lemon/euler.h
changeset 1759 0bb3fb3baffd
child 1761 896464fe9fbb
equal deleted inserted replaced
-1:000000000000 0:32ab5602ed63
       
     1 /* -*- C++ -*-
       
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 #include<lemon/invalid.h>
       
    17 #include <list>
       
    18 
       
    19 /// \ingroup gutils
       
    20 /// \file
       
    21 /// \brief Euler tour
       
    22 ///
       
    23 ///This file provides an Euler tour iterator and ways to check
       
    24 ///if a graph is euler.
       
    25 
       
    26 
       
    27 namespace lemon {
       
    28 
       
    29   ///Euler iterator in directed graphs.
       
    30 
       
    31   /// \ingroup gutils
       
    32   ///This iterator converts to the \c Edge type of the graph and using
       
    33   ///the ++ operator it provides an Euler tour of the graph (if there exists).
       
    34   ///
       
    35   ///For example
       
    36   ///if the given graph if Euler (i.e it has only one nontrivial component
       
    37   ///and the in-degree is equal to the out-degree for all nodes),
       
    38   ///the the following code will print the edge IDs according to an
       
    39   ///Euler tour of \c g.
       
    40   ///\code
       
    41   ///  for(EulerIt<ListGraph> e(g),e!=INVALID;++e) {
       
    42   ///    std::cout << g.id(e) << std::eol;
       
    43   ///  }
       
    44   ///\endcode
       
    45   ///If \c g is not Euler then the resulted tour will not be full or closed.
       
    46   ///\todo Test required
       
    47   template<class Graph>
       
    48   class EulerIt 
       
    49   {
       
    50     typedef typename Graph::Node Node;
       
    51     typedef typename Graph::NodeIt NodeIt;
       
    52     typedef typename Graph::Edge Edge;
       
    53     typedef typename Graph::EdgeIt EdgeIt;
       
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    55     typedef typename Graph::InEdgeIt InEdgeIt;
       
    56     
       
    57     const Graph &g;
       
    58     typename Graph::NodeMap<OutEdgeIt> nedge;
       
    59     std::list<Edge> euler;
       
    60 
       
    61   public:
       
    62     
       
    63     ///Constructor
       
    64 
       
    65     ///\param _g A directed graph.
       
    66     ///\param start The starting point of the tour. If it is not given
       
    67     ///       tho tour will start from the first node.
       
    68     EulerIt(const Graph &_g,typename Graph::Node start=INVALID)
       
    69       : g(_g), nedge(g)
       
    70     {
       
    71       if(start==INVALID) start=NodeIt(g);
       
    72       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
       
    73       while(nedge[start]!=INVALID) {
       
    74 	euler.push_back(nedge[start]);
       
    75 	Node next=g.target(nedge[start]);
       
    76 	++nedge[start];
       
    77 	start=next;
       
    78       }
       
    79     }
       
    80     
       
    81     ///Edge Conversion
       
    82     operator Edge() { return euler.empty()?INVALID:euler.front(); }
       
    83     bool operator==(Invalid) { return euler.empty(); }
       
    84     bool operator!=(Invalid) { return !euler.empty(); }
       
    85     
       
    86     ///Next edge of the tour
       
    87     EulerIt &operator++() {
       
    88       Node s=g.target(euler.front());
       
    89       euler.pop_front();
       
    90       //This produces a warning.Strange.
       
    91       //std::list<Edge>::iterator next=euler.begin();
       
    92       typename std::list<Edge>::iterator next=euler.begin();
       
    93       while(nedge[s]!=INVALID) {
       
    94 	euler.insert(next,nedge[s]);
       
    95 	Node n=g.target(nedge[s]);
       
    96 	++nedge[s];
       
    97 	s=n;
       
    98       }
       
    99       return *this;
       
   100     }
       
   101     ///Postfix incrementation
       
   102     
       
   103     ///\warning This gives back an Edge, not an EulerIt!
       
   104     ///\todo Is this what we want?
       
   105     Edge operator++(int) 
       
   106     {
       
   107       Edge e=*this;
       
   108       ++(*this);
       
   109       return e;
       
   110     }
       
   111   };
       
   112 
       
   113   ///Checks if the graph is Euler
       
   114 
       
   115   /// \ingroup gutils
       
   116   ///Checks if the graph is Euler. It works for both directed and
       
   117   ///undirected graphs.
       
   118   ///\todo What to do with the isolated points?
       
   119   ///\todo Test required
       
   120   template<class Graph>
       
   121 #ifdef DOXYGEN
       
   122   bool
       
   123 #else
       
   124   typename enable_if<typename Graph::UndirTag,bool>::type
       
   125 #endif
       
   126   euler(const Graph &g) 
       
   127   {
       
   128     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
       
   129       if(countIncEdges(g,n)%2) return false;
       
   130     return true;
       
   131   }
       
   132   template<class Graph>
       
   133   typename disable_if<typename Graph::UndirTag,bool>::type
       
   134   isEuler(const Graph &g) 
       
   135   {
       
   136     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
       
   137       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
       
   138     return true;
       
   139   }
       
   140   
       
   141 }