lemon/kruskal.h
changeset 2425 08b64ae5a564
parent 2391 14a343be7a5a
child 2428 c06e86364234
equal deleted inserted replaced
25:90274beb18e1 26:2bec2137dbb6
    20 #define LEMON_KRUSKAL_H
    20 #define LEMON_KRUSKAL_H
    21 
    21 
    22 #include <algorithm>
    22 #include <algorithm>
    23 #include <vector>
    23 #include <vector>
    24 #include <lemon/unionfind.h>
    24 #include <lemon/unionfind.h>
       
    25 #include <lemon/graph_utils.h>
       
    26 #include <lemon/maps.h>
       
    27 
       
    28 #include <lemon/radix_sort.h>
       
    29 
    25 #include <lemon/bits/utility.h>
    30 #include <lemon/bits/utility.h>
    26 #include <lemon/bits/traits.h>
    31 #include <lemon/bits/traits.h>
    27 
    32 
    28 ///\ingroup spantree
    33 ///\ingroup spantree
    29 ///\file
    34 ///\file
    32 ///Kruskal's algorithm to compute a minimum cost tree.
    37 ///Kruskal's algorithm to compute a minimum cost tree.
    33 ///
    38 ///
    34 
    39 
    35 namespace lemon {
    40 namespace lemon {
    36 
    41 
    37   /// \addtogroup spantree
    42   namespace _kruskal_bits {
    38   /// @{
    43 
    39 
    44     template <typename Map, typename Comp>
    40   /// Kruskal's algorithm to find a minimum cost tree of a graph.
    45     struct MappedComp {
    41 
    46 
       
    47       typedef typename Map::Key Key;
       
    48 
       
    49       const Map& map;
       
    50       Comp comp;
       
    51 
       
    52       MappedComp(const Map& _map) 
       
    53         : map(_map), comp() {}
       
    54 
       
    55       bool operator()(const Key& left, const Key& right) {
       
    56         return comp(map[left], map[right]);
       
    57       }
       
    58 
       
    59     };
       
    60   
       
    61   }
       
    62 
       
    63   /// \ingroup spantree
       
    64   ///
       
    65   /// \brief Default traits class of Kruskal class.
       
    66   ///
       
    67   /// Default traits class of Kruskal class.
       
    68   /// \param _UGraph Undirected graph type.
       
    69   /// \param _CostMap Type of cost map.
       
    70   template <typename _UGraph, typename _CostMap>
       
    71   struct KruskalDefaultTraits{
       
    72 
       
    73     /// \brief The graph type the algorithm runs on. 
       
    74     typedef _UGraph UGraph;
       
    75 
       
    76     /// \brief The type of the map that stores the edge costs.
       
    77     ///
       
    78     /// The type of the map that stores the edge costs.
       
    79     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
       
    80     typedef _CostMap CostMap;
       
    81 
       
    82     /// \brief The type of the cost of the edges.
       
    83     typedef typename _CostMap::Value Value;
       
    84 
       
    85     /// \brief The type of the map that stores whether an edge is in the
       
    86     /// spanning tree or not.
       
    87     ///
       
    88     /// The type of the map that stores whether an edge is in the
       
    89     /// spanning tree or not.
       
    90     typedef typename _UGraph::template UEdgeMap<bool> TreeMap;
       
    91 
       
    92     /// \brief Instantiates a TreeMap.
       
    93     ///
       
    94     /// This function instantiates a \ref TreeMap.
       
    95     ///
       
    96     /// The first parameter is the graph, to which
       
    97     /// we would like to define the \ref TreeMap
       
    98     static TreeMap *createTreeMap(const _UGraph& graph){
       
    99       return new TreeMap(graph);
       
   100     }
       
   101 
       
   102     template <typename Iterator>
       
   103     static void sort(Iterator begin, Iterator end, const CostMap& cost) {
       
   104       _kruskal_bits::MappedComp<CostMap, std::less<Value> > comp(cost);
       
   105       std::sort(begin, end, comp);
       
   106     }
       
   107 
       
   108   };
       
   109 
       
   110   /// \brief Kruskal's algorithm to find a minimum cost tree of a graph.
       
   111   ///
       
   112   /// This class implements Kruskal's algorithm to find a minimum cost
       
   113   /// spanning tree. The 
       
   114   ///
       
   115   /// \param _UGraph Undirected graph type.
       
   116   /// \param _CostMap Type of cost map.
       
   117   template <typename _UGraph, typename _CostMap,
       
   118             typename _Traits = KruskalDefaultTraits<_UGraph, _CostMap> >
       
   119   class Kruskal {
       
   120   public:
       
   121 
       
   122     typedef _Traits Traits;
       
   123 
       
   124     typedef typename _Traits::UGraph UGraph;
       
   125     typedef typename _Traits::CostMap CostMap;
       
   126 
       
   127     typedef typename _Traits::TreeMap TreeMap;
       
   128 
       
   129     typedef typename _Traits::Value Value;
       
   130 
       
   131     template <typename Comp>
       
   132     struct DefSortCompareTraits : public Traits {
       
   133       template <typename Iterator>
       
   134       static void sort(Iterator begin, Iterator end, const CostMap& cost) {
       
   135         _kruskal_bits::MappedComp<CostMap, Comp> comp(cost, Comp());
       
   136         std::sort(begin, end, comp);
       
   137       }
       
   138     };
       
   139 
       
   140     /// \brief \ref named-templ-param "Named parameter" for setting the
       
   141     /// comparator object of the standard sort
       
   142     ///
       
   143     /// \ref named-templ-param "Named parameter" for setting the
       
   144     /// comparator object of the standard sort
       
   145     template <typename Comp>
       
   146     struct DefSortCompare
       
   147       : public Kruskal<UGraph, CostMap, DefSortCompareTraits<Comp> > {
       
   148       typedef Kruskal<UGraph, CostMap, DefSortCompareTraits<Comp> > Create;
       
   149     };    
       
   150 
       
   151     struct DefRadixSortTraits : public Traits {
       
   152       template <typename Iterator>
       
   153       static void sort(Iterator begin, Iterator end, const CostMap& cost) {
       
   154         radixSort(begin, end, cost);
       
   155       }
       
   156     };
       
   157 
       
   158     /// \brief \ref named-templ-param "Named parameter" for setting the
       
   159     /// sort function to radix sort
       
   160     ///
       
   161     /// \brief \ref named-templ-param "Named parameter" for setting the
       
   162     /// sort function to radix sort. The value type of the cost map should
       
   163     /// be integral, of course. 
       
   164     struct DefRadixSort
       
   165       : public Kruskal<UGraph, CostMap, DefRadixSortTraits> {
       
   166       typedef Kruskal<UGraph, CostMap, DefRadixSortTraits> Create;
       
   167     };    
       
   168 
       
   169     template <class TM>
       
   170     struct DefTreeMapTraits : public Traits {
       
   171       typedef TM TreeMap;
       
   172       static TreeMap *createTreeMap(const UGraph &) {
       
   173         throw UninitializedParameter();
       
   174       }
       
   175     };
       
   176 
       
   177     /// \brief \ref named-templ-param "Named parameter" for setting
       
   178     /// TreeMap
       
   179     ///
       
   180     /// \ref named-templ-param "Named parameter" for setting TreeMap
       
   181     ///
       
   182     template <class TM>
       
   183     struct DefTreeMap
       
   184       : public Kruskal< UGraph, CostMap, DefTreeMapTraits<TM> > {
       
   185       typedef Kruskal< UGraph, CostMap, DefTreeMapTraits<TM> > Create;
       
   186     };    
       
   187     
       
   188 
       
   189   private:
       
   190 
       
   191     typedef typename UGraph::Node Node;
       
   192     typedef typename UGraph::NodeIt NodeIt;
       
   193 
       
   194     typedef typename UGraph::UEdge UEdge;
       
   195     typedef typename UGraph::UEdgeIt UEdgeIt;
       
   196 
       
   197     const UGraph& graph;
       
   198     const CostMap& cost;
       
   199     
       
   200     std::vector<UEdge> edges;
       
   201     
       
   202     typedef typename UGraph::template NodeMap<int> UfIndex;
       
   203     typedef UnionFind<UfIndex> Uf;
       
   204     UfIndex *ufi;
       
   205     Uf *uf;
       
   206 
       
   207     int index;
       
   208 
       
   209     void initStructures() {
       
   210       if (!_tree) {
       
   211         _tree = Traits::createTreeMap(graph);
       
   212         local_tree = true;
       
   213       }
       
   214       if (!uf) {
       
   215         ufi = new typename UGraph::template NodeMap<int>(graph);
       
   216         uf = new UnionFind<typename UGraph::template NodeMap<int> >(*ufi);
       
   217       }
       
   218     }
       
   219     
       
   220     void initUnionFind() {
       
   221       uf->clear();
       
   222       for (NodeIt it(graph); it != INVALID; ++it) {
       
   223         uf->insert(it);
       
   224       }
       
   225     }
       
   226 
       
   227     bool local_tree;
       
   228     TreeMap* _tree;
       
   229 
       
   230   public:
       
   231 
       
   232     /// \brief Constructor
       
   233     ///
       
   234     /// Constructor of the algorithm.
       
   235     Kruskal(const UGraph& _graph, const CostMap& _cost) 
       
   236       : graph(_graph), cost(_cost),
       
   237         ufi(0), uf(0), local_tree(false), _tree(0) {}
       
   238 
       
   239     /// \brief Destructor
       
   240     ///
       
   241     /// Destructor
       
   242     ~Kruskal() {
       
   243       if (local_tree) {
       
   244         delete _tree;
       
   245       }
       
   246       if (uf) {
       
   247         delete uf;
       
   248         delete ufi;
       
   249       }
       
   250     }
       
   251 
       
   252     /// \brief Sets the map storing the tree edges.
       
   253     ///
       
   254     /// Sets the map storing the tree edges.
       
   255     /// If you don't use this function before calling \ref run(),
       
   256     /// it will allocate one. The destuctor deallocates this
       
   257     /// automatically allocated map, of course.
       
   258     /// \return \c *this </tt>
       
   259     Kruskal& treeMap(TreeMap &m){
       
   260       if (local_tree) {
       
   261 	delete _tree;
       
   262 	local_tree = false;
       
   263       }
       
   264       _tree = &m;
       
   265       return *this;
       
   266     }
       
   267 
       
   268     /// \brief Initialize the algorithm
       
   269     ///
       
   270     /// This member function initializes the unionfind data structure
       
   271     /// and sorts the edges into ascending order
       
   272     void init() {
       
   273       initStructures();
       
   274       initUnionFind();
       
   275       for (UEdgeIt e(graph); e != INVALID; ++e) {
       
   276         edges.push_back(e);
       
   277         _tree->set(e, false);
       
   278       }      
       
   279       Traits::sort(edges.begin(), edges.end(), cost); 
       
   280       index = 0;
       
   281     }
       
   282 
       
   283 
       
   284     /// \brief Initialize the algorithm
       
   285     ///
       
   286     /// This member function initializes the unionfind data structure
       
   287     /// and sets the edge order to the given sequence. The given
       
   288     /// sequence should be a valid STL range of undirected edges.
       
   289     template <typename Iterator>
       
   290     void initPresorted(Iterator begin, Iterator end) {
       
   291       initStructures();
       
   292       initUnionFind();
       
   293       edges.clear();
       
   294       std::copy(begin, end, std::back_inserter(edges));
       
   295       index = 0;
       
   296     }
       
   297 
       
   298     /// \brief Initialize the algorithm
       
   299     ///
       
   300     /// This member function initializes the unionfind data structure
       
   301     /// and sets the edge order to the given sequence. The given
       
   302     /// sequence should be a valid STL range of undirected edges.
       
   303     void reinit() {
       
   304       initStructures();
       
   305       initUnionFind();
       
   306       for (UEdgeIt e(graph); e != INVALID; ++e) {
       
   307         _tree->set(e, false);
       
   308       }
       
   309       index = 0;
       
   310     }
       
   311 
       
   312 
       
   313     /// \brief Executes the algorithm.
       
   314     ///
       
   315     /// Executes the algorithm.
       
   316     ///
       
   317     /// \pre init() must be called before using this function.
       
   318     ///
       
   319     /// This method runs the %Kruskal algorithm.
       
   320     void start() {
       
   321       while (index < int(edges.size())) {
       
   322         if (uf->join(graph.target(edges[index]), graph.source(edges[index]))) {
       
   323           _tree->set(edges[index], true);
       
   324         }
       
   325         ++index;
       
   326       }
       
   327     }
       
   328 
       
   329     /// \brief Runs the prim algorithm until it find a new tree edge
       
   330     ///
       
   331     /// Runs the prim algorithm until it find a new tree edge. If it
       
   332     /// does not next tree edge in the sequence it gives back \c INVALID.
       
   333     UEdge findNextTreeEdge() {
       
   334       while (index < int(edges.size())) {
       
   335         if (uf->join(graph.target(edges[index]), graph.source(edges[index]))) {
       
   336           _tree->set(edges[index], true);
       
   337           return edges[index++];
       
   338         }        
       
   339         ++index;
       
   340       }
       
   341       return INVALID;
       
   342     }
       
   343       
       
   344     /// \brief Processes the next edge in the sequence
       
   345     ///
       
   346     /// Processes the next edge in the sequence.
       
   347     ///
       
   348     /// \return The prcocessed edge.
       
   349     ///
       
   350     /// \warning The sequence must not be empty!
       
   351     UEdge processNextEdge() {
       
   352       UEdge edge = edges[index++];
       
   353       processEdge(edge);
       
   354       return edge;
       
   355     }
       
   356 
       
   357     /// \brief Processes an arbitrary edge
       
   358     ///
       
   359     /// Processes the next edge in the sequence.
       
   360     ///
       
   361     /// \return True when the edge is a tree edge.
       
   362     bool processEdge(const UEdge& edge) {
       
   363       if (uf->join(graph.target(edge), graph.source(edge))) {
       
   364         _tree->set(edge, true);
       
   365         return true;
       
   366       } else {
       
   367         return false;
       
   368       }    
       
   369     }
       
   370 
       
   371     /// \brief Returns \c false if there are edge to be processed in
       
   372     /// sequence
       
   373     ///
       
   374     /// Returns \c false if there are nodes to be processed in the
       
   375     /// sequence
       
   376     bool emptyQueue() {
       
   377       return index == int(edges.size());
       
   378     }
       
   379 
       
   380     /// \brief Returns the next edge to be processed
       
   381     ///
       
   382     /// Returns the next edge to be processed
       
   383     ///
       
   384     UEdge nextEdge() const {
       
   385       return edges[index];
       
   386     }
       
   387 
       
   388     /// \brief Runs %Kruskal algorithm.
       
   389     ///
       
   390     /// This method runs the %Kruskal algorithm in order to compute the
       
   391     /// minimum spanning tree (or minimum spanning forest).  The
       
   392     /// method also works on graphs that has more than one components.
       
   393     /// In this case it computes the minimum spanning forest.
       
   394     void run() {
       
   395       init();
       
   396       start();
       
   397     }
       
   398 
       
   399     /// \brief Returns a reference to the tree edges map
       
   400     ///
       
   401     /// Returns a reference to the TreeEdgeMap of the edges of the
       
   402     /// minimum spanning tree. The value of the map is \c true only if
       
   403     /// the edge is in the minimum spanning tree.
       
   404     ///
       
   405     const TreeMap &treeMap() const { return *_tree;}
       
   406 
       
   407     /// \brief Returns the total cost of the tree
       
   408     ///
       
   409     /// Returns the total cost of the tree
       
   410     Value treeValue() const {
       
   411       Value value = 0;
       
   412       for (UEdgeIt it(graph); it != INVALID; ++it) {
       
   413         if ((*_tree)[it]) {
       
   414           value += cost[it];
       
   415         }
       
   416       }
       
   417       return value;
       
   418     }
       
   419 
       
   420     /// \brief Returns true when the given edge is tree edge
       
   421     ///
       
   422     /// Returns true when the given edge is tree edge
       
   423     bool tree(UEdge e) const {
       
   424       return (*_tree)[e];
       
   425     }
       
   426     
       
   427     
       
   428   };
       
   429 
       
   430 
       
   431   namespace _kruskal_bits {
       
   432 
       
   433     template <typename Graph, typename In, typename Out>
       
   434     typename In::value_type::second_type
       
   435     kruskal(const Graph& graph, const In& in, Out& out) {
       
   436       typedef typename In::value_type::second_type Value;
       
   437       typedef typename Graph::template NodeMap<int> IndexMap;
       
   438       typedef typename Graph::Node Node;
       
   439       
       
   440       IndexMap index(graph);
       
   441       UnionFind<IndexMap> uf(index);
       
   442       for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
       
   443         uf.insert(it);
       
   444       }
       
   445       
       
   446       Value tree_value = 0;
       
   447       for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
       
   448         if (uf.join(graph.target(it->first),graph.source(it->first))) {
       
   449           out.set(it->first, true);
       
   450           tree_value += it->second;
       
   451         }
       
   452         else {
       
   453           out.set(it->first, false);
       
   454         }
       
   455       }
       
   456       return tree_value;
       
   457     }
       
   458 
       
   459 
       
   460     template <typename Sequence>
       
   461     struct PairComp {
       
   462       typedef typename Sequence::value_type Value;
       
   463       bool operator()(const Value& left, const Value& right) {
       
   464 	return left.second < right.second;
       
   465       }
       
   466     };
       
   467 
       
   468     template <typename In, typename Enable = void>
       
   469     struct SequenceInputIndicator {
       
   470       static const bool value = false;
       
   471     };
       
   472 
       
   473     template <typename In>
       
   474     struct SequenceInputIndicator<In, 
       
   475       typename exists<typename In::value_type::first_type>::type> {
       
   476       static const bool value = true;
       
   477     };
       
   478 
       
   479     template <typename In, typename Enable = void>
       
   480     struct MapInputIndicator {
       
   481       static const bool value = false;
       
   482     };
       
   483 
       
   484     template <typename In>
       
   485     struct MapInputIndicator<In, 
       
   486       typename exists<typename In::Value>::type> {
       
   487       static const bool value = true;
       
   488     };
       
   489 
       
   490     template <typename In, typename Enable = void>
       
   491     struct SequenceOutputIndicator {
       
   492       static const bool value = false;
       
   493     };
       
   494  
       
   495     template <typename Out>
       
   496     struct SequenceOutputIndicator<Out, 
       
   497       typename exists<typename Out::value_type>::type> {
       
   498       static const bool value = true;
       
   499     };
       
   500 
       
   501     template <typename Out, typename Enable = void>
       
   502     struct MapOutputIndicator {
       
   503       static const bool value = false;
       
   504     };
       
   505 
       
   506     template <typename Out>
       
   507     struct MapOutputIndicator<Out, 
       
   508       typename exists<typename Out::Value>::type> {
       
   509       static const bool value = true;
       
   510     };
       
   511 
       
   512     template <typename In, typename InEnable = void>
       
   513     struct KruskalValueSelector {};
       
   514 
       
   515     template <typename In>
       
   516     struct KruskalValueSelector<In,
       
   517       typename enable_if<SequenceInputIndicator<In>, void>::type> 
       
   518     {
       
   519       typedef typename In::value_type::second_type Value;
       
   520     };    
       
   521 
       
   522     template <typename In>
       
   523     struct KruskalValueSelector<In,
       
   524       typename enable_if<MapInputIndicator<In>, void>::type> 
       
   525     {
       
   526       typedef typename In::Value Value;
       
   527     };    
       
   528     
       
   529     template <typename Graph, typename In, typename Out,
       
   530               typename InEnable = void>
       
   531     struct KruskalInputSelector {};
       
   532 
       
   533     template <typename Graph, typename In, typename Out,
       
   534               typename InEnable = void>
       
   535     struct KruskalOutputSelector {};
       
   536     
       
   537     template <typename Graph, typename In, typename Out>
       
   538     struct KruskalInputSelector<Graph, In, Out,
       
   539       typename enable_if<SequenceInputIndicator<In>, void>::type > 
       
   540     {
       
   541       typedef typename In::value_type::second_type Value;
       
   542 
       
   543       static Value kruskal(const Graph& graph, const In& in, Out& out) {
       
   544         return KruskalOutputSelector<Graph, In, Out>::
       
   545           kruskal(graph, in, out);
       
   546       }
       
   547 
       
   548     };
       
   549 
       
   550     template <typename Graph, typename In, typename Out>
       
   551     struct KruskalInputSelector<Graph, In, Out,
       
   552       typename enable_if<MapInputIndicator<In>, void>::type > 
       
   553     {
       
   554       typedef typename In::Value Value;
       
   555       static Value kruskal(const Graph& graph, const In& in, Out& out) {
       
   556         typedef typename In::Key MapEdge;
       
   557         typedef typename In::Value Value;
       
   558         typedef typename ItemSetTraits<Graph, MapEdge>::ItemIt MapEdgeIt;
       
   559         typedef std::vector<std::pair<MapEdge, Value> > Sequence;
       
   560         Sequence seq;
       
   561         
       
   562         for (MapEdgeIt it(graph); it != INVALID; ++it) {
       
   563           seq.push_back(make_pair(it, in[it]));
       
   564         }
       
   565 
       
   566         std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
       
   567         return KruskalOutputSelector<Graph, Sequence, Out>::
       
   568           kruskal(graph, seq, out);
       
   569       }
       
   570     };
       
   571 
       
   572     template <typename Graph, typename In, typename Out>
       
   573     struct KruskalOutputSelector<Graph, In, Out,
       
   574       typename enable_if<SequenceOutputIndicator<Out>, void>::type > 
       
   575     {
       
   576       typedef typename In::value_type::second_type Value;
       
   577 
       
   578       static Value kruskal(const Graph& graph, const In& in, Out& out) {
       
   579         typedef StoreBoolMap<Out> Map;
       
   580         Map map(out);
       
   581         return _kruskal_bits::kruskal(graph, in, map);
       
   582       }
       
   583 
       
   584     };
       
   585 
       
   586     template <typename Graph, typename In, typename Out>
       
   587     struct KruskalOutputSelector<Graph, In, Out,
       
   588       typename enable_if<MapOutputIndicator<Out>, void>::type > 
       
   589     {
       
   590       typedef typename In::value_type::second_type Value;
       
   591 
       
   592       static Value kruskal(const Graph& graph, const In& in, Out& out) {
       
   593         return _kruskal_bits::kruskal(graph, in, out);
       
   594       }
       
   595     };
       
   596 
       
   597   }
       
   598 
       
   599   /// \ingroup spantree
       
   600   ///
       
   601   /// \brief Kruskal's algorithm to find a minimum cost tree of a graph.
       
   602   ///
    42   /// This function runs Kruskal's algorithm to find a minimum cost tree.
   603   /// This function runs Kruskal's algorithm to find a minimum cost tree.
    43   /// Due to hard C++ hacking, it accepts various input and output types.
   604   /// Due to hard C++ hacking, it accepts various input and output types.
    44   ///
   605   ///
    45   /// \param g The graph the algorithm runs on.
   606   /// \param g The graph the algorithm runs on.
    46   /// It can be either \ref concepts::Graph "directed" or 
   607   /// It can be either \ref concepts::Graph "directed" or 
    48   /// If the graph is directed, the algorithm consider it to be 
   609   /// If the graph is directed, the algorithm consider it to be 
    49   /// undirected by disregarding the direction of the edges.
   610   /// undirected by disregarding the direction of the edges.
    50   ///
   611   ///
    51   /// \param in This object is used to describe the edge costs. It can be one
   612   /// \param in This object is used to describe the edge costs. It can be one
    52   /// of the following choices.
   613   /// of the following choices.
    53   /// - An STL compatible 'Forward Container'
   614   ///
    54   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
   615   /// - An STL compatible 'Forward Container' with
    55   /// where \c X is the type of the costs. The pairs indicates the edges along
   616   /// <tt>std::pair<GR::UEdge,X></tt> or
    56   /// with the assigned cost. <em>They must be in a
   617   /// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where
       
   618   /// \c X is the type of the costs. The pairs indicates the edges
       
   619   /// along with the assigned cost. <em>They must be in a
    57   /// cost-ascending order.</em>
   620   /// cost-ascending order.</em>
    58   /// - Any readable Edge map. The values of the map indicate the edge costs.
   621   /// - Any readable Edge map. The values of the map indicate the edge costs.
    59   ///
   622   ///
    60   /// \retval out Here we also have a choise.
   623   /// \retval out Here we also have a choise.
    61   /// - It can be a writable \c bool edge map. 
   624   /// - It can be a writable \c bool edge map.  After running the
    62   /// After running the algorithm
   625   /// algorithm this will contain the found minimum cost spanning
    63   /// this will contain the found minimum cost spanning tree: the value of an
   626   /// tree: the value of an edge will be set to \c true if it belongs
    64   /// edge will be set to \c true if it belongs to the tree, otherwise it will
   627   /// to the tree, otherwise it will be set to \c false. The value of
    65   /// be set to \c false. The value of each edge will be set exactly once.
   628   /// each edge will be set exactly once.
    66   /// - It can also be an iteraror of an STL Container with
   629   /// - It can also be an iteraror of an STL Container with
    67   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
   630   /// <tt>GR::UEdge</tt> or <tt>GR::Edge</tt> as its
    68   /// The algorithm copies the elements of the found tree into this sequence.
   631   /// <tt>value_type</tt>.  The algorithm copies the elements of the
    69   /// For example, if we know that the spanning tree of the graph \c g has
   632   /// found tree into this sequence.  For example, if we know that the
    70   /// say 53 edges, then
   633   /// spanning tree of the graph \c g has say 53 edges, then we can
    71   /// we can put its edges into an STL vector \c tree with a code like this.
   634   /// put its edges into an STL vector \c tree with a code like this.
    72   ///\code
   635   ///\code
    73   /// std::vector<Edge> tree(53);
   636   /// std::vector<Edge> tree(53);
    74   /// kruskal(g,cost,tree.begin());
   637   /// kruskal(g,cost,tree.begin());
    75   ///\endcode
   638   ///\endcode
    76   /// Or if we don't know in advance the size of the tree, we can write this.
   639   /// Or if we don't know in advance the size of the tree, we can
    77   ///\code
   640   /// write this.  
    78   /// std::vector<Edge> tree;
   641   ///\code std::vector<Edge> tree;
    79   /// kruskal(g,cost,std::back_inserter(tree));
   642   /// kruskal(g,cost,std::back_inserter(tree)); 
    80   ///\endcode
   643   ///\endcode
    81   ///
   644   ///
    82   /// \return The cost of the found tree.
   645   /// \return The total cost of the found tree.
    83   ///
   646   ///
    84   /// \warning If kruskal runs on an
   647   /// \warning If kruskal runs on an be consistent of using the same
    85   /// \ref lemon::concepts::UGraph "undirected graph", be sure that the
   648   /// Edge type for input and output.
    86   /// map storing the tree is also undirected
       
    87   /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
       
    88   /// half of the edges will not be set.
       
    89   ///
   649   ///
    90 
   650 
    91 #ifdef DOXYGEN
   651 #ifdef DOXYGEN
    92   template <class GR, class IN, class OUT>
   652   template <class Graph, class In, class Out>
    93   CostType
   653   Value kruskal(GR const& g, const In& in, Out& out)
    94   kruskal(GR const& g, IN const& in, 
   654 #else 
    95 	  OUT& out)
   655   template <class Graph, class In, class Out>
    96 #else
   656   inline typename _kruskal_bits::KruskalValueSelector<In>::Value 
    97   template <class GR, class IN, class OUT>
   657   kruskal(const Graph& graph, const In& in, Out& out) 
    98   typename IN::value_type::second_type
       
    99   kruskal(GR const& g, IN const& in, 
       
   100 	  OUT& out,
       
   101 // 	  typename IN::value_type::first_type = typename GR::Edge()
       
   102 // 	  ,typename OUT::Key = OUT::Key()
       
   103 // 	  //,typename OUT::Key = typename GR::Edge()
       
   104 	  const typename IN::value_type::first_type * = 
       
   105 	  reinterpret_cast<const typename IN::value_type::first_type*>(0),
       
   106 	  const typename OUT::Key * = 
       
   107           reinterpret_cast<const typename OUT::Key*>(0)
       
   108 	  )
       
   109 #endif
   658 #endif
   110   {
   659   {
   111     typedef typename IN::value_type::second_type EdgeCost;
   660     return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
   112     typedef typename GR::template NodeMap<int> NodeIntMap;
   661       kruskal(graph, in, out);
   113     typedef typename GR::Node Node;
       
   114 
       
   115     NodeIntMap comp(g);
       
   116     UnionFind<NodeIntMap> uf(comp);
       
   117     for (typename GR::NodeIt it(g); it != INVALID; ++it) {
       
   118       uf.insert(it);
       
   119     }
       
   120       
       
   121     EdgeCost tot_cost = 0;
       
   122     for (typename IN::const_iterator p = in.begin(); 
       
   123 	 p!=in.end(); ++p ) {
       
   124       if ( uf.join(g.target((*p).first),
       
   125 		   g.source((*p).first)) ) {
       
   126 	out.set((*p).first, true);
       
   127 	tot_cost += (*p).second;
       
   128       }
       
   129       else {
       
   130 	out.set((*p).first, false);
       
   131       }
       
   132     }
       
   133     return tot_cost;
       
   134   }
   662   }
   135 
   663 
   136  
   664  
   137   /// @}
       
   138 
       
   139   
   665   
   140   /* A work-around for running Kruskal with const-reference bool maps... */
   666 
   141 
   667   template <class Graph, class In, class Out>
   142   /// Helper class for calling kruskal with "constant" output map.
   668   inline typename _kruskal_bits::KruskalValueSelector<In>::Value
   143 
   669   kruskal(const Graph& graph, const In& in, const Out& out)
   144   /// Helper class for calling kruskal with output maps constructed
       
   145   /// on-the-fly.
       
   146   ///
       
   147   /// A typical examle is the following call:
       
   148   /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
       
   149   /// Here, the third argument is a temporary object (which wraps around an
       
   150   /// iterator with a writable bool map interface), and thus by rules of C++
       
   151   /// is a \c const object. To enable call like this exist this class and
       
   152   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
       
   153   /// third argument.
       
   154   template<class Map>
       
   155   class NonConstMapWr {
       
   156     const Map &m;
       
   157   public:
       
   158     typedef typename Map::Key Key;
       
   159     typedef typename Map::Value Value;
       
   160 
       
   161     NonConstMapWr(const Map &_m) : m(_m) {}
       
   162 
       
   163     template<class Key>
       
   164     void set(Key const& k, Value const &v) const { m.set(k,v); }
       
   165   };
       
   166 
       
   167   template <class GR, class IN, class OUT>
       
   168   inline
       
   169   typename IN::value_type::second_type
       
   170   kruskal(GR const& g, IN const& edges, OUT const& out_map,
       
   171 // 	  typename IN::value_type::first_type = typename GR::Edge(),
       
   172 // 	  typename OUT::Key = GR::Edge()
       
   173 	  const typename IN::value_type::first_type * = 
       
   174 	  reinterpret_cast<const typename IN::value_type::first_type*>(0),
       
   175 	  const typename OUT::Key * = 
       
   176           reinterpret_cast<const typename OUT::Key*>(0)
       
   177 	  )
       
   178   {
   670   {
   179     NonConstMapWr<OUT> map_wr(out_map);
   671     return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
   180     return kruskal(g, edges, map_wr);
   672       kruskal(graph, in, out);
   181   }  
   673   }  
   182 
   674 
   183   /* ** ** Input-objects ** ** */
       
   184 
       
   185   /// Kruskal's input source.
       
   186  
       
   187   /// Kruskal's input source.
       
   188   ///
       
   189   /// In most cases you possibly want to use the \ref kruskal() instead.
       
   190   ///
       
   191   /// \sa makeKruskalMapInput()
       
   192   ///
       
   193   ///\param GR The type of the graph the algorithm runs on.
       
   194   ///\param Map An edge map containing the cost of the edges.
       
   195   ///\par
       
   196   ///The cost type can be any type satisfying
       
   197   ///the STL 'LessThan comparable'
       
   198   ///concept if it also has an operator+() implemented. (It is necessary for
       
   199   ///computing the total cost of the tree).
       
   200   ///
       
   201   template<class GR, class Map>
       
   202   class KruskalMapInput
       
   203     : public std::vector< std::pair<typename GR::Edge,
       
   204 				    typename Map::Value> > {
       
   205     
       
   206   public:
       
   207     typedef std::vector< std::pair<typename GR::Edge,
       
   208 				   typename Map::Value> > Parent;
       
   209     typedef typename Parent::value_type value_type;
       
   210 
       
   211   private:
       
   212     class comparePair {
       
   213     public:
       
   214       bool operator()(const value_type& a,
       
   215 		      const value_type& b) {
       
   216 	return a.second < b.second;
       
   217       }
       
   218     };
       
   219 
       
   220     template<class _GR>
       
   221     typename enable_if<UndirectedTagIndicator<_GR>,void>::type
       
   222     fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0) 
       
   223     {
       
   224       for(typename GR::UEdgeIt e(g);e!=INVALID;++e) 
       
   225 	push_back(value_type(g.direct(e, true), m[e]));
       
   226     }
       
   227 
       
   228     template<class _GR>
       
   229     typename disable_if<UndirectedTagIndicator<_GR>,void>::type
       
   230     fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1) 
       
   231     {
       
   232       for(typename GR::EdgeIt e(g);e!=INVALID;++e) 
       
   233 	push_back(value_type(e, m[e]));
       
   234     }
       
   235     
       
   236     
       
   237   public:
       
   238 
       
   239     void sort() {
       
   240       std::sort(this->begin(), this->end(), comparePair());
       
   241     }
       
   242 
       
   243     KruskalMapInput(GR const& g, Map const& m) {
       
   244       fillWithEdges(g,m); 
       
   245       sort();
       
   246     }
       
   247   };
       
   248 
       
   249   /// Creates a KruskalMapInput object for \ref kruskal()
       
   250 
       
   251   /// It makes easier to use 
       
   252   /// \ref KruskalMapInput by making it unnecessary 
       
   253   /// to explicitly give the type of the parameters.
       
   254   ///
       
   255   /// In most cases you possibly
       
   256   /// want to use \ref kruskal() instead.
       
   257   ///
       
   258   ///\param g The type of the graph the algorithm runs on.
       
   259   ///\param m An edge map containing the cost of the edges.
       
   260   ///\par
       
   261   ///The cost type can be any type satisfying the
       
   262   ///STL 'LessThan Comparable'
       
   263   ///concept if it also has an operator+() implemented. (It is necessary for
       
   264   ///computing the total cost of the tree).
       
   265   ///
       
   266   ///\return An appropriate input source for \ref kruskal().
       
   267   ///
       
   268   template<class GR, class Map>
       
   269   inline
       
   270   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
       
   271   {
       
   272     return KruskalMapInput<GR,Map>(g,m);
       
   273   }
       
   274   
       
   275   
       
   276 
       
   277   /* ** ** Output-objects: simple writable bool maps ** ** */
       
   278   
       
   279 
       
   280 
       
   281   /// A writable bool-map that makes a sequence of "true" keys
       
   282 
       
   283   /// A writable bool-map that creates a sequence out of keys that receives
       
   284   /// the value "true".
       
   285   ///
       
   286   /// \sa makeKruskalSequenceOutput()
       
   287   ///
       
   288   /// Very often, when looking for a min cost spanning tree, we want as
       
   289   /// output a container containing the edges of the found tree. For this
       
   290   /// purpose exist this class that wraps around an STL iterator with a
       
   291   /// writable bool map interface. When a key gets value "true" this key
       
   292   /// is added to sequence pointed by the iterator.
       
   293   ///
       
   294   /// A typical usage:
       
   295   ///\code
       
   296   /// std::vector<Graph::Edge> v;
       
   297   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
       
   298   ///\endcode
       
   299   /// 
       
   300   /// For the most common case, when the input is given by a simple edge
       
   301   /// map and the output is a sequence of the tree edges, a special
       
   302   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
       
   303   ///
       
   304   /// \warning Not a regular property map, as it doesn't know its Key
       
   305 
       
   306   template<class Iterator>
       
   307   class KruskalSequenceOutput {
       
   308     mutable Iterator it;
       
   309 
       
   310   public:
       
   311     typedef typename std::iterator_traits<Iterator>::value_type Key;
       
   312     typedef bool Value;
       
   313 
       
   314     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
       
   315 
       
   316     template<typename Key>
       
   317     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
       
   318   };
       
   319 
       
   320   template<class Iterator>
       
   321   inline
       
   322   KruskalSequenceOutput<Iterator>
       
   323   makeKruskalSequenceOutput(Iterator it) {
       
   324     return KruskalSequenceOutput<Iterator>(it);
       
   325   }
       
   326 
       
   327 
       
   328 
       
   329   /* ** ** Wrapper funtions ** ** */
       
   330 
       
   331 //   \brief Wrapper function to kruskal().
       
   332 //   Input is from an edge map, output is a plain bool map.
       
   333 //  
       
   334 //   Wrapper function to kruskal().
       
   335 //   Input is from an edge map, output is a plain bool map.
       
   336 //  
       
   337 //   \param g The type of the graph the algorithm runs on.
       
   338 //   \param in An edge map containing the cost of the edges.
       
   339 //   \par
       
   340 //   The cost type can be any type satisfying the
       
   341 //   STL 'LessThan Comparable'
       
   342 //   concept if it also has an operator+() implemented. (It is necessary for
       
   343 //   computing the total cost of the tree).
       
   344 //  
       
   345 //   \retval out This must be a writable \c bool edge map.
       
   346 //   After running the algorithm
       
   347 //   this will contain the found minimum cost spanning tree: the value of an
       
   348 //   edge will be set to \c true if it belongs to the tree, otherwise it will
       
   349 //   be set to \c false. The value of each edge will be set exactly once.
       
   350 //  
       
   351 //   \return The cost of the found tree.
       
   352 
       
   353   template <class GR, class IN, class RET>
       
   354   inline
       
   355   typename IN::Value
       
   356   kruskal(GR const& g,
       
   357 	  IN const& in,
       
   358 	  RET &out,
       
   359 	  //	  typename IN::Key = typename GR::Edge(),
       
   360 	  //typename IN::Key = typename IN::Key (),
       
   361 	  //	  typename RET::Key = typename GR::Edge()
       
   362 	  const typename IN::Key * = 
       
   363           reinterpret_cast<const typename IN::Key*>(0),
       
   364 	  const typename RET::Key * = 
       
   365           reinterpret_cast<const typename RET::Key*>(0)
       
   366 	  )
       
   367   {
       
   368     return kruskal(g,
       
   369 		   KruskalMapInput<GR,IN>(g,in),
       
   370 		   out);
       
   371   }
       
   372 
       
   373 //   \brief Wrapper function to kruskal().
       
   374 //   Input is from an edge map, output is an STL Sequence.
       
   375 //  
       
   376 //   Wrapper function to kruskal().
       
   377 //   Input is from an edge map, output is an STL Sequence.
       
   378 //  
       
   379 //   \param g The type of the graph the algorithm runs on.
       
   380 //   \param in An edge map containing the cost of the edges.
       
   381 //   \par
       
   382 //   The cost type can be any type satisfying the
       
   383 //   STL 'LessThan Comparable'
       
   384 //   concept if it also has an operator+() implemented. (It is necessary for
       
   385 //   computing the total cost of the tree).
       
   386 //  
       
   387 //   \retval out This must be an iteraror of an STL Container with
       
   388 //   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
       
   389 //   The algorithm copies the elements of the found tree into this sequence.
       
   390 //   For example, if we know that the spanning tree of the graph \c g has
       
   391 //   say 53 edges, then
       
   392 //   we can put its edges into an STL vector \c tree with a code like this.
       
   393 //\code
       
   394 //   std::vector<Edge> tree(53);
       
   395 //   kruskal(g,cost,tree.begin());
       
   396 //\endcode
       
   397 //   Or if we don't know in advance the size of the tree, we can write this.
       
   398 //\code
       
   399 //   std::vector<Edge> tree;
       
   400 //   kruskal(g,cost,std::back_inserter(tree));
       
   401 //\endcode
       
   402 //  
       
   403 //   \return The cost of the found tree.
       
   404 //  
       
   405 //   \bug its name does not follow the coding style.
       
   406 
       
   407   template <class GR, class IN, class RET>
       
   408   inline
       
   409   typename IN::Value
       
   410   kruskal(const GR& g,
       
   411 	  const IN& in,
       
   412 	  RET out,
       
   413 	  const typename RET::value_type * = 
       
   414 	  reinterpret_cast<const typename RET::value_type*>(0)
       
   415 	  )
       
   416   {
       
   417     KruskalSequenceOutput<RET> _out(out);
       
   418     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
       
   419   }
       
   420  
       
   421   template <class GR, class IN, class RET>
       
   422   inline
       
   423   typename IN::Value
       
   424   kruskal(const GR& g,
       
   425 	  const IN& in,
       
   426 	  RET *out
       
   427 	  )
       
   428   {
       
   429     KruskalSequenceOutput<RET*> _out(out);
       
   430     return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
       
   431   }
       
   432  
       
   433   /// @}
       
   434 
       
   435 } //namespace lemon
   675 } //namespace lemon
   436 
   676 
   437 #endif //LEMON_KRUSKAL_H
   677 #endif //LEMON_KRUSKAL_H