lemon/graph_utils.h
changeset 2239 18c24fe93b99
parent 2201 597714206430
child 2286 1ef281b2b10e
equal deleted inserted replaced
54:9d8b6ad70509 55:2afbf0cc0b42
    21 
    21 
    22 #include <iterator>
    22 #include <iterator>
    23 #include <vector>
    23 #include <vector>
    24 #include <map>
    24 #include <map>
    25 #include <cmath>
    25 #include <cmath>
       
    26 #include <algorithm>
    26 
    27 
    27 #include <lemon/bits/invalid.h>
    28 #include <lemon/bits/invalid.h>
    28 #include <lemon/bits/utility.h>
    29 #include <lemon/bits/utility.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/maps.h>
    30 #include <lemon/bits/traits.h>
    31 #include <lemon/bits/traits.h>
   372   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   373   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   373   ///   ...
   374   ///   ...
   374   /// }
   375   /// }
   375   ///\endcode
   376   ///\endcode
   376   ///
   377   ///
       
   378   ///\sa EdgeLookUp
       
   379   ///\se AllEdgeLookup
   377   ///\sa ConEdgeIt
   380   ///\sa ConEdgeIt
   378   template <typename Graph>
   381   template <typename Graph>
   379   inline typename Graph::Edge findEdge(const Graph &g,
   382   inline typename Graph::Edge findEdge(const Graph &g,
   380 				       typename Graph::Node u, 
   383 				       typename Graph::Node u, 
   381 				       typename Graph::Node v,
   384 				       typename Graph::Node v,
   393   ///   ...
   396   ///   ...
   394   /// }
   397   /// }
   395   ///\endcode
   398   ///\endcode
   396   /// 
   399   /// 
   397   ///\sa findEdge()
   400   ///\sa findEdge()
       
   401   ///\sa EdgeLookUp
       
   402   ///\se AllEdgeLookup
   398   ///
   403   ///
   399   /// \author Balazs Dezso 
   404   /// \author Balazs Dezso 
   400   template <typename _Graph>
   405   template <typename _Graph>
   401   class ConEdgeIt : public _Graph::Edge {
   406   class ConEdgeIt : public _Graph::Edge {
   402   public:
   407   public:
  1836     const _Graph& graph;
  1841     const _Graph& graph;
  1837     AutoNodeMap deg;
  1842     AutoNodeMap deg;
  1838   };
  1843   };
  1839 
  1844 
  1840 
  1845 
       
  1846   ///Fast edge look up between given endpoints.
       
  1847   
       
  1848   ///\ingroup gutils
       
  1849   ///Using this class, you can find an edge in a graph from a given
       
  1850   ///source to a given target in time <em>O(log d)</em>,
       
  1851   ///where <em>d</em> is the out-degree of the source node.
       
  1852   ///
       
  1853   ///It is not possible to find \e all parallel edges between two nodes.
       
  1854   ///Use \ref AllEdgeLookUp for this purpose.
       
  1855   ///
       
  1856   ///\warning This class is static, so you should refresh() (or at least
       
  1857   ///refresh(Node)) this data structure
       
  1858   ///whenever the graph changes. This is a time consuming (superlinearly
       
  1859   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
       
  1860   ///
       
  1861   ///\param G The type of the underlying graph.
       
  1862   ///
       
  1863   ///\sa AllEdgeLookUp  
       
  1864   template<class G>
       
  1865   class EdgeLookUp 
       
  1866   {
       
  1867   public:
       
  1868     GRAPH_TYPEDEFS(typename G)
       
  1869     typedef G Graph;
       
  1870 
       
  1871   protected:
       
  1872     const Graph &_g;
       
  1873     typename Graph::template NodeMap<Edge> _head;
       
  1874     typename Graph::template EdgeMap<Edge> _left;
       
  1875     typename Graph::template EdgeMap<Edge> _right;
       
  1876     
       
  1877     class EdgeLess {
       
  1878       const Graph &g;
       
  1879     public:
       
  1880       EdgeLess(const Graph &_g) : g(_g) {}
       
  1881       bool operator()(Edge a,Edge b) const 
       
  1882       {
       
  1883 	return g.target(a)<g.target(b);
       
  1884       }
       
  1885     };
       
  1886     
       
  1887   public:
       
  1888     
       
  1889     ///Constructor
       
  1890 
       
  1891     ///Constructor.
       
  1892     ///
       
  1893     ///It builds up the search database, which remains valid until the graph
       
  1894     ///changes.
       
  1895     EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
       
  1896     
       
  1897   private:
       
  1898     Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
       
  1899     {
       
  1900       int m=(a+b)/2;
       
  1901       Edge me=v[m];
       
  1902       _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
       
  1903       _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
       
  1904       return me;
       
  1905     }
       
  1906   public:
       
  1907     ///Refresh the data structure at a node.
       
  1908 
       
  1909     ///Build up the search database of node \c n.
       
  1910     ///
       
  1911     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
       
  1912     ///the number of the outgoing edges of \c n.
       
  1913     void refresh(Node n) 
       
  1914     {
       
  1915       std::vector<Edge> v;
       
  1916       for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
       
  1917       if(v.size()) {
       
  1918 	std::sort(v.begin(),v.end(),EdgeLess(_g));
       
  1919 	_head[n]=refresh_rec(v,0,v.size()-1);
       
  1920       }
       
  1921       else _head[n]=INVALID;
       
  1922     }
       
  1923     ///Refresh the full data structure.
       
  1924 
       
  1925     ///Build up the full search database. In fact, it simply calls
       
  1926     ///\ref refresh(Node) "refresh(n)" for each node \c n.
       
  1927     ///
       
  1928     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
       
  1929     ///the number of the edges of \c n and <em>D</em> is the maximum
       
  1930     ///out-degree of the graph.
       
  1931 
       
  1932     void refresh() 
       
  1933     {
       
  1934       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
       
  1935     }
       
  1936     
       
  1937     ///Find an edge between two nodes.
       
  1938     
       
  1939     ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
       
  1940     /// <em>d</em> is the number of outgoing edges of \c s.
       
  1941     ///\param s The source node
       
  1942     ///\param t The target node
       
  1943     ///\return An edge from \c s to \c t if there exists,
       
  1944     ///\ref INVALID otherwise.
       
  1945     ///
       
  1946     ///\warning If you change the graph, refresh() must be called before using
       
  1947     ///this operator. If you change the outgoing edges of
       
  1948     ///a single node \c n, then
       
  1949     ///\ref refresh(Node) "refresh(n)" is enough.
       
  1950     ///
       
  1951     Edge operator()(Node s, Node t) const
       
  1952     {
       
  1953       Edge e;
       
  1954       for(e=_head[s];
       
  1955 	  e!=INVALID&&_g.target(e)!=t;
       
  1956 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
       
  1957       return e;
       
  1958     }
       
  1959 
       
  1960   };
       
  1961 
       
  1962   ///Fast look up of all edges between given endpoints.
       
  1963   
       
  1964   ///\ingroup gutils
       
  1965   ///This class is the same as \ref EdgeLookUp, with the addition
       
  1966   ///that it makes it possible to find all edges between given endpoints.
       
  1967   ///
       
  1968   ///\warning This class is static, so you should refresh() (or at least
       
  1969   ///refresh(Node)) this data structure
       
  1970   ///whenever the graph changes. This is a time consuming (superlinearly
       
  1971   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
       
  1972   ///
       
  1973   ///\param G The type of the underlying graph.
       
  1974   ///
       
  1975   ///\sa EdgeLookUp  
       
  1976   template<class G>
       
  1977   class AllEdgeLookUp : public EdgeLookUp<G>
       
  1978   {
       
  1979     using EdgeLookUp<G>::_g;
       
  1980     using EdgeLookUp<G>::_right;
       
  1981     using EdgeLookUp<G>::_left;
       
  1982     using EdgeLookUp<G>::_head;
       
  1983 
       
  1984     GRAPH_TYPEDEFS(typename G)
       
  1985     typedef G Graph;
       
  1986     
       
  1987     typename Graph::template EdgeMap<Edge> _next;
       
  1988     
       
  1989     Edge refreshNext(Edge head,Edge next=INVALID)
       
  1990     {
       
  1991       if(head==INVALID) return next;
       
  1992       else {
       
  1993 	next=refreshNext(_right[head],next);
       
  1994 // 	_next[head]=next;
       
  1995 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
       
  1996 	  ? next : INVALID;
       
  1997 	return refreshNext(_left[head],head);
       
  1998       }
       
  1999     }
       
  2000     
       
  2001     void refreshNext()
       
  2002     {
       
  2003       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
       
  2004     }
       
  2005     
       
  2006   public:
       
  2007     ///Constructor
       
  2008 
       
  2009     ///Constructor.
       
  2010     ///
       
  2011     ///It builds up the search database, which remains valid until the graph
       
  2012     ///changes.
       
  2013     AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
       
  2014 
       
  2015     ///Refresh the data structure at a node.
       
  2016 
       
  2017     ///Build up the search database of node \c n.
       
  2018     ///
       
  2019     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
       
  2020     ///the number of the outgoing edges of \c n.
       
  2021     
       
  2022     void refresh(Node n) 
       
  2023     {
       
  2024       EdgeLookUp<G>::refresh(n);
       
  2025       refreshNext(_head[n]);
       
  2026     }
       
  2027     
       
  2028     ///Refresh the full data structure.
       
  2029 
       
  2030     ///Build up the full search database. In fact, it simply calls
       
  2031     ///\ref refresh(Node) "refresh(n)" for each node \c n.
       
  2032     ///
       
  2033     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
       
  2034     ///the number of the edges of \c n and <em>D</em> is the maximum
       
  2035     ///out-degree of the graph.
       
  2036 
       
  2037     void refresh() 
       
  2038     {
       
  2039       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
       
  2040     }
       
  2041     
       
  2042     ///Find an edge between two nodes.
       
  2043     
       
  2044     ///Find an edge between two nodes.
       
  2045     ///\param s The source node
       
  2046     ///\param t The target node
       
  2047     ///\param prev The previous edge between \c s and \c t. It it is INVALID or
       
  2048     ///not given, the operator finds the first appropriate edge.
       
  2049     ///\return An edge from \c s to \c t after \prev or
       
  2050     ///\ref INVALID if there is no more.
       
  2051     ///
       
  2052     ///For example, you can count the number of edges from \c u to \c v in the
       
  2053     ///following way.
       
  2054     ///\code
       
  2055     ///AllEdgeLookUp<ListGraph> ae(g);
       
  2056     ///...
       
  2057     ///int n=0;
       
  2058     ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
       
  2059     ///\endcode
       
  2060     ///
       
  2061     ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
       
  2062     /// <em>d</em> is the number of outgoing edges of \c s. Then, the
       
  2063     ///consecutive edges are found in constant time.
       
  2064     ///
       
  2065     ///\warning If you change the graph, refresh() must be called before using
       
  2066     ///this operator. If you change the outgoing edges of
       
  2067     ///a single node \c n, then
       
  2068     ///\ref refresh(Node) "refresh(n)" is enough.
       
  2069     ///
       
  2070 #ifdef DOXYGEN
       
  2071     Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
       
  2072 #else
       
  2073     using EdgeLookUp<G>::operator() ;
       
  2074     Edge operator()(Node s, Node t, Edge prev) const
       
  2075     {
       
  2076       return prev==INVALID?(*this)(s,t):_next[prev];
       
  2077     }
       
  2078 #endif
       
  2079       
       
  2080   };
       
  2081 
  1841   /// @}
  2082   /// @}
  1842 
  2083 
  1843 } //END OF NAMESPACE LEMON
  2084 } //END OF NAMESPACE LEMON
  1844 
  2085 
  1845 #endif
  2086 #endif