lemon/cycle_canceling.h
author deba
Mon, 17 Dec 2007 09:54:26 +0000
changeset 2542 faaa54ec4520
parent 2526 b7727edd44f2
child 2544 5143b01bf1d5
permissions -rw-r--r--
Bug fix
deba@2440
     1
/* -*- C++ -*-
deba@2440
     2
 *
deba@2440
     3
 * This file is a part of LEMON, a generic C++ optimization library
deba@2440
     4
 *
deba@2440
     5
 * Copyright (C) 2003-2007
deba@2440
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@2440
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@2440
     8
 *
deba@2440
     9
 * Permission to use, modify and distribute this software is granted
deba@2440
    10
 * provided that this copyright notice appears in all copies. For
deba@2440
    11
 * precise terms see the accompanying LICENSE file.
deba@2440
    12
 *
deba@2440
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@2440
    14
 * express or implied, and with no claim as to its suitability for any
deba@2440
    15
 * purpose.
deba@2440
    16
 *
deba@2440
    17
 */
deba@2440
    18
deba@2440
    19
#ifndef LEMON_CYCLE_CANCELING_H
deba@2440
    20
#define LEMON_CYCLE_CANCELING_H
deba@2440
    21
deba@2440
    22
/// \ingroup min_cost_flow
deba@2440
    23
///
deba@2440
    24
/// \file
deba@2457
    25
/// \brief A cycle-canceling algorithm for finding a minimum cost flow.
deba@2440
    26
deba@2440
    27
#include <vector>
kpeter@2509
    28
#include <lemon/graph_adaptor.h>
deba@2440
    29
#include <lemon/circulation.h>
deba@2440
    30
deba@2457
    31
/// \brief The used cycle-canceling method.
deba@2440
    32
#define LIMITED_CYCLE_CANCELING
deba@2440
    33
//#define MIN_MEAN_CYCLE_CANCELING
deba@2440
    34
deba@2440
    35
#ifdef LIMITED_CYCLE_CANCELING
deba@2440
    36
  #include <lemon/bellman_ford.h>
deba@2440
    37
  /// \brief The maximum number of iterations for the first execution
deba@2440
    38
  /// of the \ref lemon::BellmanFord "Bellman-Ford" algorithm.
deba@2457
    39
  /// It should be at least 2.
deba@2440
    40
  #define STARTING_LIMIT	2
deba@2440
    41
  /// \brief The iteration limit for the
deba@2440
    42
  /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
deba@2457
    43
  /// <tt>ALPHA_MUL / ALPHA_DIV</tt> in every round.
deba@2457
    44
  /// <tt>ALPHA_MUL / ALPHA_DIV</tt> must be greater than 1.
deba@2440
    45
  #define ALPHA_MUL		3
deba@2440
    46
  /// \brief The iteration limit for the
deba@2440
    47
  /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
deba@2457
    48
  /// <tt>ALPHA_MUL / ALPHA_DIV</tt> in every round.
deba@2457
    49
  /// <tt>ALPHA_MUL / ALPHA_DIV</tt> must be greater than 1.
deba@2440
    50
  #define ALPHA_DIV		2
deba@2440
    51
deba@2440
    52
//#define _ONLY_ONE_CYCLE_
deba@2457
    53
//#define _NO_BACK_STEP_
deba@2440
    54
//#define _DEBUG_ITER_
deba@2440
    55
#endif
deba@2440
    56
deba@2440
    57
#ifdef MIN_MEAN_CYCLE_CANCELING
deba@2440
    58
  #include <lemon/min_mean_cycle.h>
deba@2440
    59
  #include <lemon/path.h>
deba@2440
    60
#endif
deba@2440
    61
deba@2440
    62
namespace lemon {
deba@2440
    63
deba@2440
    64
  /// \addtogroup min_cost_flow
deba@2440
    65
  /// @{
deba@2440
    66
deba@2457
    67
  /// \brief Implementation of a cycle-canceling algorithm for finding
deba@2440
    68
  /// a minimum cost flow.
deba@2440
    69
  ///
deba@2457
    70
  /// \ref lemon::CycleCanceling "CycleCanceling" implements a
deba@2457
    71
  /// cycle-canceling algorithm for finding a minimum cost flow.
deba@2440
    72
  ///
deba@2440
    73
  /// \param Graph The directed graph type the algorithm runs on.
deba@2440
    74
  /// \param LowerMap The type of the lower bound map.
deba@2440
    75
  /// \param CapacityMap The type of the capacity (upper bound) map.
deba@2440
    76
  /// \param CostMap The type of the cost (length) map.
deba@2440
    77
  /// \param SupplyMap The type of the supply map.
deba@2440
    78
  ///
deba@2440
    79
  /// \warning
deba@2440
    80
  /// - Edge capacities and costs should be nonnegative integers.
deba@2440
    81
  ///	However \c CostMap::Value should be signed type.
kpeter@2509
    82
  /// - Supply values should be signed integers.
deba@2440
    83
  /// - \c LowerMap::Value must be convertible to
deba@2440
    84
  ///	\c CapacityMap::Value and \c CapacityMap::Value must be
deba@2440
    85
  ///	convertible to \c SupplyMap::Value.
deba@2440
    86
  ///
deba@2440
    87
  /// \author Peter Kovacs
deba@2440
    88
kpeter@2533
    89
  template < typename Graph,
kpeter@2533
    90
             typename LowerMap = typename Graph::template EdgeMap<int>,
kpeter@2533
    91
             typename CapacityMap = LowerMap,
kpeter@2533
    92
             typename CostMap = typename Graph::template EdgeMap<int>,
kpeter@2533
    93
             typename SupplyMap = typename Graph::template NodeMap
kpeter@2533
    94
                                  <typename CapacityMap::Value> >
deba@2440
    95
  class CycleCanceling
deba@2440
    96
  {
deba@2440
    97
    typedef typename Graph::Node Node;
deba@2440
    98
    typedef typename Graph::NodeIt NodeIt;
deba@2440
    99
    typedef typename Graph::Edge Edge;
deba@2440
   100
    typedef typename Graph::EdgeIt EdgeIt;
deba@2440
   101
    typedef typename Graph::InEdgeIt InEdgeIt;
deba@2440
   102
    typedef typename Graph::OutEdgeIt OutEdgeIt;
deba@2440
   103
deba@2440
   104
    typedef typename LowerMap::Value Lower;
deba@2440
   105
    typedef typename CapacityMap::Value Capacity;
deba@2440
   106
    typedef typename CostMap::Value Cost;
deba@2440
   107
    typedef typename SupplyMap::Value Supply;
deba@2440
   108
    typedef typename Graph::template EdgeMap<Capacity> CapacityRefMap;
deba@2440
   109
    typedef typename Graph::template NodeMap<Supply> SupplyRefMap;
deba@2440
   110
deba@2440
   111
    typedef ResGraphAdaptor< const Graph, Capacity,
deba@2440
   112
			     CapacityRefMap, CapacityRefMap > ResGraph;
deba@2440
   113
    typedef typename ResGraph::Node ResNode;
deba@2440
   114
    typedef typename ResGraph::NodeIt ResNodeIt;
deba@2440
   115
    typedef typename ResGraph::Edge ResEdge;
deba@2440
   116
    typedef typename ResGraph::EdgeIt ResEdgeIt;
deba@2440
   117
deba@2440
   118
  public:
deba@2440
   119
deba@2440
   120
    /// \brief The type of the flow map.
deba@2440
   121
    typedef CapacityRefMap FlowMap;
deba@2440
   122
deba@2440
   123
  protected:
deba@2440
   124
deba@2440
   125
    /// \brief Map adaptor class for handling residual edge costs.
deba@2440
   126
    class ResCostMap : public MapBase<ResEdge, Cost>
deba@2440
   127
    {
deba@2440
   128
    private:
deba@2440
   129
deba@2440
   130
      const CostMap &cost_map;
deba@2440
   131
deba@2440
   132
    public:
deba@2440
   133
deba@2440
   134
      ResCostMap(const CostMap &_cost) : cost_map(_cost) {}
deba@2440
   135
kpeter@2509
   136
      Cost operator[](const ResEdge &e) const {
deba@2440
   137
	return ResGraph::forward(e) ? cost_map[e] : -cost_map[e];
deba@2440
   138
      }
deba@2440
   139
deba@2440
   140
    }; //class ResCostMap
deba@2440
   141
deba@2440
   142
  protected:
deba@2440
   143
deba@2440
   144
    /// \brief The directed graph the algorithm runs on.
deba@2440
   145
    const Graph &graph;
deba@2440
   146
    /// \brief The original lower bound map.
deba@2440
   147
    const LowerMap *lower;
deba@2440
   148
    /// \brief The modified capacity map.
deba@2440
   149
    CapacityRefMap capacity;
deba@2440
   150
    /// \brief The cost map.
deba@2440
   151
    const CostMap &cost;
deba@2440
   152
    /// \brief The modified supply map.
deba@2440
   153
    SupplyRefMap supply;
deba@2440
   154
    /// \brief The sum of supply values equals zero.
deba@2440
   155
    bool valid_supply;
deba@2440
   156
deba@2440
   157
    /// \brief The current flow.
deba@2440
   158
    FlowMap flow;
deba@2440
   159
    /// \brief The residual graph.
deba@2440
   160
    ResGraph res_graph;
deba@2440
   161
    /// \brief The residual cost map.
deba@2440
   162
    ResCostMap res_cost;
deba@2440
   163
deba@2440
   164
  public :
deba@2440
   165
deba@2440
   166
    /// \brief General constructor of the class (with lower bounds).
deba@2440
   167
    ///
deba@2440
   168
    /// General constructor of the class (with lower bounds).
deba@2440
   169
    ///
deba@2440
   170
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   171
    /// \param _lower The lower bounds of the edges.
deba@2440
   172
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   173
    /// \param _cost The cost (length) values of the edges.
deba@2440
   174
    /// \param _supply The supply values of the nodes (signed).
deba@2440
   175
    CycleCanceling( const Graph &_graph,
deba@2440
   176
		    const LowerMap &_lower,
deba@2440
   177
		    const CapacityMap &_capacity,
deba@2440
   178
		    const CostMap &_cost,
deba@2440
   179
		    const SupplyMap &_supply ) :
deba@2440
   180
      graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
deba@2457
   181
      supply(_graph), flow(_graph, 0),
deba@2440
   182
      res_graph(_graph, capacity, flow), res_cost(cost)
deba@2440
   183
    {
deba@2440
   184
      // Removing nonzero lower bounds
deba@2440
   185
      capacity = subMap(_capacity, _lower);
deba@2440
   186
      Supply sum = 0;
deba@2440
   187
      for (NodeIt n(graph); n != INVALID; ++n) {
deba@2440
   188
	Supply s = _supply[n];
deba@2440
   189
	for (InEdgeIt e(graph, n); e != INVALID; ++e)
deba@2440
   190
	  s += _lower[e];
deba@2440
   191
	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
deba@2440
   192
	  s -= _lower[e];
deba@2440
   193
	sum += (supply[n] = s);
deba@2440
   194
      }
deba@2440
   195
      valid_supply = sum == 0;
deba@2440
   196
    }
deba@2440
   197
deba@2440
   198
    /// \brief General constructor of the class (without lower bounds).
deba@2440
   199
    ///
deba@2440
   200
    /// General constructor of the class (without lower bounds).
deba@2440
   201
    ///
deba@2440
   202
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   203
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   204
    /// \param _cost The cost (length) values of the edges.
deba@2440
   205
    /// \param _supply The supply values of the nodes (signed).
deba@2440
   206
    CycleCanceling( const Graph &_graph,
deba@2440
   207
		    const CapacityMap &_capacity,
deba@2440
   208
		    const CostMap &_cost,
deba@2440
   209
		    const SupplyMap &_supply ) :
deba@2440
   210
      graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
deba@2457
   211
      supply(_supply), flow(_graph, 0),
deba@2440
   212
      res_graph(_graph, capacity, flow), res_cost(cost)
deba@2440
   213
    {
deba@2440
   214
      // Checking the sum of supply values
deba@2440
   215
      Supply sum = 0;
deba@2440
   216
      for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
deba@2440
   217
      valid_supply = sum == 0;
deba@2440
   218
    }
deba@2440
   219
deba@2440
   220
deba@2440
   221
    /// \brief Simple constructor of the class (with lower bounds).
deba@2440
   222
    ///
deba@2440
   223
    /// Simple constructor of the class (with lower bounds).
deba@2440
   224
    ///
deba@2440
   225
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   226
    /// \param _lower The lower bounds of the edges.
deba@2440
   227
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   228
    /// \param _cost The cost (length) values of the edges.
deba@2440
   229
    /// \param _s The source node.
deba@2440
   230
    /// \param _t The target node.
deba@2440
   231
    /// \param _flow_value The required amount of flow from node \c _s
deba@2440
   232
    /// to node \c _t (i.e. the supply of \c _s and the demand of
deba@2440
   233
    /// \c _t).
deba@2440
   234
    CycleCanceling( const Graph &_graph,
deba@2440
   235
		    const LowerMap &_lower,
deba@2440
   236
		    const CapacityMap &_capacity,
deba@2440
   237
		    const CostMap &_cost,
deba@2440
   238
		    Node _s, Node _t,
deba@2440
   239
		    Supply _flow_value ) :
deba@2440
   240
      graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
deba@2457
   241
      supply(_graph), flow(_graph, 0),
deba@2440
   242
      res_graph(_graph, capacity, flow), res_cost(cost)
deba@2440
   243
    {
deba@2440
   244
      // Removing nonzero lower bounds
deba@2440
   245
      capacity = subMap(_capacity, _lower);
deba@2440
   246
      for (NodeIt n(graph); n != INVALID; ++n) {
deba@2440
   247
	Supply s = 0;
deba@2440
   248
	if (n == _s) s =  _flow_value;
deba@2440
   249
	if (n == _t) s = -_flow_value;
deba@2440
   250
	for (InEdgeIt e(graph, n); e != INVALID; ++e)
deba@2440
   251
	  s += _lower[e];
deba@2440
   252
	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
deba@2440
   253
	  s -= _lower[e];
deba@2440
   254
	supply[n] = s;
deba@2440
   255
      }
deba@2440
   256
      valid_supply = true;
deba@2440
   257
    }
deba@2440
   258
deba@2440
   259
    /// \brief Simple constructor of the class (without lower bounds).
deba@2440
   260
    ///
deba@2440
   261
    /// Simple constructor of the class (without lower bounds).
deba@2440
   262
    ///
deba@2440
   263
    /// \param _graph The directed graph the algorithm runs on.
deba@2440
   264
    /// \param _capacity The capacities (upper bounds) of the edges.
deba@2440
   265
    /// \param _cost The cost (length) values of the edges.
deba@2440
   266
    /// \param _s The source node.
deba@2440
   267
    /// \param _t The target node.
deba@2440
   268
    /// \param _flow_value The required amount of flow from node \c _s
deba@2440
   269
    /// to node \c _t (i.e. the supply of \c _s and the demand of
deba@2440
   270
    /// \c _t).
deba@2440
   271
    CycleCanceling( const Graph &_graph,
deba@2440
   272
		    const CapacityMap &_capacity,
deba@2440
   273
		    const CostMap &_cost,
deba@2440
   274
		    Node _s, Node _t,
deba@2440
   275
		    Supply _flow_value ) :
deba@2440
   276
      graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
deba@2457
   277
      supply(_graph, 0), flow(_graph, 0),
deba@2440
   278
      res_graph(_graph, capacity, flow), res_cost(cost)
deba@2440
   279
    {
deba@2440
   280
      supply[_s] =  _flow_value;
deba@2440
   281
      supply[_t] = -_flow_value;
deba@2440
   282
      valid_supply = true;
deba@2440
   283
    }
deba@2440
   284
deba@2440
   285
    /// \brief Returns a const reference to the flow map.
deba@2440
   286
    ///
deba@2440
   287
    /// Returns a const reference to the flow map.
deba@2440
   288
    ///
deba@2440
   289
    /// \pre \ref run() must be called before using this function.
deba@2440
   290
    const FlowMap& flowMap() const {
deba@2440
   291
      return flow;
deba@2440
   292
    }
deba@2440
   293
deba@2440
   294
    /// \brief Returns the total cost of the found flow.
deba@2440
   295
    ///
deba@2440
   296
    /// Returns the total cost of the found flow. The complexity of the
deba@2440
   297
    /// function is \f$ O(e) \f$.
deba@2440
   298
    ///
deba@2440
   299
    /// \pre \ref run() must be called before using this function.
deba@2440
   300
    Cost totalCost() const {
deba@2440
   301
      Cost c = 0;
deba@2440
   302
      for (EdgeIt e(graph); e != INVALID; ++e)
deba@2440
   303
	c += flow[e] * cost[e];
deba@2440
   304
      return c;
deba@2440
   305
    }
deba@2440
   306
deba@2440
   307
    /// \brief Runs the algorithm.
deba@2440
   308
    ///
deba@2440
   309
    /// Runs the algorithm.
deba@2440
   310
    ///
deba@2440
   311
    /// \return \c true if a feasible flow can be found.
deba@2440
   312
    bool run() {
deba@2440
   313
      return init() && start();
deba@2440
   314
    }
deba@2440
   315
deba@2440
   316
  protected:
deba@2440
   317
deba@2440
   318
    /// \brief Initializes the algorithm.
deba@2440
   319
    bool init() {
deba@2440
   320
      // Checking the sum of supply values
deba@2440
   321
      Supply sum = 0;
deba@2440
   322
      for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
deba@2440
   323
      if (sum != 0) return false;
deba@2440
   324
deba@2440
   325
      // Finding a feasible flow
kpeter@2533
   326
      Circulation< Graph, ConstMap<Edge, Capacity>, CapacityRefMap,
kpeter@2533
   327
		   SupplyMap >
kpeter@2533
   328
	circulation( graph, constMap<Edge>((Capacity)0), capacity, 
kpeter@2533
   329
		     supply );
kpeter@2533
   330
      circulation.flowMap(flow);
kpeter@2533
   331
      return circulation.run() == -1;
deba@2440
   332
    }
deba@2440
   333
deba@2440
   334
#ifdef LIMITED_CYCLE_CANCELING
deba@2457
   335
    /// \brief Executes a cycle-canceling algorithm using
deba@2440
   336
    /// \ref lemon::BellmanFord "Bellman-Ford" algorithm with limited
deba@2440
   337
    /// iteration count.
deba@2440
   338
    bool start() {
deba@2440
   339
      typename BellmanFord<ResGraph, ResCostMap>::PredMap pred(res_graph);
deba@2440
   340
      typename ResGraph::template NodeMap<int> visited(res_graph);
deba@2440
   341
      std::vector<ResEdge> cycle;
deba@2440
   342
      int node_num = countNodes(graph);
deba@2440
   343
deba@2440
   344
#ifdef _DEBUG_ITER_
deba@2440
   345
      int cycle_num = 0;
deba@2440
   346
#endif
deba@2440
   347
      int length_bound = STARTING_LIMIT;
deba@2440
   348
      bool optimal = false;
deba@2440
   349
      while (!optimal) {
deba@2440
   350
	BellmanFord<ResGraph, ResCostMap> bf(res_graph, res_cost);
deba@2440
   351
	bf.predMap(pred);
deba@2440
   352
	bf.init(0);
deba@2440
   353
	int iter_num = 0;
deba@2440
   354
	bool cycle_found = false;
deba@2440
   355
	while (!cycle_found) {
deba@2457
   356
#ifdef _NO_BACK_STEP_
deba@2457
   357
	  int curr_iter_num = length_bound <= node_num ?
deba@2457
   358
			      length_bound - iter_num : node_num - iter_num;
deba@2457
   359
#else
deba@2440
   360
	  int curr_iter_num = iter_num + length_bound <= node_num ?
deba@2440
   361
			      length_bound : node_num - iter_num;
deba@2457
   362
#endif
deba@2440
   363
	  iter_num += curr_iter_num;
deba@2440
   364
	  int real_iter_num = curr_iter_num;
deba@2440
   365
	  for (int i = 0; i < curr_iter_num; ++i) {
deba@2440
   366
	    if (bf.processNextWeakRound()) {
deba@2440
   367
	      real_iter_num = i;
deba@2440
   368
	      break;
deba@2440
   369
	    }
deba@2440
   370
	  }
deba@2440
   371
	  if (real_iter_num < curr_iter_num) {
deba@2440
   372
	    optimal = true;
deba@2440
   373
	    break;
deba@2440
   374
	  } else {
deba@2440
   375
	    // Searching for node disjoint negative cycles
deba@2440
   376
	    for (ResNodeIt n(res_graph); n != INVALID; ++n)
deba@2440
   377
	      visited[n] = 0;
deba@2440
   378
	    int id = 0;
deba@2440
   379
	    for (ResNodeIt n(res_graph); n != INVALID; ++n) {
deba@2440
   380
	      if (visited[n] > 0) continue;
deba@2440
   381
	      visited[n] = ++id;
deba@2440
   382
	      ResNode u = pred[n] == INVALID ?
deba@2440
   383
			  INVALID : res_graph.source(pred[n]);
deba@2440
   384
	      while (u != INVALID && visited[u] == 0) {
deba@2440
   385
		visited[u] = id;
deba@2440
   386
		u = pred[u] == INVALID ?
deba@2440
   387
		    INVALID : res_graph.source(pred[u]);
deba@2440
   388
	      }
deba@2440
   389
	      if (u != INVALID && visited[u] == id) {
deba@2440
   390
		// Finding the negative cycle
deba@2440
   391
		cycle_found = true;
deba@2440
   392
		cycle.clear();
deba@2440
   393
		ResEdge e = pred[u];
deba@2440
   394
		cycle.push_back(e);
deba@2440
   395
		Capacity d = res_graph.rescap(e);
deba@2440
   396
		while (res_graph.source(e) != u) {
deba@2440
   397
		  cycle.push_back(e = pred[res_graph.source(e)]);
deba@2440
   398
		  if (res_graph.rescap(e) < d)
deba@2440
   399
		    d = res_graph.rescap(e);
deba@2440
   400
		}
deba@2440
   401
#ifdef _DEBUG_ITER_
deba@2440
   402
		++cycle_num;
deba@2440
   403
#endif
deba@2440
   404
		// Augmenting along the cycle
deba@2440
   405
		for (int i = 0; i < cycle.size(); ++i)
deba@2440
   406
		  res_graph.augment(cycle[i], d);
deba@2440
   407
#ifdef _ONLY_ONE_CYCLE_
deba@2440
   408
		break;
deba@2440
   409
#endif
deba@2440
   410
	      }
deba@2440
   411
	    }
deba@2440
   412
	  }
deba@2440
   413
deba@2440
   414
	  if (!cycle_found)
deba@2440
   415
	    length_bound = length_bound * ALPHA_MUL / ALPHA_DIV;
deba@2440
   416
	}
deba@2440
   417
      }
deba@2440
   418
deba@2440
   419
#ifdef _DEBUG_ITER_
deba@2457
   420
      std::cout << "Limited cycle-canceling algorithm finished. "
deba@2440
   421
		<< "Found " << cycle_num << " negative cycles."
deba@2440
   422
		<< std::endl;
deba@2440
   423
#endif
deba@2440
   424
deba@2440
   425
      // Handling nonzero lower bounds
deba@2440
   426
      if (lower) {
deba@2440
   427
	for (EdgeIt e(graph); e != INVALID; ++e)
deba@2440
   428
	  flow[e] += (*lower)[e];
deba@2440
   429
      }
deba@2440
   430
      return true;
deba@2440
   431
    }
deba@2440
   432
#endif
deba@2440
   433
deba@2440
   434
#ifdef MIN_MEAN_CYCLE_CANCELING
deba@2457
   435
    /// \brief Executes the minimum mean cycle-canceling algorithm
deba@2440
   436
    /// using \ref lemon::MinMeanCycle "MinMeanCycle" class.
deba@2440
   437
    bool start() {
deba@2440
   438
      typedef Path<ResGraph> ResPath;
deba@2440
   439
      MinMeanCycle<ResGraph, ResCostMap> mmc(res_graph, res_cost);
deba@2440
   440
      ResPath cycle;
deba@2440
   441
deba@2440
   442
#ifdef _DEBUG_ITER_
deba@2440
   443
      int cycle_num = 0;
deba@2440
   444
#endif
deba@2440
   445
      mmc.cyclePath(cycle).init();
deba@2440
   446
      if (mmc.findMinMean()) {
deba@2440
   447
	while (mmc.cycleLength() < 0) {
deba@2440
   448
#ifdef _DEBUG_ITER_
deba@2440
   449
	  ++iter;
deba@2440
   450
#endif
deba@2440
   451
	  // Finding the cycle
deba@2440
   452
	  mmc.findCycle();
deba@2440
   453
deba@2440
   454
	  // Finding the largest flow amount that can be augmented
deba@2440
   455
	  // along the cycle
deba@2440
   456
	  Capacity delta = 0;
deba@2440
   457
	  for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) {
deba@2440
   458
	    if (delta == 0 || res_graph.rescap(e) < delta)
deba@2440
   459
	      delta = res_graph.rescap(e);
deba@2440
   460
	  }
deba@2440
   461
deba@2440
   462
	  // Augmenting along the cycle
deba@2440
   463
	  for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e)
deba@2440
   464
	    res_graph.augment(e, delta);
deba@2440
   465
deba@2440
   466
	  // Finding the minimum cycle mean for the modified residual
deba@2440
   467
	  // graph
deba@2440
   468
	  mmc.reset();
deba@2440
   469
	  if (!mmc.findMinMean()) break;
deba@2440
   470
	}
deba@2440
   471
      }
deba@2440
   472
deba@2440
   473
#ifdef _DEBUG_ITER_
deba@2457
   474
      std::cout << "Minimum mean cycle-canceling algorithm finished. "
deba@2440
   475
		<< "Found " << cycle_num << " negative cycles."
deba@2440
   476
		<< std::endl;
deba@2440
   477
#endif
deba@2440
   478
deba@2440
   479
      // Handling nonzero lower bounds
deba@2440
   480
      if (lower) {
deba@2440
   481
	for (EdgeIt e(graph); e != INVALID; ++e)
deba@2440
   482
	  flow[e] += (*lower)[e];
deba@2440
   483
      }
deba@2440
   484
      return true;
deba@2440
   485
    }
deba@2440
   486
#endif
deba@2440
   487
deba@2440
   488
  }; //class CycleCanceling
deba@2440
   489
deba@2440
   490
  ///@}
deba@2440
   491
deba@2440
   492
} //namespace lemon
deba@2440
   493
deba@2440
   494
#endif //LEMON_CYCLE_CANCELING_H