src/work/jacint/preflow_hl0.h
changeset 142 01d47457aff3
equal deleted inserted replaced
-1:000000000000 0:0986f395e82c
       
     1 // -*- C++ -*-
       
     2 /*
       
     3 preflow_hl0.h
       
     4 by jacint. 
       
     5 Heuristics: 
       
     6  2 phase
       
     7  gap
       
     8  list 'level_list' on the nodes on level i implemented by hand
       
     9  stack 'active' on the active nodes on level i implemented by hand
       
    10  bound decrease
       
    11  
       
    12 The bound decrease heuristic behaves unexpectedly well.
       
    13 
       
    14 The constructor runs the algorithm.
       
    15 
       
    16 Members:
       
    17 
       
    18 T maxFlow() : returns the value of a maximum flow
       
    19 
       
    20 T flowOnEdge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
       
    21 
       
    22 FlowMap Flow() : returns the fixed maximum flow x
       
    23 
       
    24 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
       
    25      minimum min cut. M should be a map of bools initialized to false.
       
    26 
       
    27 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
       
    28      maximum min cut. M should be a map of bools initialized to false.
       
    29 
       
    30 
       
    31 void minCut(CutMap& M) : sets M to the characteristic vector of 
       
    32      a min cut. M should be a map of bools initialized to false.
       
    33 
       
    34 */
       
    35 
       
    36 #ifndef PREFLOW_HL0_H
       
    37 #define PREFLOW_HL0_H
       
    38 
       
    39 #include <vector>
       
    40 #include <queue>
       
    41 
       
    42 #include <time_measure.h> //for test
       
    43 
       
    44 namespace hugo {
       
    45 
       
    46   template <typename Graph, typename T, 
       
    47     typename FlowMap=typename Graph::EdgeMap<T>,
       
    48     typename CapMap=typename Graph::EdgeMap<T> >
       
    49   class preflow_hl0 {
       
    50     
       
    51     typedef typename Graph::NodeIt NodeIt;
       
    52     typedef typename Graph::EdgeIt EdgeIt;
       
    53     typedef typename Graph::EachNodeIt EachNodeIt;
       
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    55     typedef typename Graph::InEdgeIt InEdgeIt;
       
    56     
       
    57     Graph& G;
       
    58     NodeIt s;
       
    59     NodeIt t;
       
    60     FlowMap flow;
       
    61     CapMap& capacity;
       
    62     T value;
       
    63 
       
    64   public:
       
    65     double time;    
       
    66     
       
    67     preflow_hl0(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity ) :
       
    68       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) {
       
    69 
       
    70       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
       
    71       int n=G.nodeNum(); 
       
    72       bool end=false;     
       
    73       /*
       
    74 	'true' means no active nodes are above bound b.
       
    75       */
       
    76       int k=n-2;  //bound on the highest level under n containing a node
       
    77       int b=k;    //bound on the highest level under n of an active node
       
    78       /*
       
    79 	b is a bound on the highest level of the stack. 
       
    80 	k is a bound on the highest nonempty level i < n.
       
    81       */
       
    82 
       
    83       typename Graph::NodeMap<int> level(G,n);      
       
    84       typename Graph::NodeMap<T> excess(G); 
       
    85 
       
    86       std::vector<NodeIt> active(n);
       
    87       typename Graph::NodeMap<NodeIt> next(G);
       
    88       //Stack of the active nodes in level i < n.
       
    89       //We use it in both phases.
       
    90 
       
    91       typename Graph::NodeMap<NodeIt> left(G);
       
    92       typename Graph::NodeMap<NodeIt> right(G);
       
    93       std::vector<NodeIt> level_list(n);
       
    94       /*
       
    95 	List of the nodes in level i<n.
       
    96       */
       
    97 
       
    98       /*Reverse_bfs from t, to find the starting level.*/
       
    99       level.set(t,0);
       
   100       std::queue<NodeIt> bfs_queue;
       
   101       bfs_queue.push(t);
       
   102 
       
   103       while (!bfs_queue.empty()) {
       
   104 
       
   105 	NodeIt v=bfs_queue.front();	
       
   106 	bfs_queue.pop();
       
   107 	int l=level.get(v)+1;
       
   108 
       
   109 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
       
   110 	  NodeIt w=G.tail(e);
       
   111 	  if ( level.get(w) == n && w != s ) {
       
   112 	    bfs_queue.push(w);
       
   113 	    NodeIt first=level_list[l];
       
   114 	    if ( first != 0 ) left.set(first,w);
       
   115 	    right.set(w,first);
       
   116 	    level_list[l]=w;
       
   117 	    level.set(w, l);
       
   118 	  }
       
   119 	}
       
   120       }
       
   121       
       
   122       level.set(s,n);
       
   123       
       
   124 
       
   125       /* Starting flow. It is everywhere 0 at the moment. */     
       
   126       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
       
   127 	{
       
   128 	  T c=capacity.get(e);
       
   129 	  if ( c == 0 ) continue;
       
   130 	  NodeIt w=G.head(e);
       
   131 	  if ( level.get(w) < n ) {	  
       
   132 	    if ( excess.get(w) == 0 && w!=t ) {
       
   133 	      next.set(w,active[level.get(w)]);
       
   134 	      active[level.get(w)]=w;
       
   135 	    }
       
   136 	    flow.set(e, c); 
       
   137 	    excess.set(w, excess.get(w)+c);
       
   138 	  }
       
   139 	}
       
   140 
       
   141       /* 
       
   142 	 End of preprocessing 
       
   143       */
       
   144 
       
   145 
       
   146 
       
   147       /*
       
   148 	Push/relabel on the highest level active nodes.
       
   149       */	
       
   150       while ( true ) {
       
   151 	
       
   152 	if ( b == 0 ) {
       
   153 	  if ( phase ) break;
       
   154 	  
       
   155 	  if ( !end && k > 0 ) {
       
   156 	    b=k;
       
   157 	    end=true;
       
   158 	  } else {
       
   159 	    phase=1;
       
   160 	    time=currTime();
       
   161 	    level.set(s,0);
       
   162 	    std::queue<NodeIt> bfs_queue;
       
   163 	    bfs_queue.push(s);
       
   164 	    
       
   165 	    while (!bfs_queue.empty()) {
       
   166 	      
       
   167 	      NodeIt v=bfs_queue.front();	
       
   168 	      bfs_queue.pop();
       
   169 	      int l=level.get(v)+1;
       
   170 	      
       
   171 	      for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
       
   172 		if ( capacity.get(e) == flow.get(e) ) continue;
       
   173 		NodeIt u=G.tail(e);
       
   174 		if ( level.get(u) >= n ) { 
       
   175 		  bfs_queue.push(u);
       
   176 		  level.set(u, l);
       
   177 		  if ( excess.get(u) > 0 ) {
       
   178 		    next.set(u,active[l]);
       
   179 		    active[l]=u;
       
   180 		  }
       
   181 		}
       
   182 	      }
       
   183 	    
       
   184 	      for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
       
   185 		if ( 0 == flow.get(e) ) continue;
       
   186 		NodeIt u=G.head(e);
       
   187 		if ( level.get(u) >= n ) { 
       
   188 		  bfs_queue.push(u);
       
   189 		  level.set(u, l);
       
   190 		  if ( excess.get(u) > 0 ) {
       
   191 		    next.set(u,active[l]);
       
   192 		    active[l]=u;
       
   193 		  }
       
   194 		}
       
   195 	      }
       
   196 	    }
       
   197 	    b=n-2;
       
   198 	    }
       
   199 	    
       
   200 	}
       
   201 	  
       
   202 	  
       
   203 	if ( active[b] == 0 ) --b; 
       
   204 	else {
       
   205 	  end=false;  
       
   206 
       
   207 	  NodeIt w=active[b];
       
   208 	  active[b]=next.get(w);
       
   209 	  int lev=level.get(w);
       
   210 	  T exc=excess.get(w);
       
   211 	  int newlevel=n;       //bound on the next level of w
       
   212 	  
       
   213 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
       
   214 	    
       
   215 	    if ( flow.get(e) == capacity.get(e) ) continue; 
       
   216 	    NodeIt v=G.head(e);            
       
   217 	    //e=wv	    
       
   218 	    
       
   219 	    if( lev > level.get(v) ) {      
       
   220 	      /*Push is allowed now*/
       
   221 	      
       
   222 	      if ( excess.get(v)==0 && v!=t && v!=s ) {
       
   223 		int lev_v=level.get(v);
       
   224 		next.set(v,active[lev_v]);
       
   225 		active[lev_v]=v;
       
   226 	      }
       
   227 	      
       
   228 	      T cap=capacity.get(e);
       
   229 	      T flo=flow.get(e);
       
   230 	      T remcap=cap-flo;
       
   231 	      
       
   232 	      if ( remcap >= exc ) {       
       
   233 		/*A nonsaturating push.*/
       
   234 		
       
   235 		flow.set(e, flo+exc);
       
   236 		excess.set(v, excess.get(v)+exc);
       
   237 		exc=0;
       
   238 		break; 
       
   239 		
       
   240 	      } else { 
       
   241 		/*A saturating push.*/
       
   242 		
       
   243 		flow.set(e, cap);
       
   244 		excess.set(v, excess.get(v)+remcap);
       
   245 		exc-=remcap;
       
   246 	      }
       
   247 	    } else if ( newlevel > level.get(v) ){
       
   248 	      newlevel = level.get(v);
       
   249 	    }	    
       
   250 	    
       
   251 	  } //for out edges wv 
       
   252 	
       
   253 	
       
   254 	if ( exc > 0 ) {	
       
   255 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
       
   256 	    
       
   257 	    if( flow.get(e) == 0 ) continue; 
       
   258 	    NodeIt v=G.tail(e);  
       
   259 	    //e=vw
       
   260 	    
       
   261 	    if( lev > level.get(v) ) {  
       
   262 	      /*Push is allowed now*/
       
   263 	      
       
   264 	      if ( excess.get(v)==0 && v!=t && v!=s ) {
       
   265 		int lev_v=level.get(v);
       
   266 		next.set(v,active[lev_v]);
       
   267 		active[lev_v]=v;
       
   268 	      }
       
   269 	      
       
   270 	      T flo=flow.get(e);
       
   271 	      
       
   272 	      if ( flo >= exc ) { 
       
   273 		/*A nonsaturating push.*/
       
   274 		
       
   275 		flow.set(e, flo-exc);
       
   276 		excess.set(v, excess.get(v)+exc);
       
   277 		exc=0;
       
   278 		break; 
       
   279 	      } else {                                               
       
   280 		/*A saturating push.*/
       
   281 		
       
   282 		excess.set(v, excess.get(v)+flo);
       
   283 		exc-=flo;
       
   284 		flow.set(e,0);
       
   285 	      }  
       
   286 	    } else if ( newlevel > level.get(v) ) {
       
   287 	      newlevel = level.get(v);
       
   288 	    }	    
       
   289 	  } //for in edges vw
       
   290 	  
       
   291 	} // if w still has excess after the out edge for cycle
       
   292 	
       
   293 	excess.set(w, exc);
       
   294 	 
       
   295 	/*
       
   296 	  Relabel
       
   297 	*/
       
   298 	
       
   299 
       
   300 	if ( exc > 0 ) {
       
   301 	  //now 'lev' is the old level of w
       
   302 	
       
   303 	  if ( phase ) {
       
   304 	    level.set(w,++newlevel);
       
   305 	    next.set(w,active[newlevel]);
       
   306 	    active[newlevel]=w;
       
   307 	    b=newlevel;
       
   308 	  } else {
       
   309 	    //unlacing starts
       
   310 	    NodeIt right_n=right.get(w);
       
   311 	    NodeIt left_n=left.get(w);
       
   312 
       
   313 	    if ( right_n != 0 ) {
       
   314 	      if ( left_n != 0 ) {
       
   315 		right.set(left_n, right_n);
       
   316 		left.set(right_n, left_n);
       
   317 	      } else {
       
   318 		level_list[lev]=right_n;   
       
   319 		left.set(right_n, 0);
       
   320 	      } 
       
   321 	    } else {
       
   322 	      if ( left_n != 0 ) {
       
   323 		right.set(left_n, 0);
       
   324 	      } else { 
       
   325 		level_list[lev]=0;   
       
   326 
       
   327 	      } 
       
   328 	    } 
       
   329 	    //unlacing ends
       
   330 		
       
   331 	    //gapping starts
       
   332 	    if ( level_list[lev]==0 ) {
       
   333 	      
       
   334 	      for (int i=lev; i!=k ; ) {
       
   335 		NodeIt v=level_list[++i];
       
   336 		while ( v != 0 ) {
       
   337 		  level.set(v,n);
       
   338 		  v=right.get(v);
       
   339 		}
       
   340 		level_list[i]=0;
       
   341 		active[i]=0;
       
   342 	      }	     
       
   343 
       
   344 	      level.set(w,n);
       
   345 	      b=lev-1;
       
   346 	      k=b;
       
   347 	      //gapping ends
       
   348 	    } else {
       
   349 	      
       
   350 	      if ( newlevel == n ) level.set(w,n); 
       
   351 	      else {
       
   352 		level.set(w,++newlevel);
       
   353 		next.set(w,active[newlevel]);
       
   354 		active[newlevel]=w;
       
   355 		if ( k < newlevel ) ++k;
       
   356 		NodeIt first=level_list[newlevel];
       
   357 		if ( first != 0 ) left.set(first,w);
       
   358 		right.set(w,first);
       
   359 		left.set(w,0);
       
   360 		level_list[newlevel]=w;
       
   361 	      }
       
   362 	    }
       
   363 
       
   364 
       
   365 	  } //phase 0
       
   366 	  
       
   367 	  
       
   368 	} // if ( exc > 0 )
       
   369 	  
       
   370 	
       
   371 	}  // if stack[b] is nonempty
       
   372 	
       
   373       } // while(true)
       
   374 
       
   375 
       
   376       value = excess.get(t);
       
   377       /*Max flow value.*/
       
   378      
       
   379     } //void run()
       
   380 
       
   381 
       
   382 
       
   383 
       
   384 
       
   385     /*
       
   386       Returns the maximum value of a flow.
       
   387      */
       
   388 
       
   389     T maxFlow() {
       
   390       return value;
       
   391     }
       
   392 
       
   393 
       
   394 
       
   395     /*
       
   396       For the maximum flow x found by the algorithm, 
       
   397       it returns the flow value on edge e, i.e. x(e). 
       
   398     */
       
   399    
       
   400     T flowOnEdge(EdgeIt e) {
       
   401       return flow.get(e);
       
   402     }
       
   403 
       
   404 
       
   405 
       
   406     FlowMap Flow() {
       
   407       return flow;
       
   408       }
       
   409 
       
   410 
       
   411     
       
   412     void Flow(FlowMap& _flow ) {
       
   413       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
       
   414 	_flow.set(v,flow.get(v));
       
   415 	}
       
   416 
       
   417 
       
   418 
       
   419     /*
       
   420       Returns the minimum min cut, by a bfs from s in the residual graph.
       
   421     */
       
   422    
       
   423     template<typename _CutMap>
       
   424     void minMinCut(_CutMap& M) {
       
   425     
       
   426       std::queue<NodeIt> queue;
       
   427       
       
   428       M.set(s,true);      
       
   429       queue.push(s);
       
   430 
       
   431       while (!queue.empty()) {
       
   432         NodeIt w=queue.front();
       
   433 	queue.pop();
       
   434 
       
   435 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
       
   436 	  NodeIt v=G.head(e);
       
   437 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
       
   438 	    queue.push(v);
       
   439 	    M.set(v, true);
       
   440 	  }
       
   441 	} 
       
   442 
       
   443 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
       
   444 	  NodeIt v=G.tail(e);
       
   445 	  if (!M.get(v) && flow.get(e) > 0 ) {
       
   446 	    queue.push(v);
       
   447 	    M.set(v, true);
       
   448 	  }
       
   449 	} 
       
   450       }
       
   451     }
       
   452 
       
   453 
       
   454   
       
   455     /*
       
   456       Returns the maximum min cut, by a reverse bfs 
       
   457       from t in the residual graph.
       
   458     */
       
   459     
       
   460     template<typename _CutMap>
       
   461     void maxMinCut(_CutMap& M) {
       
   462     
       
   463       std::queue<NodeIt> queue;
       
   464       
       
   465       M.set(t,true);        
       
   466       queue.push(t);
       
   467 
       
   468       while (!queue.empty()) {
       
   469         NodeIt w=queue.front();
       
   470 	queue.pop();
       
   471 
       
   472 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
       
   473 	  NodeIt v=G.tail(e);
       
   474 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
       
   475 	    queue.push(v);
       
   476 	    M.set(v, true);
       
   477 	  }
       
   478 	}
       
   479 
       
   480 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
       
   481 	  NodeIt v=G.head(e);
       
   482 	  if (!M.get(v) && flow.get(e) > 0 ) {
       
   483 	    queue.push(v);
       
   484 	    M.set(v, true);
       
   485 	  }
       
   486 	}
       
   487       }
       
   488 
       
   489       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
       
   490 	M.set(v, !M.get(v));
       
   491       }
       
   492 
       
   493     }
       
   494 
       
   495 
       
   496 
       
   497     template<typename _CutMap>
       
   498     void minCut(_CutMap& M) {
       
   499       minMinCut(M);
       
   500     }
       
   501 
       
   502   };
       
   503 }//namespace marci
       
   504 #endif 
       
   505 
       
   506 
       
   507 
       
   508