lemon/hypercube_graph.h
author deba
Mon, 17 Dec 2007 09:54:26 +0000
changeset 2542 faaa54ec4520
parent 2386 81b47fc5c444
child 2553 bfced05fa852
permissions -rw-r--r--
Bug fix
deba@1693
     1
/* -*- C++ -*-
deba@1693
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@2391
     5
 * Copyright (C) 2003-2007
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1693
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1693
     8
 *
deba@1693
     9
 * Permission to use, modify and distribute this software is granted
deba@1693
    10
 * provided that this copyright notice appears in all copies. For
deba@1693
    11
 * precise terms see the accompanying LICENSE file.
deba@1693
    12
 *
deba@1693
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@1693
    14
 * express or implied, and with no claim as to its suitability for any
deba@1693
    15
 * purpose.
deba@1693
    16
 *
deba@1693
    17
 */
deba@1693
    18
deba@1693
    19
#ifndef HYPERCUBE_GRAPH_H
deba@1693
    20
#define HYPERCUBE_GRAPH_H
deba@1693
    21
deba@1693
    22
#include <iostream>
deba@1693
    23
#include <vector>
deba@1993
    24
#include <lemon/bits/invalid.h>
deba@1993
    25
#include <lemon/bits/utility.h>
deba@1791
    26
#include <lemon/error.h>
deba@1693
    27
deba@1998
    28
#include <lemon/bits/base_extender.h>
deba@1791
    29
#include <lemon/bits/graph_extender.h>
deba@1693
    30
deba@1693
    31
///\ingroup graphs
deba@1693
    32
///\file
deba@1693
    33
///\brief HyperCubeGraph class.
deba@1693
    34
deba@1693
    35
namespace lemon {
deba@1693
    36
deba@1693
    37
  class HyperCubeGraphBase {
deba@1693
    38
deba@1693
    39
  public:
deba@1693
    40
deba@1693
    41
    typedef HyperCubeGraphBase Graph;
deba@1693
    42
deba@1693
    43
    class Node;
deba@1693
    44
    class Edge;
deba@1693
    45
deba@1693
    46
  public:
deba@1693
    47
deba@1693
    48
    HyperCubeGraphBase() {}
deba@1693
    49
deba@1693
    50
  protected:
deba@1693
    51
deba@1693
    52
    void construct(int dim) {
deba@1693
    53
      _dim = dim;
deba@1693
    54
      _nodeNum = 1 << dim;
deba@1693
    55
    }
deba@1693
    56
deba@1693
    57
  public:
deba@1693
    58
    
deba@1693
    59
deba@1693
    60
    typedef True NodeNumTag;
deba@1693
    61
    typedef True EdgeNumTag;
deba@1693
    62
deba@1693
    63
    int nodeNum() const { return _nodeNum; }
deba@1693
    64
    int edgeNum() const { return _nodeNum * _dim; }
deba@1693
    65
deba@1791
    66
    int maxNodeId() const { return nodeNum() - 1; }
deba@1791
    67
    int maxEdgeId() const { return edgeNum() - 1; }
deba@1693
    68
deba@1693
    69
    Node source(Edge e) const {
deba@1693
    70
      return e.id / _dim;
deba@1693
    71
    }
deba@1693
    72
deba@1693
    73
    Node target(Edge e) const {
deba@1693
    74
      return (e.id / _dim) ^ ( 1 << (e.id % _dim));
deba@1693
    75
    }
deba@1693
    76
deba@1693
    77
    static int id(Node v) { return v.id; }
deba@1693
    78
    static int id(Edge e) { return e.id; }
deba@1693
    79
deba@1791
    80
    static Node nodeFromId(int id) { return Node(id);}
deba@1693
    81
    
deba@1791
    82
    static Edge edgeFromId(int id) { return Edge(id);}
deba@1693
    83
deba@1693
    84
    class Node {
deba@1693
    85
      friend class HyperCubeGraphBase;
deba@1693
    86
deba@1693
    87
    protected:
deba@1693
    88
      int id;
deba@1693
    89
      Node(int _id) { id = _id;}
deba@1693
    90
    public:
deba@1693
    91
      Node() {}
deba@1693
    92
      Node (Invalid) { id = -1; }
deba@1693
    93
      bool operator==(const Node node) const {return id == node.id;}
deba@1693
    94
      bool operator!=(const Node node) const {return id != node.id;}
deba@1693
    95
      bool operator<(const Node node) const {return id < node.id;}
deba@1693
    96
    };
deba@1693
    97
    
deba@1693
    98
    class Edge {
deba@1693
    99
      friend class HyperCubeGraphBase;
deba@1693
   100
      
deba@1693
   101
    protected:
deba@1693
   102
      int id; 
deba@1693
   103
deba@1693
   104
      Edge(int _id) : id(_id) {}
deba@1693
   105
deba@1693
   106
    public:
deba@1693
   107
      Edge() { }
deba@1693
   108
      Edge (Invalid) { id = -1; }
deba@1693
   109
      bool operator==(const Edge edge) const {return id == edge.id;}
deba@1693
   110
      bool operator!=(const Edge edge) const {return id != edge.id;}
deba@1693
   111
      bool operator<(const Edge edge) const {return id < edge.id;}
deba@1693
   112
    };
deba@1693
   113
deba@1693
   114
    void first(Node& node) const {
deba@1693
   115
      node.id = nodeNum() - 1;
deba@1693
   116
    }
deba@1693
   117
deba@1693
   118
    static void next(Node& node) {
deba@1693
   119
      --node.id;
deba@1693
   120
    }
deba@1693
   121
deba@1693
   122
    void first(Edge& edge) const {
deba@1693
   123
      edge.id = edgeNum() - 1;
deba@1693
   124
    }
deba@1693
   125
deba@1693
   126
    static void next(Edge& edge) {
deba@1693
   127
      --edge.id;
deba@1693
   128
    }
deba@1693
   129
deba@1693
   130
    void firstOut(Edge& edge, const Node& node) const {
deba@1693
   131
      edge.id = node.id * _dim;
deba@1693
   132
    }
deba@1693
   133
deba@1693
   134
    void nextOut(Edge& edge) const {
deba@1693
   135
      ++edge.id;
deba@1693
   136
      if (edge.id % _dim == 0) edge.id = -1;
deba@1693
   137
    }
deba@1693
   138
deba@1693
   139
    void firstIn(Edge& edge, const Node& node) const {
deba@1693
   140
      edge.id = (node.id ^ 1) * _dim;
deba@1693
   141
    }
deba@1693
   142
    
deba@1693
   143
    void nextIn(Edge& edge) const {
deba@1693
   144
      int cnt = edge.id % _dim;
deba@1693
   145
      if ((cnt + 1) % _dim == 0) {
deba@1693
   146
	edge.id = -1;
deba@1693
   147
      } else {
deba@1693
   148
	edge.id = ((edge.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1; 
deba@1693
   149
      }
deba@1693
   150
    }
deba@1693
   151
deba@1693
   152
    int dimension() const {
deba@1693
   153
      return _dim;
deba@1693
   154
    }
deba@1693
   155
deba@1693
   156
    bool projection(Node node, int n) const {
deba@2386
   157
      return static_cast<bool>(node.id & (1 << n));
deba@1693
   158
    }
deba@1693
   159
deba@1693
   160
    int dimension(Edge edge) const {
deba@1693
   161
      return edge.id % _dim;
deba@1693
   162
    }
deba@1693
   163
deba@1693
   164
    int index(Node node) const {
deba@1693
   165
      return node.id;
deba@1693
   166
    }
deba@1693
   167
deba@2386
   168
    Node operator()(int ix) const {
deba@2386
   169
      return Node(ix);
deba@1693
   170
    }
deba@1693
   171
    
deba@1693
   172
  private:
deba@1693
   173
    int _dim, _nodeNum;
deba@1693
   174
  };
deba@1693
   175
deba@1693
   176
deba@1979
   177
  typedef GraphExtender<HyperCubeGraphBase> ExtendedHyperCubeGraphBase;
deba@1693
   178
deba@1693
   179
  /// \ingroup graphs
deba@1693
   180
  ///
deba@1693
   181
  /// \brief HyperCube graph class
deba@1693
   182
  ///
deba@1693
   183
  /// This class implements a special graph type. The nodes of the
deba@1693
   184
  /// graph can be indiced with integers with at most \c dim binary length.
deba@1693
   185
  /// Two nodes are connected in the graph if the indices differ only
deba@1693
   186
  /// on one position in the binary form. 
deba@1693
   187
  ///
deba@1693
   188
  /// \note The type of the \c ids is chosen to \c int because efficiency
deba@1693
   189
  /// reasons. This way the maximal dimension of this implementation
deba@1693
   190
  /// is 26. 
deba@1693
   191
  ///
alpar@2260
   192
  /// The graph type is fully conform to the \ref concepts::Graph
alpar@2260
   193
  /// concept but it does not conform to the \ref concepts::UGraph.
deba@1693
   194
  ///
deba@1693
   195
  /// \author Balazs Dezso
deba@1693
   196
  class HyperCubeGraph : public ExtendedHyperCubeGraphBase {
deba@1693
   197
  public:
deba@1693
   198
deba@2223
   199
    typedef ExtendedHyperCubeGraphBase Parent;
deba@2223
   200
deba@1693
   201
    /// \brief Construct a graph with \c dim dimension.
deba@1693
   202
    ///
deba@1693
   203
    /// Construct a graph with \c dim dimension.
deba@1693
   204
    HyperCubeGraph(int dim) { construct(dim); }
deba@1693
   205
deba@2223
   206
    /// \brief Gives back the number of the dimensions.
deba@2223
   207
    ///
deba@2223
   208
    /// Gives back the number of the dimensions.
deba@2223
   209
    int dimension() const {
deba@2223
   210
      return Parent::dimension();
deba@2223
   211
    }
deba@2223
   212
deba@2223
   213
    /// \brief Returns true if the n'th bit of the node is one.
deba@2223
   214
    ///
deba@2223
   215
    /// Returns true if the n'th bit of the node is one. 
deba@2223
   216
    bool projection(Node node, int n) const {
deba@2223
   217
      return Parent::projection(node, n);
deba@2223
   218
    }
deba@2223
   219
deba@2223
   220
    /// \brief The dimension id of the edge.
deba@2223
   221
    ///
deba@2223
   222
    /// It returns the dimension id of the edge. It can
deba@2223
   223
    /// be in the \f$ \{0, 1, \dots, dim-1\} \f$ intervall.
deba@2223
   224
    int dimension(Edge edge) const {
deba@2223
   225
      return Parent::dimension(edge);
deba@2223
   226
    }
deba@2223
   227
deba@2223
   228
    /// \brief Gives back the index of the node.
deba@2223
   229
    ///
deba@2223
   230
    /// Gives back the index of the node. The lower bits of the
deba@2223
   231
    /// integer describes the node.
deba@2223
   232
    int index(Node node) const {
deba@2223
   233
      return Parent::index(node);
deba@2223
   234
    }
deba@2223
   235
deba@2223
   236
    /// \brief Gives back the node by its index.
deba@2223
   237
    ///
deba@2223
   238
    /// Gives back the node by its index.
deba@2386
   239
    Node operator()(int ix) const {
deba@2386
   240
      return Parent::operator()(ix);
deba@2223
   241
    }
deba@2223
   242
deba@2223
   243
    /// \brief Number of nodes.
deba@2223
   244
    int nodeNum() const { return Parent::nodeNum(); }
deba@2223
   245
    /// \brief Number of edges.
deba@2223
   246
    int edgeNum() const { return Parent::edgeNum(); }
deba@2223
   247
deba@1693
   248
    /// \brief Linear combination map.
deba@1693
   249
    ///
deba@1693
   250
    /// It makes possible to give back a linear combination
deba@1693
   251
    /// for each node. This function works like the \c std::accumulate
deba@1693
   252
    /// so it accumulates the \c bf binary function with the \c fv
deba@1693
   253
    /// first value. The map accumulates only on that dimensions where
deba@1693
   254
    /// the node's index is one. The accumulated values should be
deba@1693
   255
    /// given by the \c begin and \c end iterators and this range's length
deba@1693
   256
    /// should be the dimension number of the graph.
deba@1693
   257
    /// 
alpar@1946
   258
    ///\code
deba@1693
   259
    /// const int DIM = 3;
deba@1693
   260
    /// HyperCubeGraph graph(DIM);
alpar@2207
   261
    /// dim2::Point<double> base[DIM];
deba@1693
   262
    /// for (int k = 0; k < DIM; ++k) {
deba@2242
   263
    ///   base[k].x = rnd();
deba@2242
   264
    ///   base[k].y = rnd();
deba@1693
   265
    /// } 
alpar@2207
   266
    /// HyperCubeGraph::HyperMap<dim2::Point<double> > 
alpar@2207
   267
    ///   pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
alpar@1946
   268
    ///\endcode
deba@1693
   269
    ///
deba@1693
   270
    /// \see HyperCubeGraph
deba@1693
   271
    template <typename T, typename BF = std::plus<T> >
deba@1693
   272
    class HyperMap {
deba@1693
   273
    public:
deba@1693
   274
deba@1693
   275
      typedef Node Key;
deba@1693
   276
      typedef T Value;
deba@1693
   277
    
deba@1693
   278
      
deba@1693
   279
      /// \brief Constructor for HyperMap. 
deba@1693
   280
      ///
deba@1693
   281
      /// Construct a HyperMap for the given graph. The accumulated values 
deba@1693
   282
      /// should be given by the \c begin and \c end iterators and this 
deba@1693
   283
      /// range's length should be the dimension number of the graph.
deba@1693
   284
      ///
deba@1693
   285
      /// This function accumulates the \c bf binary function with 
deba@1693
   286
      /// the \c fv first value. The map accumulates only on that dimensions 
deba@1693
   287
      /// where the node's index is one.           
deba@1693
   288
      template <typename It>
deba@1693
   289
      HyperMap(const Graph& graph, It begin, It end, 
deba@1693
   290
		   T fv = 0.0, const BF& bf = BF()) 
deba@1693
   291
	: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) {
deba@1963
   292
	LEMON_ASSERT(_values.size() == graph.dimension(), 
deba@1791
   293
		     "Wrong size of dimension");
deba@1693
   294
      }
deba@1693
   295
deba@1693
   296
      /// \brief Gives back the partial accumulated value.
deba@1693
   297
      ///
deba@1693
   298
      /// Gives back the partial accumulated value.
deba@1693
   299
      Value operator[](Key k) const {
deba@1693
   300
	Value val = _first_value;
deba@1693
   301
	int id = _graph.index(k); 
deba@1693
   302
	int n = 0;
deba@1693
   303
	while (id != 0) {
deba@1693
   304
	  if (id & 1) {
deba@1998
   305
	    val = _bin_func(val, _values[n]);
deba@1693
   306
	  }
deba@1693
   307
	  id >>= 1;
deba@1693
   308
	  ++n;
deba@1693
   309
	}
deba@1693
   310
	return val;
deba@1693
   311
      }
deba@1693
   312
      
deba@1693
   313
    private:
deba@1693
   314
      const Graph& _graph;
deba@1693
   315
      std::vector<T> _values;
deba@1693
   316
      T _first_value;
deba@1693
   317
      BF _bin_func;
deba@1693
   318
    };    
deba@1693
   319
  };
deba@1693
   320
}
deba@1693
   321
#endif
deba@1693
   322