lemon/kruskal.h
changeset 1560 01707a8a4ca6
parent 1555 48769ac7ec32
child 1570 da93692e6537
equal deleted inserted replaced
3:f042b1451d48 4:a9f53d822283
    34 ///\ingroup spantree
    34 ///\ingroup spantree
    35 ///\file
    35 ///\file
    36 ///\brief Kruskal's algorithm to compute a minimum cost tree
    36 ///\brief Kruskal's algorithm to compute a minimum cost tree
    37 ///
    37 ///
    38 ///Kruskal's algorithm to compute a minimum cost tree.
    38 ///Kruskal's algorithm to compute a minimum cost tree.
       
    39 ///
       
    40 ///\todo The file still needs some clean-up.
    39 
    41 
    40 namespace lemon {
    42 namespace lemon {
    41 
    43 
    42   /// \addtogroup spantree
    44   /// \addtogroup spantree
    43   /// @{
    45   /// @{
    44 
    46 
    45   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    47   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    46 
    48 
    47   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    49   /// This function runs Kruskal's algorithm to find a minimum cost tree.
       
    50   /// Due to hard C++ hacking, it accepts various input and output types.
       
    51   ///
    48   /// \param g The graph the algorithm runs on.
    52   /// \param g The graph the algorithm runs on.
    49   /// It can be either \ref concept::StaticGraph "directed" or 
    53   /// It can be either \ref concept::StaticGraph "directed" or 
    50   /// \ref concept::UndirStaticGraph "undirected".
    54   /// \ref concept::UndirStaticGraph "undirected".
    51   /// If the graph is directed, the algorithm consider it to be 
    55   /// If the graph is directed, the algorithm consider it to be 
    52   /// undirected by disregarding the direction of the edges.
    56   /// undirected by disregarding the direction of the edges.
    53   ///
    57   ///
    54   /// \param in This object is used to describe the edge costs. It must
    58   /// \param in This object is used to describe the edge costs. It can be one
    55   /// be an STL compatible 'Forward Container'
    59   /// of the following choices.
       
    60   /// - An STL compatible 'Forward Container'
    56   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    61   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
    57   /// where X is the type of the costs. It must contain every edge in
    62   /// where \c X is the type of the costs. The pairs indicates the edges along
    58   /// cost-ascending order.
    63   /// with the assigned cost. <em>They must be in a
    59   ///\par
    64   /// cost-ascending order.</em>
    60   /// For the sake of simplicity, there is a helper class KruskalMapInput,
    65   /// - Any readable Edge map. The values of the map indicate the edge costs.
    61   /// which converts a
    66   ///
    62   /// simple edge map to an input of this form. Alternatively, you can use
    67   /// \retval out Here we also have a choise.
    63   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
    68   /// - Is can be a writable \c bool edge map. 
    64   /// the edge costs are given by an edge map.
       
    65   ///
       
    66   /// \retval out This must be a writable \c bool edge map.
       
    67   /// After running the algorithm
    69   /// After running the algorithm
    68   /// this will contain the found minimum cost spanning tree: the value of an
    70   /// this will contain the found minimum cost spanning tree: the value of an
    69   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    71   /// edge will be set to \c true if it belongs to the tree, otherwise it will
    70   /// be set to \c false. The value of each edge will be set exactly once.
    72   /// be set to \c false. The value of each edge will be set exactly once.
       
    73   /// - It can also be an iteraror of an STL Container with
       
    74   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
       
    75   /// The algorithm copies the elements of the found tree into this sequence.
       
    76   /// For example, if we know that the spanning tree of the graph \c g has
       
    77   /// say 53 edges then
       
    78   /// we can put its edges into a STL vector \c tree with a code like this.
       
    79   /// \code
       
    80   /// std::vector<Edge> tree(53);
       
    81   /// kruskal(g,cost,tree.begin());
       
    82   /// \endcode
       
    83   /// Or if we don't know in advance the size of the tree, we can write this.
       
    84   /// \code
       
    85   /// std::vector<Edge> tree;
       
    86   /// kruskal(g,cost,std::back_inserter(tree));
       
    87   /// \endcode
    71   ///
    88   ///
    72   /// \return The cost of the found tree.
    89   /// \return The cost of the found tree.
    73   ///
    90   ///
    74   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    91   /// \todo Discuss the case of undirected graphs: In this case the algorithm
    75   /// also require <tt>Edge</tt>s instead of <tt>UndirEdge</tt>s, as some
    92   /// also require <tt>Edge</tt>s instead of <tt>UndirEdge</tt>s, as some
    76   /// people would expect. So, one should be careful not to add both of the
    93   /// people would expect. So, one should be careful not to add both of the
    77   /// <tt>Edge</tt>s belonging to a certain <tt>UndirEdge</tt>.
    94   /// <tt>Edge</tt>s belonging to a certain <tt>UndirEdge</tt>.
    78   /// (\ref kruskalEdgeMap() and \ref KruskalMapInput are kind enough to do so.)
    95   /// (\ref kruskalEdgeMap() and \ref KruskalMapInput are kind enough to do so.)
    79 
    96 
       
    97 #ifdef DOXYGEN
    80   template <class GR, class IN, class OUT>
    98   template <class GR, class IN, class OUT>
    81   typename IN::value_type::second_type
    99   typename IN::value_type::second_type
    82   kruskal(GR const& g, IN const& in, 
   100   kruskal(GR const& g, IN const& in, 
    83 		 OUT& out)
   101 	  OUT& out)
       
   102 #else
       
   103   template <class GR, class IN, class OUT>
       
   104   typename IN::value_type::second_type
       
   105   kruskal(GR const& g, IN const& in, 
       
   106 	  OUT& out,
       
   107 // 	  typename IN::value_type::first_type = typename GR::Edge()
       
   108 // 	  ,typename OUT::Key = OUT::Key()
       
   109 // 	  //,typename OUT::Key = typename GR::Edge()
       
   110 	  const typename IN::value_type::first_type * = 
       
   111 	  (const typename IN::value_type::first_type *)(0),
       
   112 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
       
   113 	  )
       
   114 #endif
    84   {
   115   {
    85     typedef typename IN::value_type::second_type EdgeCost;
   116     typedef typename IN::value_type::second_type EdgeCost;
    86     typedef typename GR::template NodeMap<int> NodeIntMap;
   117     typedef typename GR::template NodeMap<int> NodeIntMap;
    87     typedef typename GR::Node Node;
   118     typedef typename GR::Node Node;
    88 
   119 
   102       }
   133       }
   103     }
   134     }
   104     return tot_cost;
   135     return tot_cost;
   105   }
   136   }
   106 
   137 
       
   138  
       
   139   /// @}
       
   140 
       
   141   
   107   /* A work-around for running Kruskal with const-reference bool maps... */
   142   /* A work-around for running Kruskal with const-reference bool maps... */
   108 
   143 
   109   /// Helper class for calling kruskal with "constant" output map.
   144   /// Helper class for calling kruskal with "constant" output map.
   110 
   145 
   111   /// Helper class for calling kruskal with output maps constructed
   146   /// Helper class for calling kruskal with output maps constructed
   120   /// third argument.
   155   /// third argument.
   121   template<class Map>
   156   template<class Map>
   122   class NonConstMapWr {
   157   class NonConstMapWr {
   123     const Map &m;
   158     const Map &m;
   124   public:
   159   public:
       
   160     typedef typename Map::Key Key;
   125     typedef typename Map::Value Value;
   161     typedef typename Map::Value Value;
   126 
   162 
   127     NonConstMapWr(const Map &_m) : m(_m) {}
   163     NonConstMapWr(const Map &_m) : m(_m) {}
   128 
   164 
   129     template<class Key>
   165     template<class Key>
   131   };
   167   };
   132 
   168 
   133   template <class GR, class IN, class OUT>
   169   template <class GR, class IN, class OUT>
   134   inline
   170   inline
   135   typename IN::value_type::second_type
   171   typename IN::value_type::second_type
   136   kruskal(GR const& g, IN const& edges, OUT const& out_map)
   172   kruskal(GR const& g, IN const& edges, OUT const& out_map,
       
   173 // 	  typename IN::value_type::first_type = typename GR::Edge(),
       
   174 // 	  typename OUT::Key = GR::Edge()
       
   175 	  const typename IN::value_type::first_type * = 
       
   176 	  (const typename IN::value_type::first_type *)(0),
       
   177 	  const typename OUT::Key * = (const typename OUT::Key *)(0)
       
   178 	  )
   137   {
   179   {
   138     NonConstMapWr<OUT> map_wr(out_map);
   180     NonConstMapWr<OUT> map_wr(out_map);
   139     return kruskal(g, edges, map_wr);
   181     return kruskal(g, edges, map_wr);
   140   }  
   182   }  
   141 
   183 
   142   /* ** ** Input-objects ** ** */
   184   /* ** ** Input-objects ** ** */
   143 
   185 
   144   /// Kruskal's input source.
   186   /// Kruskal's input source.
   145 
   187  
   146   /// Kruskal's input source.
   188   /// Kruskal's input source.
   147   ///
   189   ///
   148   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   190   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
   149   ///
   191   ///
   150   /// \sa makeKruskalMapInput()
   192   /// \sa makeKruskalMapInput()
   265   template<class Iterator>
   307   template<class Iterator>
   266   class KruskalSequenceOutput {
   308   class KruskalSequenceOutput {
   267     mutable Iterator it;
   309     mutable Iterator it;
   268 
   310 
   269   public:
   311   public:
       
   312     typedef typename Iterator::value_type Key;
   270     typedef bool Value;
   313     typedef bool Value;
   271 
   314 
   272     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   315     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
   273 
   316 
   274     template<typename Key>
   317     template<typename Key>
   284 
   327 
   285 
   328 
   286 
   329 
   287   /* ** ** Wrapper funtions ** ** */
   330   /* ** ** Wrapper funtions ** ** */
   288 
   331 
   289 
   332 //   \brief Wrapper function to kruskal().
   290 
   333 //   Input is from an edge map, output is a plain bool map.
   291   /// \brief Wrapper function to kruskal().
   334 //  
   292   /// Input is from an edge map, output is a plain bool map.
   335 //   Wrapper function to kruskal().
   293   ///
   336 //   Input is from an edge map, output is a plain bool map.
   294   /// Wrapper function to kruskal().
   337 //  
   295   /// Input is from an edge map, output is a plain bool map.
   338 //   \param g The type of the graph the algorithm runs on.
   296   ///
   339 //   \param in An edge map containing the cost of the edges.
   297   ///\param g The type of the graph the algorithm runs on.
   340 //   \par
   298   ///\param in An edge map containing the cost of the edges.
   341 //   The cost type can be any type satisfying the
   299   ///\par
   342 //   STL 'LessThan Comparable'
   300   ///The cost type can be any type satisfying the
   343 //   concept if it also has an operator+() implemented. (It is necessary for
   301   ///STL 'LessThan Comparable'
   344 //   computing the total cost of the tree).
   302   ///concept if it also has an operator+() implemented. (It is necessary for
   345 //  
   303   ///computing the total cost of the tree).
   346 //   \retval out This must be a writable \c bool edge map.
   304   ///
   347 //   After running the algorithm
   305   /// \retval out This must be a writable \c bool edge map.
   348 //   this will contain the found minimum cost spanning tree: the value of an
   306   /// After running the algorithm
   349 //   edge will be set to \c true if it belongs to the tree, otherwise it will
   307   /// this will contain the found minimum cost spanning tree: the value of an
   350 //   be set to \c false. The value of each edge will be set exactly once.
   308   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   351 //  
   309   /// be set to \c false. The value of each edge will be set exactly once.
   352 //   \return The cost of the found tree.
   310   ///
       
   311   /// \return The cost of the found tree.
       
   312 
   353 
   313   template <class GR, class IN, class RET>
   354   template <class GR, class IN, class RET>
   314   inline
   355   inline
   315   typename IN::Value
   356   typename IN::Value
   316   kruskalEdgeMap(GR const& g,
   357   kruskal(GR const& g,
   317 		 IN const& in,
   358 	  IN const& in,
   318 		 RET &out) {
   359 	  RET &out,
       
   360 	  //	  typename IN::Key = typename GR::Edge(),
       
   361 	  //typename IN::Key = typename IN::Key (),
       
   362 	  //	  typename RET::Key = typename GR::Edge()
       
   363 	  const typename IN::Key *  = (const typename IN::Key *)(0),
       
   364 	  const typename RET::Key * = (const typename RET::Key *)(0)
       
   365 	  )
       
   366   {
   319     return kruskal(g,
   367     return kruskal(g,
   320 		   KruskalMapInput<GR,IN>(g,in),
   368 		   KruskalMapInput<GR,IN>(g,in),
   321 		   out);
   369 		   out);
   322   }
   370   }
   323 
   371 
   324   /// \brief Wrapper function to kruskal().
   372 //   \brief Wrapper function to kruskal().
   325   /// Input is from an edge map, output is an STL Sequence.
   373 //   Input is from an edge map, output is an STL Sequence.
   326   ///
   374 //  
   327   /// Wrapper function to kruskal().
   375 //   Wrapper function to kruskal().
   328   /// Input is from an edge map, output is an STL Sequence.
   376 //   Input is from an edge map, output is an STL Sequence.
   329   ///
   377 //  
   330   ///\param g The type of the graph the algorithm runs on.
   378 //   \param g The type of the graph the algorithm runs on.
   331   ///\param in An edge map containing the cost of the edges.
   379 //   \param in An edge map containing the cost of the edges.
   332   ///\par
   380 //   \par
   333   ///The cost type can be any type satisfying the
   381 //   The cost type can be any type satisfying the
   334   ///STL 'LessThan Comparable'
   382 //   STL 'LessThan Comparable'
   335   ///concept if it also has an operator+() implemented. (It is necessary for
   383 //   concept if it also has an operator+() implemented. (It is necessary for
   336   ///computing the total cost of the tree).
   384 //   computing the total cost of the tree).
   337   ///
   385 //  
   338   /// \retval out This must be an iteraror of an STL Container with
   386 //   \retval out This must be an iteraror of an STL Container with
   339   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   387 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   340   /// The algorithm copies the elements of the found tree into this sequence.
   388 //   The algorithm copies the elements of the found tree into this sequence.
   341   /// For example, if we know that the spanning tree of the graph \c g has
   389 //   For example, if we know that the spanning tree of the graph \c g has
   342   /// say 53 edges then
   390 //   say 53 edges then
   343   /// we can put its edges into a STL vector \c tree with a code like this.
   391 //   we can put its edges into a STL vector \c tree with a code like this.
   344   /// \code
   392 //   \code
   345   /// std::vector<Edge> tree(53);
   393 //   std::vector<Edge> tree(53);
   346   /// kruskalEdgeMap_IteratorOut(g,cost,tree.begin());
   394 //   kruskalEdgeMap_IteratorOut(g,cost,tree.begin());
   347   /// \endcode
   395 //   \endcode
   348   /// Or if we don't know in advance the size of the tree, we can write this.
   396 //   Or if we don't know in advance the size of the tree, we can write this.
   349   /// \code
   397 //   \code
   350   /// std::vector<Edge> tree;
   398 //   std::vector<Edge> tree;
   351   /// kruskalEdgeMap_IteratorOut(g,cost,std::back_inserter(tree));
   399 //   kruskalEdgeMap_IteratorOut(g,cost,std::back_inserter(tree));
   352   /// \endcode
   400 //   \endcode
   353   ///
   401 //  
   354   /// \return The cost of the found tree.
   402 //   \return The cost of the found tree.
   355   ///
   403 //  
   356   /// \bug its name does not follow the coding style.
   404 //   \bug its name does not follow the coding style.
   357 
   405 
   358   template <class GR, class IN, class RET>
   406   template <class GR, class IN, class RET>
   359   inline
   407   inline
   360   typename IN::Value
   408   typename IN::Value
   361   kruskalEdgeMap_IteratorOut(const GR& g,
   409   kruskal(const GR& g,
   362 			     const IN& in,
   410 	  const IN& in,
   363 			     RET out)
   411 	  RET out,
       
   412 	  //,typename RET::value_type = typename GR::Edge()
       
   413 	  //,typename RET::value_type = typename RET::value_type()
       
   414 	  const typename RET::value_type * = 
       
   415 	  (const typename RET::value_type *)(0)
       
   416 	  )
   364   {
   417   {
   365     KruskalSequenceOutput<RET> _out(out);
   418     KruskalSequenceOutput<RET> _out(out);
   366     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   419     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
   367   }
   420   }
   368 
   421  
   369   /// @}
   422   /// @}
   370 
   423 
   371 } //namespace lemon
   424 } //namespace lemon
   372 
   425 
   373 #endif //LEMON_KRUSKAL_H
   426 #endif //LEMON_KRUSKAL_H