lemon/ssp_min_cost_flow.h
changeset 2296 02088c3c0d14
child 2350 eb371753e814
equal deleted inserted replaced
-1:000000000000 0:86c87bf43b6f
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2006
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_MIN_COST_FLOW_H
       
    20 #define LEMON_MIN_COST_FLOW_H
       
    21 
       
    22 ///\ingroup flowalgs 
       
    23 ///
       
    24 ///\file \brief An algorithm for finding a flow of value \c k (for
       
    25 ///small values of \c k) having minimal total cost
       
    26 
       
    27 
       
    28 #include <lemon/dijkstra.h>
       
    29 #include <lemon/graph_adaptor.h>
       
    30 #include <lemon/maps.h>
       
    31 #include <vector>
       
    32 
       
    33 namespace lemon {
       
    34 
       
    35   /// \addtogroup flowalgs
       
    36   /// @{
       
    37 
       
    38   /// \brief Implementation of an algorithm for finding a flow of
       
    39   /// value \c k (for small values of \c k) having minimal total cost
       
    40   /// between two nodes
       
    41   /// 
       
    42   ///
       
    43   /// The \ref lemon::SspMinCostFlow "Successive Shortest Path Minimum
       
    44   /// Cost Flow" implements an algorithm for finding a flow of value
       
    45   /// \c k having minimal total cost from a given source node to a
       
    46   /// given target node in a directed graph with a cost function on
       
    47   /// the edges. To this end, the edge-capacities and edge-costs have
       
    48   /// to be nonnegative.  The edge-capacities should be integers, but
       
    49   /// the edge-costs can be integers, reals or of other comparable
       
    50   /// numeric type.  This algorithm is intended to be used only for
       
    51   /// small values of \c k, since it is only polynomial in k, not in
       
    52   /// the length of k (which is log k): in order to find the minimum
       
    53   /// cost flow of value \c k it finds the minimum cost flow of value
       
    54   /// \c i for every \c i between 0 and \c k.
       
    55   ///
       
    56   ///\param Graph The directed graph type the algorithm runs on.
       
    57   ///\param LengthMap The type of the length map.
       
    58   ///\param CapacityMap The capacity map type.
       
    59   ///
       
    60   ///\author Attila Bernath
       
    61   template <typename Graph, typename LengthMap, typename CapacityMap>
       
    62   class SspMinCostFlow {
       
    63 
       
    64     typedef typename LengthMap::Value Length;
       
    65 
       
    66     //Warning: this should be integer type
       
    67     typedef typename CapacityMap::Value Capacity;
       
    68     
       
    69     typedef typename Graph::Node Node;
       
    70     typedef typename Graph::NodeIt NodeIt;
       
    71     typedef typename Graph::Edge Edge;
       
    72     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    73     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
       
    74 
       
    75     typedef ResGraphAdaptor<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
       
    76     typedef typename ResGW::Edge ResGraphEdge;
       
    77 
       
    78   protected:
       
    79 
       
    80     const Graph& g;
       
    81     const LengthMap& length;
       
    82     const CapacityMap& capacity;
       
    83 
       
    84     EdgeIntMap flow; 
       
    85     typedef typename Graph::template NodeMap<Length> PotentialMap;
       
    86     PotentialMap potential;
       
    87 
       
    88     Node s;
       
    89     Node t;
       
    90     
       
    91     Length total_length;
       
    92 
       
    93     class ModLengthMap {   
       
    94       typedef typename Graph::template NodeMap<Length> NodeMap;
       
    95       const ResGW& g;
       
    96       const LengthMap &length;
       
    97       const NodeMap &pot;
       
    98     public :
       
    99       typedef typename LengthMap::Key Key;
       
   100       typedef typename LengthMap::Value Value;
       
   101 
       
   102       ModLengthMap(const ResGW& _g, 
       
   103 		   const LengthMap &_length, const NodeMap &_pot) : 
       
   104 	g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { }
       
   105 	
       
   106       Value operator[](typename ResGW::Edge e) const {     
       
   107 	if (g.forward(e))
       
   108 	  return  length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
       
   109 	else
       
   110 	  return -length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
       
   111       }     
       
   112 	
       
   113     }; //ModLengthMap
       
   114 
       
   115     ResGW res_graph;
       
   116     ModLengthMap mod_length;
       
   117     Dijkstra<ResGW, ModLengthMap> dijkstra;
       
   118 
       
   119   public :
       
   120 
       
   121     /// \brief The constructor of the class.
       
   122     ///
       
   123     /// \param _g The directed graph the algorithm runs on. 
       
   124     /// \param _length The length (cost) of the edges. 
       
   125     /// \param _cap The capacity of the edges. 
       
   126     /// \param _s Source node.
       
   127     /// \param _t Target node.
       
   128     SspMinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap, 
       
   129                    Node _s, Node _t) : 
       
   130       g(_g), length(_length), capacity(_cap), flow(_g), potential(_g), 
       
   131       s(_s), t(_t), 
       
   132       res_graph(g, capacity, flow), 
       
   133       mod_length(res_graph, length, potential),
       
   134       dijkstra(res_graph, mod_length) { 
       
   135       reset();
       
   136     }
       
   137     
       
   138     /// \brief Tries to augment the flow between s and t by 1. The
       
   139     /// return value shows if the augmentation is successful.
       
   140     bool augment() {
       
   141       dijkstra.run(s);
       
   142       if (!dijkstra.reached(t)) {
       
   143 
       
   144 	//Unsuccessful augmentation.
       
   145 	return false;
       
   146       } else {
       
   147 
       
   148 	//We have to change the potential
       
   149 	for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
       
   150 	  potential.set(n, potential[n]+dijkstra.distMap()[n]);
       
   151 	
       
   152 	//Augmenting on the shortest path
       
   153 	Node n=t;
       
   154 	ResGraphEdge e;
       
   155 	while (n!=s){
       
   156 	  e = dijkstra.predEdge(n);
       
   157 	  n = dijkstra.predNode(n);
       
   158 	  res_graph.augment(e,1);
       
   159 	  //Let's update the total length
       
   160 	  if (res_graph.forward(e))
       
   161 	    total_length += length[e];
       
   162 	  else 
       
   163 	    total_length -= length[e];	    
       
   164 	}
       
   165 
       
   166 	return true;
       
   167       }
       
   168     }
       
   169     
       
   170     /// \brief Runs the algorithm.
       
   171     ///
       
   172     /// Runs the algorithm.
       
   173     /// Returns k if there is a flow of value at least k from s to t.
       
   174     /// Otherwise it returns the maximum value of a flow from s to t.
       
   175     ///
       
   176     /// \param k The value of the flow we are looking for.
       
   177     ///
       
   178     /// \todo May be it does make sense to be able to start with a
       
   179     /// nonzero feasible primal-dual solution pair as well.
       
   180     ///
       
   181     /// \todo If the actual flow value is bigger than k, then
       
   182     /// everything is cleared and the algorithm starts from zero
       
   183     /// flow. Is it a good approach?
       
   184     int run(int k) {
       
   185       if (flowValue()>k) reset();
       
   186       while (flowValue()<k && augment()) { }
       
   187       return flowValue();
       
   188     }
       
   189 
       
   190     /// \brief The class is reset to zero flow and potential. The
       
   191     /// class is reset to zero flow and potential.
       
   192     void reset() {
       
   193       total_length=0;
       
   194       for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0);
       
   195       for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);  
       
   196     }
       
   197 
       
   198     /// \brief Returns the value of the actual flow. 
       
   199     int flowValue() const {
       
   200       int i=0;
       
   201       for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];
       
   202       for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e];
       
   203       return i;
       
   204     }
       
   205 
       
   206     /// \brief Total cost of the found flow.
       
   207     ///
       
   208     /// This function gives back the total cost of the found flow.
       
   209     Length totalLength(){
       
   210       return total_length;
       
   211     }
       
   212 
       
   213     /// \brief Returns a const reference to the EdgeMap \c flow. 
       
   214     ///
       
   215     /// Returns a const reference to the EdgeMap \c flow. 
       
   216     const EdgeIntMap &getFlow() const { return flow;}
       
   217 
       
   218     /// \brief Returns a const reference to the NodeMap \c potential
       
   219     /// (the dual solution).
       
   220     ///
       
   221     /// Returns a const reference to the NodeMap \c potential (the
       
   222     /// dual solution).
       
   223     const PotentialMap &getPotential() const { return potential;}
       
   224 
       
   225     /// \brief Checking the complementary slackness optimality criteria.
       
   226     ///
       
   227     /// This function checks, whether the given flow and potential 
       
   228     /// satisfy the complementary slackness conditions (i.e. these are optimal).
       
   229     /// This function only checks optimality, doesn't bother with feasibility.
       
   230     /// For testing purpose.
       
   231     bool checkComplementarySlackness(){
       
   232       Length mod_pot;
       
   233       Length fl_e;
       
   234         for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) {
       
   235 	//C^{\Pi}_{i,j}
       
   236 	mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)];
       
   237 	fl_e = flow[e];
       
   238 	if (0<fl_e && fl_e<capacity[e]) {
       
   239 	  /// \todo better comparison is needed for real types, moreover, 
       
   240 	  /// this comparison here is superfluous.
       
   241 	  if (mod_pot != 0)
       
   242 	    return false;
       
   243 	} 
       
   244 	else {
       
   245 	  if (mod_pot > 0 && fl_e != 0)
       
   246 	    return false;
       
   247 	  if (mod_pot < 0 && fl_e != capacity[e])
       
   248 	    return false;
       
   249 	}
       
   250       }
       
   251       return true;
       
   252     }
       
   253     
       
   254   }; //class SspMinCostFlow
       
   255 
       
   256   ///@}
       
   257 
       
   258 } //namespace lemon
       
   259 
       
   260 #endif //LEMON_MIN_COST_FLOW_H