lemon/capacity_scaling.h
author alpar
Fri, 08 Feb 2008 09:52:48 +0000
changeset 2566 f75c05a5bbe6
parent 2553 bfced05fa852
child 2574 7058c9690e7d
permissions -rw-r--r--
Doc improvments backported from hg 9df0fe5e5109
deba@2440
     1
/* -*- C++ -*-
deba@2440
     2
 *
deba@2440
     3
 * This file is a part of LEMON, a generic C++ optimization library
deba@2440
     4
 *
alpar@2553
     5
 * Copyright (C) 2003-2008
deba@2440
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@2440
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@2440
     8
 *
deba@2440
     9
 * Permission to use, modify and distribute this software is granted
deba@2440
    10
 * provided that this copyright notice appears in all copies. For
deba@2440
    11
 * precise terms see the accompanying LICENSE file.
deba@2440
    12
 *
deba@2440
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@2440
    14
 * express or implied, and with no claim as to its suitability for any
deba@2440
    15
 * purpose.
deba@2440
    16
 *
deba@2440
    17
 */
deba@2440
    18
deba@2440
    19
#ifndef LEMON_CAPACITY_SCALING_H
deba@2440
    20
#define LEMON_CAPACITY_SCALING_H
deba@2440
    21
deba@2440
    22
/// \ingroup min_cost_flow
deba@2440
    23
///
deba@2440
    24
/// \file
kpeter@2556
    25
/// \brief The capacity scaling algorithm for finding a minimum cost flow.
deba@2440
    26
kpeter@2535
    27
#include <lemon/graph_adaptor.h>
kpeter@2535
    28
#include <lemon/bin_heap.h>
deba@2440
    29
#include <vector>
deba@2457
    30
deba@2440
    31
namespace lemon {
deba@2440
    32
deba@2440
    33
  /// \addtogroup min_cost_flow
deba@2440
    34
  /// @{
deba@2440
    35
deba@2440
    36
  /// \brief Implementation of the capacity scaling version of the
kpeter@2509
    37
  /// successive shortest path algorithm for finding a minimum cost
kpeter@2509
    38
  /// flow.
deba@2440
    39
  ///
kpeter@2535
    40
  /// \ref CapacityScaling implements the capacity scaling version
kpeter@2535
    41
  /// of the successive shortest path algorithm for finding a minimum
kpeter@2535
    42
  /// cost flow.
deba@2440
    43
  ///
deba@2440
    44
  /// \param Graph The directed graph type the algorithm runs on.
deba@2440
    45
  /// \param LowerMap The type of the lower bound map.
deba@2440
    46
  /// \param CapacityMap The type of the capacity (upper bound) map.
deba@2440
    47
  /// \param CostMap The type of the cost (length) map.
deba@2440
    48
  /// \param SupplyMap The type of the supply map.
deba@2440
    49
  ///
deba@2440
    50
  /// \warning
kpeter@2556
    51
  /// - Edge capacities and costs should be non-negative integers.
kpeter@2535
    52
  ///   However \c CostMap::Value should be signed type.
kpeter@2509
    53
  /// - Supply values should be signed integers.
deba@2440
    54
  /// - \c LowerMap::Value must be convertible to
kpeter@2535
    55
  ///   \c CapacityMap::Value and \c CapacityMap::Value must be
kpeter@2535
    56
  ///   convertible to \c SupplyMap::Value.
deba@2440
    57
  ///
deba@2440
    58
  /// \author Peter Kovacs
deba@2440
    59
kpeter@2533
    60
  template < typename Graph,
kpeter@2535
    61
             typename LowerMap = typename Graph::template EdgeMap<int>,
kpeter@2535
    62
             typename CapacityMap = LowerMap,
kpeter@2535
    63
             typename CostMap = typename Graph::template EdgeMap<int>,
kpeter@2535
    64
             typename SupplyMap = typename Graph::template NodeMap
kpeter@2535
    65
                                  <typename CapacityMap::Value> >
deba@2440
    66
  class CapacityScaling
deba@2440
    67
  {
kpeter@2556
    68
    GRAPH_TYPEDEFS(typename Graph);
deba@2440
    69
deba@2440
    70
    typedef typename LowerMap::Value Lower;
deba@2440
    71
    typedef typename CapacityMap::Value Capacity;
deba@2440
    72
    typedef typename CostMap::Value Cost;
deba@2440
    73
    typedef typename SupplyMap::Value Supply;
kpeter@2556
    74
    typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
kpeter@2556
    75
    typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
kpeter@2535
    76
    typedef typename Graph::template NodeMap<Edge> PredMap;
deba@2440
    77
deba@2440
    78
  public:
deba@2440
    79
kpeter@2556
    80
    /// Type to enable or disable capacity scaling.
kpeter@2535
    81
    enum ScalingEnum {
kpeter@2535
    82
      WITH_SCALING = 0,
kpeter@2535
    83
      WITHOUT_SCALING = -1
kpeter@2535
    84
    };
kpeter@2535
    85
kpeter@2556
    86
    /// The type of the flow map.
kpeter@2556
    87
    typedef typename Graph::template EdgeMap<Capacity> FlowMap;
kpeter@2556
    88
    /// The type of the potential map.
deba@2440
    89
    typedef typename Graph::template NodeMap<Cost> PotentialMap;
deba@2440
    90
deba@2440
    91
  protected:
deba@2440
    92
kpeter@2535
    93
    /// \brief Special implementation of the \ref Dijkstra algorithm
kpeter@2535
    94
    /// for finding shortest paths in the residual network of the graph
kpeter@2535
    95
    /// with respect to the reduced edge costs and modifying the
kpeter@2535
    96
    /// node potentials according to the distance of the nodes.
kpeter@2535
    97
    class ResidualDijkstra
deba@2440
    98
    {
kpeter@2535
    99
      typedef typename Graph::template NodeMap<Cost> CostNodeMap;
kpeter@2535
   100
      typedef typename Graph::template NodeMap<Edge> PredMap;
deba@2440
   101
kpeter@2535
   102
      typedef typename Graph::template NodeMap<int> HeapCrossRef;
kpeter@2535
   103
      typedef BinHeap<Cost, HeapCrossRef> Heap;
kpeter@2535
   104
kpeter@2535
   105
    protected:
kpeter@2535
   106
kpeter@2556
   107
      /// The directed graph the algorithm runs on.
kpeter@2535
   108
      const Graph &graph;
kpeter@2535
   109
kpeter@2556
   110
      /// The flow map.
kpeter@2535
   111
      const FlowMap &flow;
kpeter@2556
   112
      /// The residual capacity map.
kpeter@2556
   113
      const CapacityEdgeMap &res_cap;
kpeter@2556
   114
      /// The cost map.
kpeter@2535
   115
      const CostMap &cost;
kpeter@2556
   116
      /// The excess map.
kpeter@2556
   117
      const SupplyNodeMap &excess;
kpeter@2535
   118
kpeter@2556
   119
      /// The potential map.
kpeter@2535
   120
      PotentialMap &potential;
kpeter@2535
   121
kpeter@2556
   122
      /// The distance map.
kpeter@2535
   123
      CostNodeMap dist;
kpeter@2556
   124
      /// The map of predecessors edges.
kpeter@2535
   125
      PredMap &pred;
kpeter@2556
   126
      /// The processed (i.e. permanently labeled) nodes.
kpeter@2535
   127
      std::vector<Node> proc_nodes;
deba@2440
   128
deba@2440
   129
    public:
deba@2440
   130
kpeter@2556
   131
      /// The constructor of the class.
kpeter@2535
   132
      ResidualDijkstra( const Graph &_graph,
kpeter@2535
   133
                        const FlowMap &_flow,
kpeter@2556
   134
                        const CapacityEdgeMap &_res_cap,
kpeter@2535
   135
                        const CostMap &_cost,
kpeter@2535
   136
                        const SupplyMap &_excess,
kpeter@2535
   137
                        PotentialMap &_potential,
kpeter@2535
   138
                        PredMap &_pred ) :
kpeter@2535
   139
        graph(_graph), flow(_flow), res_cap(_res_cap), cost(_cost),
kpeter@2535
   140
        excess(_excess), potential(_potential), dist(_graph),
kpeter@2535
   141
        pred(_pred)
kpeter@2535
   142
      {}
deba@2440
   143
kpeter@2556
   144
      /// Runs the algorithm from the given source node.
kpeter@2535
   145
      Node run(Node s, Capacity delta) {
kpeter@2535
   146
        HeapCrossRef heap_cross_ref(graph, Heap::PRE_HEAP);
kpeter@2535
   147
        Heap heap(heap_cross_ref);
kpeter@2535
   148
        heap.push(s, 0);
kpeter@2535
   149
        pred[s] = INVALID;
kpeter@2535
   150
        proc_nodes.clear();
kpeter@2535
   151
kpeter@2535
   152
        // Processing nodes
kpeter@2535
   153
        while (!heap.empty() && excess[heap.top()] > -delta) {
kpeter@2535
   154
          Node u = heap.top(), v;
kpeter@2535
   155
          Cost d = heap.prio() - potential[u], nd;
kpeter@2535
   156
          dist[u] = heap.prio();
kpeter@2535
   157
          heap.pop();
kpeter@2535
   158
          proc_nodes.push_back(u);
kpeter@2535
   159
kpeter@2535
   160
          // Traversing outgoing edges
kpeter@2535
   161
          for (OutEdgeIt e(graph, u); e != INVALID; ++e) {
kpeter@2535
   162
            if (res_cap[e] >= delta) {
kpeter@2535
   163
              v = graph.target(e);
kpeter@2535
   164
              switch(heap.state(v)) {
kpeter@2535
   165
              case Heap::PRE_HEAP:
kpeter@2535
   166
                heap.push(v, d + cost[e] + potential[v]);
kpeter@2535
   167
                pred[v] = e;
kpeter@2535
   168
                break;
kpeter@2535
   169
              case Heap::IN_HEAP:
kpeter@2535
   170
                nd = d + cost[e] + potential[v];
kpeter@2535
   171
                if (nd < heap[v]) {
kpeter@2535
   172
                  heap.decrease(v, nd);
kpeter@2535
   173
                  pred[v] = e;
kpeter@2535
   174
                }
kpeter@2535
   175
                break;
kpeter@2535
   176
              case Heap::POST_HEAP:
kpeter@2535
   177
                break;
kpeter@2535
   178
              }
kpeter@2535
   179
            }
kpeter@2535
   180
          }
kpeter@2535
   181
kpeter@2535
   182
          // Traversing incoming edges
kpeter@2535
   183
          for (InEdgeIt e(graph, u); e != INVALID; ++e) {
kpeter@2535
   184
            if (flow[e] >= delta) {
kpeter@2535
   185
              v = graph.source(e);
kpeter@2535
   186
              switch(heap.state(v)) {
kpeter@2535
   187
              case Heap::PRE_HEAP:
kpeter@2535
   188
                heap.push(v, d - cost[e] + potential[v]);
kpeter@2535
   189
                pred[v] = e;
kpeter@2535
   190
                break;
kpeter@2535
   191
              case Heap::IN_HEAP:
kpeter@2535
   192
                nd = d - cost[e] + potential[v];
kpeter@2535
   193
                if (nd < heap[v]) {
kpeter@2535
   194
                  heap.decrease(v, nd);
kpeter@2535
   195
                  pred[v] = e;
kpeter@2535
   196
                }
kpeter@2535
   197
                break;
kpeter@2535
   198
              case Heap::POST_HEAP:
kpeter@2535
   199
                break;
kpeter@2535
   200
              }
kpeter@2535
   201
            }
kpeter@2535
   202
          }
kpeter@2535
   203
        }
kpeter@2535
   204
        if (heap.empty()) return INVALID;
kpeter@2535
   205
kpeter@2535
   206
        // Updating potentials of processed nodes
kpeter@2535
   207
        Node t = heap.top();
kpeter@2535
   208
        Cost dt = heap.prio();
kpeter@2535
   209
        for (int i = 0; i < proc_nodes.size(); ++i)
kpeter@2535
   210
          potential[proc_nodes[i]] -= dist[proc_nodes[i]] - dt;
kpeter@2535
   211
kpeter@2535
   212
        return t;
deba@2440
   213
      }
deba@2440
   214
kpeter@2535
   215
    }; //class ResidualDijkstra
deba@2440
   216
deba@2440
   217
  protected:
deba@2440
   218
kpeter@2556
   219
    /// The directed graph the algorithm runs on.
deba@2440
   220
    const Graph &graph;
kpeter@2556
   221
    /// The original lower bound map.
deba@2440
   222
    const LowerMap *lower;
kpeter@2556
   223
    /// The modified capacity map.
kpeter@2556
   224
    CapacityEdgeMap capacity;
kpeter@2556
   225
    /// The cost map.
deba@2440
   226
    const CostMap &cost;
kpeter@2556
   227
    /// The modified supply map.
kpeter@2556
   228
    SupplyNodeMap supply;
deba@2440
   229
    bool valid_supply;
deba@2440
   230
kpeter@2556
   231
    /// The edge map of the current flow.
deba@2440
   232
    FlowMap flow;
kpeter@2556
   233
    /// The potential node map.
deba@2440
   234
    PotentialMap potential;
deba@2440
   235
kpeter@2556
   236
    /// The residual capacity map.
kpeter@2556
   237
    CapacityEdgeMap res_cap;
kpeter@2556
   238
    /// The excess map.
kpeter@2556
   239
    SupplyNodeMap excess;
kpeter@2556
   240
    /// The excess nodes (i.e. the nodes with positive excess).
kpeter@2535
   241
    std::vector<Node> excess_nodes;
kpeter@2556
   242
    /// The deficit nodes (i.e. the nodes with negative excess).
kpeter@2556
   243
    std::vector<Node> deficit_nodes;
deba@2440
   244
kpeter@2556
   245
    /// The scaling status (enabled or disabled).
kpeter@2535
   246
    ScalingEnum scaling;
kpeter@2556
   247
    /// The \c delta parameter used for capacity scaling.
deba@2440
   248
    Capacity delta;
kpeter@2556
   249
    /// The maximum number of phases.
kpeter@2556
   250
    int phase_num;
deba@2440
   251
kpeter@2535
   252
    /// \brief Implementation of the \ref Dijkstra algorithm for
kpeter@2535
   253
    /// finding augmenting shortest paths in the residual network.
kpeter@2535
   254
    ResidualDijkstra dijkstra;
kpeter@2556
   255
    /// The map of predecessors edges.
kpeter@2535
   256
    PredMap pred;
deba@2440
   257
deba@2440
   258
  public :
deba@2440
   259
deba@2440
   260
    /// \brief General constructor of the class (with lower bounds).
deba@2440
   261
    ///
deba@2440
   262
    /// General constructor of the class (with lower bounds).
deba@2440
   263
    ///
deba@2440
   264
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   265
    /// \param _lower The lower bounds of the edges.
deba@2440
   266
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   267
    /// \param _cost The cost (length) values of the edges.
deba@2440
   268
    /// \param _supply The supply values of the nodes (signed).
deba@2440
   269
    CapacityScaling( const Graph &_graph,
kpeter@2535
   270
                     const LowerMap &_lower,
kpeter@2535
   271
                     const CapacityMap &_capacity,
kpeter@2535
   272
                     const CostMap &_cost,
kpeter@2535
   273
                     const SupplyMap &_supply ) :
deba@2440
   274
      graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
deba@2440
   275
      supply(_graph), flow(_graph, 0), potential(_graph, 0),
kpeter@2535
   276
      res_cap(_graph), excess(_graph), pred(_graph),
kpeter@2535
   277
      dijkstra(graph, flow, res_cap, cost, excess, potential, pred)
deba@2440
   278
    {
kpeter@2556
   279
      // Removing non-zero lower bounds
deba@2440
   280
      capacity = subMap(_capacity, _lower);
kpeter@2535
   281
      res_cap = capacity;
deba@2440
   282
      Supply sum = 0;
deba@2440
   283
      for (NodeIt n(graph); n != INVALID; ++n) {
kpeter@2535
   284
        Supply s = _supply[n];
kpeter@2535
   285
        for (InEdgeIt e(graph, n); e != INVALID; ++e)
kpeter@2535
   286
          s += _lower[e];
kpeter@2535
   287
        for (OutEdgeIt e(graph, n); e != INVALID; ++e)
kpeter@2535
   288
          s -= _lower[e];
kpeter@2535
   289
        supply[n] = s;
kpeter@2535
   290
        sum += s;
deba@2440
   291
      }
deba@2440
   292
      valid_supply = sum == 0;
deba@2440
   293
    }
deba@2440
   294
deba@2440
   295
    /// \brief General constructor of the class (without lower bounds).
deba@2440
   296
    ///
deba@2440
   297
    /// General constructor of the class (without lower bounds).
deba@2440
   298
    ///
deba@2440
   299
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   300
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   301
    /// \param _cost The cost (length) values of the edges.
deba@2440
   302
    /// \param _supply The supply values of the nodes (signed).
deba@2440
   303
    CapacityScaling( const Graph &_graph,
kpeter@2535
   304
                     const CapacityMap &_capacity,
kpeter@2535
   305
                     const CostMap &_cost,
kpeter@2535
   306
                     const SupplyMap &_supply ) :
deba@2440
   307
      graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
deba@2440
   308
      supply(_supply), flow(_graph, 0), potential(_graph, 0),
kpeter@2535
   309
      res_cap(_capacity), excess(_graph), pred(_graph),
kpeter@2535
   310
      dijkstra(graph, flow, res_cap, cost, excess, potential)
deba@2440
   311
    {
deba@2440
   312
      // Checking the sum of supply values
deba@2440
   313
      Supply sum = 0;
deba@2440
   314
      for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
deba@2440
   315
      valid_supply = sum == 0;
deba@2440
   316
    }
deba@2440
   317
deba@2440
   318
    /// \brief Simple constructor of the class (with lower bounds).
deba@2440
   319
    ///
deba@2440
   320
    /// Simple constructor of the class (with lower bounds).
deba@2440
   321
    ///
deba@2440
   322
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   323
    /// \param _lower The lower bounds of the edges.
deba@2440
   324
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   325
    /// \param _cost The cost (length) values of the edges.
deba@2440
   326
    /// \param _s The source node.
deba@2440
   327
    /// \param _t The target node.
deba@2440
   328
    /// \param _flow_value The required amount of flow from node \c _s
kpeter@2556
   329
    /// to node \c _t (i.e. the supply of \c _s and the demand of \c _t).
deba@2440
   330
    CapacityScaling( const Graph &_graph,
kpeter@2535
   331
                     const LowerMap &_lower,
kpeter@2535
   332
                     const CapacityMap &_capacity,
kpeter@2535
   333
                     const CostMap &_cost,
kpeter@2535
   334
                     Node _s, Node _t,
kpeter@2535
   335
                     Supply _flow_value ) :
deba@2440
   336
      graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
deba@2440
   337
      supply(_graph), flow(_graph, 0), potential(_graph, 0),
kpeter@2535
   338
      res_cap(_graph), excess(_graph), pred(_graph),
kpeter@2535
   339
      dijkstra(graph, flow, res_cap, cost, excess, potential)
deba@2440
   340
    {
kpeter@2556
   341
      // Removing non-zero lower bounds
deba@2440
   342
      capacity = subMap(_capacity, _lower);
kpeter@2535
   343
      res_cap = capacity;
deba@2440
   344
      for (NodeIt n(graph); n != INVALID; ++n) {
kpeter@2535
   345
        Supply s = 0;
kpeter@2535
   346
        if (n == _s) s =  _flow_value;
kpeter@2535
   347
        if (n == _t) s = -_flow_value;
kpeter@2535
   348
        for (InEdgeIt e(graph, n); e != INVALID; ++e)
kpeter@2535
   349
          s += _lower[e];
kpeter@2535
   350
        for (OutEdgeIt e(graph, n); e != INVALID; ++e)
kpeter@2535
   351
          s -= _lower[e];
kpeter@2535
   352
        supply[n] = s;
deba@2440
   353
      }
deba@2440
   354
      valid_supply = true;
deba@2440
   355
    }
deba@2440
   356
deba@2440
   357
    /// \brief Simple constructor of the class (without lower bounds).
deba@2440
   358
    ///
deba@2440
   359
    /// Simple constructor of the class (without lower bounds).
deba@2440
   360
    ///
deba@2440
   361
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   362
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   363
    /// \param _cost The cost (length) values of the edges.
deba@2440
   364
    /// \param _s The source node.
deba@2440
   365
    /// \param _t The target node.
deba@2440
   366
    /// \param _flow_value The required amount of flow from node \c _s
kpeter@2556
   367
    /// to node \c _t (i.e. the supply of \c _s and the demand of \c _t).
deba@2440
   368
    CapacityScaling( const Graph &_graph,
kpeter@2535
   369
                     const CapacityMap &_capacity,
kpeter@2535
   370
                     const CostMap &_cost,
kpeter@2535
   371
                     Node _s, Node _t,
kpeter@2535
   372
                     Supply _flow_value ) :
deba@2440
   373
      graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
deba@2440
   374
      supply(_graph, 0), flow(_graph, 0), potential(_graph, 0),
kpeter@2535
   375
      res_cap(_capacity), excess(_graph), pred(_graph),
kpeter@2535
   376
      dijkstra(graph, flow, res_cap, cost, excess, potential)
deba@2440
   377
    {
deba@2440
   378
      supply[_s] =  _flow_value;
deba@2440
   379
      supply[_t] = -_flow_value;
deba@2440
   380
      valid_supply = true;
deba@2440
   381
    }
deba@2440
   382
kpeter@2556
   383
    /// \brief Runs the algorithm.
kpeter@2556
   384
    ///
kpeter@2556
   385
    /// Runs the algorithm.
kpeter@2556
   386
    ///
kpeter@2556
   387
    /// \param scaling_mode The scaling mode. In case of WITH_SCALING
kpeter@2556
   388
    /// capacity scaling is enabled in the algorithm (this is the
kpeter@2556
   389
    /// default) otherwise it is disabled.
kpeter@2556
   390
    /// If the maximum edge capacity and/or the amount of total supply
kpeter@2556
   391
    /// is small, the algorithm could be slightly faster without
kpeter@2556
   392
    /// scaling.
kpeter@2556
   393
    ///
kpeter@2556
   394
    /// \return \c true if a feasible flow can be found.
kpeter@2556
   395
    bool run(int scaling_mode = WITH_SCALING) {
kpeter@2556
   396
      return init(scaling_mode) && start();
kpeter@2556
   397
    }
kpeter@2556
   398
deba@2440
   399
    /// \brief Returns a const reference to the flow map.
deba@2440
   400
    ///
deba@2440
   401
    /// Returns a const reference to the flow map.
deba@2440
   402
    ///
deba@2440
   403
    /// \pre \ref run() must be called before using this function.
deba@2440
   404
    const FlowMap& flowMap() const {
deba@2440
   405
      return flow;
deba@2440
   406
    }
deba@2440
   407
deba@2440
   408
    /// \brief Returns a const reference to the potential map (the dual
deba@2440
   409
    /// solution).
deba@2440
   410
    ///
deba@2440
   411
    /// Returns a const reference to the potential map (the dual
deba@2440
   412
    /// solution).
deba@2440
   413
    ///
deba@2440
   414
    /// \pre \ref run() must be called before using this function.
deba@2440
   415
    const PotentialMap& potentialMap() const {
deba@2440
   416
      return potential;
deba@2440
   417
    }
deba@2440
   418
deba@2440
   419
    /// \brief Returns the total cost of the found flow.
deba@2440
   420
    ///
deba@2440
   421
    /// Returns the total cost of the found flow. The complexity of the
deba@2440
   422
    /// function is \f$ O(e) \f$.
deba@2440
   423
    ///
deba@2440
   424
    /// \pre \ref run() must be called before using this function.
deba@2440
   425
    Cost totalCost() const {
deba@2440
   426
      Cost c = 0;
deba@2440
   427
      for (EdgeIt e(graph); e != INVALID; ++e)
kpeter@2535
   428
        c += flow[e] * cost[e];
deba@2440
   429
      return c;
deba@2440
   430
    }
deba@2440
   431
deba@2440
   432
  protected:
deba@2440
   433
kpeter@2556
   434
    /// Initializes the algorithm.
kpeter@2535
   435
    bool init(int scaling_mode) {
deba@2440
   436
      if (!valid_supply) return false;
kpeter@2535
   437
      excess = supply;
deba@2440
   438
deba@2440
   439
      // Initilaizing delta value
kpeter@2535
   440
      if (scaling_mode == WITH_SCALING) {
kpeter@2535
   441
        // With scaling
kpeter@2535
   442
        Supply max_sup = 0, max_dem = 0;
kpeter@2535
   443
        for (NodeIt n(graph); n != INVALID; ++n) {
kpeter@2535
   444
          if ( supply[n] > max_sup) max_sup =  supply[n];
kpeter@2535
   445
          if (-supply[n] > max_dem) max_dem = -supply[n];
kpeter@2535
   446
        }
kpeter@2535
   447
        if (max_dem < max_sup) max_sup = max_dem;
kpeter@2535
   448
        phase_num = 0;
kpeter@2535
   449
        for (delta = 1; 2 * delta <= max_sup; delta *= 2)
kpeter@2535
   450
          ++phase_num;
kpeter@2535
   451
      } else {
kpeter@2535
   452
        // Without scaling
kpeter@2535
   453
        delta = 1;
deba@2440
   454
      }
deba@2440
   455
      return true;
deba@2440
   456
    }
deba@2440
   457
kpeter@2556
   458
    /// Executes the algorithm.
kpeter@2535
   459
    bool start() {
kpeter@2535
   460
      if (delta > 1)
kpeter@2535
   461
        return startWithScaling();
kpeter@2535
   462
      else
kpeter@2535
   463
        return startWithoutScaling();
kpeter@2535
   464
    }
kpeter@2535
   465
kpeter@2535
   466
    /// \brief Executes the capacity scaling version of the successive
kpeter@2535
   467
    /// shortest path algorithm.
kpeter@2535
   468
    bool startWithScaling() {
kpeter@2535
   469
      // Processing capacity scaling phases
kpeter@2535
   470
      Node s, t;
kpeter@2535
   471
      int phase_cnt = 0;
kpeter@2535
   472
      int factor = 4;
kpeter@2535
   473
      while (true) {
kpeter@2535
   474
        // Saturating all edges not satisfying the optimality condition
kpeter@2535
   475
        for (EdgeIt e(graph); e != INVALID; ++e) {
kpeter@2535
   476
          Node u = graph.source(e), v = graph.target(e);
kpeter@2535
   477
          Cost c = cost[e] - potential[u] + potential[v];
kpeter@2535
   478
          if (c < 0 && res_cap[e] >= delta) {
kpeter@2535
   479
            excess[u] -= res_cap[e];
kpeter@2535
   480
            excess[v] += res_cap[e];
kpeter@2535
   481
            flow[e] = capacity[e];
kpeter@2535
   482
            res_cap[e] = 0;
kpeter@2535
   483
          }
kpeter@2535
   484
          else if (c > 0 && flow[e] >= delta) {
kpeter@2535
   485
            excess[u] += flow[e];
kpeter@2535
   486
            excess[v] -= flow[e];
kpeter@2535
   487
            flow[e] = 0;
kpeter@2535
   488
            res_cap[e] = capacity[e];
kpeter@2535
   489
          }
kpeter@2535
   490
        }
kpeter@2535
   491
kpeter@2535
   492
        // Finding excess nodes and deficit nodes
kpeter@2535
   493
        excess_nodes.clear();
kpeter@2535
   494
        deficit_nodes.clear();
kpeter@2535
   495
        for (NodeIt n(graph); n != INVALID; ++n) {
kpeter@2535
   496
          if (excess[n] >=  delta) excess_nodes.push_back(n);
kpeter@2535
   497
          if (excess[n] <= -delta) deficit_nodes.push_back(n);
kpeter@2535
   498
        }
kpeter@2556
   499
        int next_node = 0;
kpeter@2535
   500
kpeter@2535
   501
        // Finding augmenting shortest paths
kpeter@2535
   502
        while (next_node < excess_nodes.size()) {
kpeter@2535
   503
          // Checking deficit nodes
kpeter@2535
   504
          if (delta > 1) {
kpeter@2535
   505
            bool delta_deficit = false;
kpeter@2535
   506
            for (int i = 0; i < deficit_nodes.size(); ++i) {
kpeter@2535
   507
              if (excess[deficit_nodes[i]] <= -delta) {
kpeter@2535
   508
                delta_deficit = true;
kpeter@2535
   509
                break;
kpeter@2535
   510
              }
kpeter@2535
   511
            }
kpeter@2535
   512
            if (!delta_deficit) break;
kpeter@2535
   513
          }
kpeter@2535
   514
kpeter@2535
   515
          // Running Dijkstra
kpeter@2535
   516
          s = excess_nodes[next_node];
kpeter@2535
   517
          if ((t = dijkstra.run(s, delta)) == INVALID) {
kpeter@2535
   518
            if (delta > 1) {
kpeter@2535
   519
              ++next_node;
kpeter@2535
   520
              continue;
kpeter@2535
   521
            }
kpeter@2535
   522
            return false;
kpeter@2535
   523
          }
kpeter@2535
   524
kpeter@2535
   525
          // Augmenting along a shortest path from s to t.
kpeter@2535
   526
          Capacity d = excess[s] < -excess[t] ? excess[s] : -excess[t];
kpeter@2535
   527
          Node u = t;
kpeter@2535
   528
          Edge e;
kpeter@2535
   529
          if (d > delta) {
kpeter@2535
   530
            while ((e = pred[u]) != INVALID) {
kpeter@2535
   531
              Capacity rc;
kpeter@2535
   532
              if (u == graph.target(e)) {
kpeter@2535
   533
                rc = res_cap[e];
kpeter@2535
   534
                u = graph.source(e);
kpeter@2535
   535
              } else {
kpeter@2535
   536
                rc = flow[e];
kpeter@2535
   537
                u = graph.target(e);
kpeter@2535
   538
              }
kpeter@2535
   539
              if (rc < d) d = rc;
kpeter@2535
   540
            }
kpeter@2535
   541
          }
kpeter@2535
   542
          u = t;
kpeter@2535
   543
          while ((e = pred[u]) != INVALID) {
kpeter@2535
   544
            if (u == graph.target(e)) {
kpeter@2535
   545
              flow[e] += d;
kpeter@2535
   546
              res_cap[e] -= d;
kpeter@2535
   547
              u = graph.source(e);
kpeter@2535
   548
            } else {
kpeter@2535
   549
              flow[e] -= d;
kpeter@2535
   550
              res_cap[e] += d;
kpeter@2535
   551
              u = graph.target(e);
kpeter@2535
   552
            }
kpeter@2535
   553
          }
kpeter@2535
   554
          excess[s] -= d;
kpeter@2535
   555
          excess[t] += d;
kpeter@2535
   556
kpeter@2535
   557
          if (excess[s] < delta) ++next_node;
kpeter@2535
   558
        }
kpeter@2535
   559
kpeter@2535
   560
        if (delta == 1) break;
kpeter@2535
   561
        if (++phase_cnt > phase_num / 4) factor = 2;
kpeter@2535
   562
        delta = delta <= factor ? 1 : delta / factor;
kpeter@2535
   563
      }
kpeter@2535
   564
kpeter@2556
   565
      // Handling non-zero lower bounds
kpeter@2535
   566
      if (lower) {
kpeter@2535
   567
        for (EdgeIt e(graph); e != INVALID; ++e)
kpeter@2535
   568
          flow[e] += (*lower)[e];
kpeter@2535
   569
      }
kpeter@2535
   570
      return true;
kpeter@2535
   571
    }
kpeter@2535
   572
deba@2440
   573
    /// \brief Executes the successive shortest path algorithm without
deba@2440
   574
    /// capacity scaling.
kpeter@2535
   575
    bool startWithoutScaling() {
deba@2440
   576
      // Finding excess nodes
kpeter@2556
   577
      for (NodeIt n(graph); n != INVALID; ++n)
kpeter@2535
   578
        if (excess[n] > 0) excess_nodes.push_back(n);
deba@2440
   579
      if (excess_nodes.size() == 0) return true;
kpeter@2556
   580
      int next_node = 0;
deba@2440
   581
deba@2457
   582
      // Finding shortest paths
kpeter@2535
   583
      Node s, t;
kpeter@2535
   584
      while ( excess[excess_nodes[next_node]] > 0 ||
kpeter@2535
   585
              ++next_node < excess_nodes.size() )
deba@2440
   586
      {
kpeter@2535
   587
        // Running Dijkstra
kpeter@2535
   588
        s = excess_nodes[next_node];
kpeter@2535
   589
        if ((t = dijkstra.run(s, 1)) == INVALID)
kpeter@2535
   590
          return false;
deba@2440
   591
kpeter@2535
   592
        // Augmenting along a shortest path from s to t
kpeter@2535
   593
        Capacity d = excess[s] < -excess[t] ? excess[s] : -excess[t];
kpeter@2535
   594
        Node u = t;
kpeter@2535
   595
        Edge e;
kpeter@2535
   596
        while ((e = pred[u]) != INVALID) {
kpeter@2535
   597
          Capacity rc;
kpeter@2535
   598
          if (u == graph.target(e)) {
kpeter@2535
   599
            rc = res_cap[e];
kpeter@2535
   600
            u = graph.source(e);
kpeter@2535
   601
          } else {
kpeter@2535
   602
            rc = flow[e];
kpeter@2535
   603
            u = graph.target(e);
kpeter@2535
   604
          }
kpeter@2535
   605
          if (rc < d) d = rc;
kpeter@2535
   606
        }
kpeter@2535
   607
        u = t;
kpeter@2535
   608
        while ((e = pred[u]) != INVALID) {
kpeter@2535
   609
          if (u == graph.target(e)) {
kpeter@2535
   610
            flow[e] += d;
kpeter@2535
   611
            res_cap[e] -= d;
kpeter@2535
   612
            u = graph.source(e);
kpeter@2535
   613
          } else {
kpeter@2535
   614
            flow[e] -= d;
kpeter@2535
   615
            res_cap[e] += d;
kpeter@2535
   616
            u = graph.target(e);
kpeter@2535
   617
          }
kpeter@2535
   618
        }
kpeter@2535
   619
        excess[s] -= d;
kpeter@2535
   620
        excess[t] += d;
deba@2440
   621
      }
deba@2440
   622
kpeter@2556
   623
      // Handling non-zero lower bounds
deba@2440
   624
      if (lower) {
kpeter@2535
   625
        for (EdgeIt e(graph); e != INVALID; ++e)
kpeter@2535
   626
          flow[e] += (*lower)[e];
deba@2440
   627
      }
deba@2440
   628
      return true;
deba@2440
   629
    }
deba@2440
   630
deba@2440
   631
  }; //class CapacityScaling
deba@2440
   632
deba@2440
   633
  ///@}
deba@2440
   634
deba@2440
   635
} //namespace lemon
deba@2440
   636
deba@2440
   637
#endif //LEMON_CAPACITY_SCALING_H