
|
athos@322
|
153 |
paths[j].push_back(e);
|
athos@322
|
154 |
reversed[e] = 1-reversed[e];
|
athos@322
|
155 |
}
|
athos@322
|
156 |
|
athos@322
|
157 |
}
|
athos@322
|
158 |
|
athos@322
|
159 |
return i;
|
athos@276
|
160 |
}
|
athos@276
|
161 |
|
athos@276
|
162 |
|
klao@310
|
163 |
}; //class MinLengthPaths
|
athos@276
|
164 |
|
alpar@430
|
165 |
///@}
|
athos@276
|
166 |
|
athos@276
|
167 |
} //namespace hugo
|
athos@276
|
168 |
|
athos@306
|
169 |
#endif //HUGO_MINLENGTHPATHS_H
|