lemon/euler.h
changeset 1836 1fee7c6b5129
parent 1803 ee8dd6872645
child 1875 98698b69a902
equal deleted inserted replaced
3:07d5d9c042f6 4:e4d732ef16c1
     1 /* -*- C++ -*-
     1 /* -*- C++ -*-
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
     2  * lemon/euler.h - Part of LEMON, a generic C++ optimization library
     3  *
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     6  *
     7  * Permission to use, modify and distribute this software is granted
     7  * Permission to use, modify and distribute this software is granted
    12  * express or implied, and with no claim as to its suitability for any
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    13  * purpose.
    14  *
    14  *
    15  */
    15  */
    16 #include<lemon/invalid.h>
    16 #include<lemon/invalid.h>
       
    17 #include<lemon/topology.h>
    17 #include <list>
    18 #include <list>
    18 
    19 
    19 /// \ingroup topology
    20 /// \ingroup topology
    20 /// \file
    21 /// \file
    21 /// \brief Euler tour
    22 /// \brief Euler tour
    24 ///if a graph is euler.
    25 ///if a graph is euler.
    25 
    26 
    26 
    27 
    27 namespace lemon {
    28 namespace lemon {
    28 
    29 
    29   ///Euler iterator in directed graphs.
    30   ///Euler iterator for directed graphs.
    30 
    31 
    31   /// \ingroup topology
    32   /// \ingroup topology
    32   ///This iterator converts to the \c Edge type of the graph and using
    33   ///This iterator converts to the \c Edge type of the graph and using
    33   ///operator ++ it provides an Euler tour of the graph (if there exists).
    34   ///operator ++ it provides an Euler tour of the graph (if there exists).
    34   ///
    35   ///
   109       ++(*this);
   110       ++(*this);
   110       return e;
   111       return e;
   111     }
   112     }
   112   };
   113   };
   113 
   114 
       
   115   ///Euler iterator for undirected graphs.
       
   116 
       
   117   /// \ingroup topology
       
   118   ///This iterator converts to the \c Edge type of the graph and using
       
   119   ///operator ++ it provides an Euler tour of the graph (if there exists).
       
   120   ///
       
   121   ///For example
       
   122   ///if the given graph if Euler (i.e it has only one nontrivial component
       
   123   ///and the degree of each node is even),
       
   124   ///the following code will print the edge IDs according to an
       
   125   ///Euler tour of \c g.
       
   126   ///\code
       
   127   ///  for(UndirEulerIt<UndirListGraph> e(g),e!=INVALID;++e) {
       
   128   ///    std::cout << g.id(UndirEdge(e)) << std::eol;
       
   129   ///  }
       
   130   ///\endcode
       
   131   ///Although the iterator provides an Euler tour of an undirected graph,
       
   132   ///in order to indicate the direction of the tour, UndirEulerIt
       
   133   ///returns directed edges (that convert to the undirected ones, of course).
       
   134   ///
       
   135   ///If \c g is not Euler then the resulted tour will not be full or closed.
       
   136   ///\todo Test required
       
   137   template<class Graph>
       
   138   class UndirEulerIt
       
   139   {
       
   140     typedef typename Graph::Node Node;
       
   141     typedef typename Graph::NodeIt NodeIt;
       
   142     typedef typename Graph::Edge Edge;
       
   143     typedef typename Graph::EdgeIt EdgeIt;
       
   144     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
   145     typedef typename Graph::InEdgeIt InEdgeIt;
       
   146     
       
   147     const Graph &g;
       
   148     typename Graph::NodeMap<OutEdgeIt> nedge;
       
   149     typename Graph::UndirEdgeMap<bool> visited;
       
   150     std::list<Edge> euler;
       
   151 
       
   152   public:
       
   153     
       
   154     ///Constructor
       
   155 
       
   156     ///\param _g An undirected graph.
       
   157     ///\param start The starting point of the tour. If it is not given
       
   158     ///       the tour will start from the first node.
       
   159     UndirEulerIt(const Graph &_g,typename Graph::Node start=INVALID)
       
   160       : g(_g), nedge(g), visited(g,false)
       
   161     {
       
   162       if(start==INVALID) start=NodeIt(g);
       
   163       for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n);
       
   164       while(nedge[start]!=INVALID) {
       
   165 	euler.push_back(nedge[start]);
       
   166 	Node next=g.target(nedge[start]);
       
   167 	++nedge[start];
       
   168 	start=next;	while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start];
       
   169       }
       
   170     }
       
   171     
       
   172     ///Edge Conversion
       
   173     operator Edge() { return euler.empty()?INVALID:euler.front(); }
       
   174     bool operator==(Invalid) { return euler.empty(); }
       
   175     bool operator!=(Invalid) { return !euler.empty(); }
       
   176     
       
   177     ///Next edge of the tour
       
   178     UndirEulerIt &operator++() {
       
   179       Node s=g.target(euler.front());
       
   180       euler.pop_front();
       
   181       typename std::list<Edge>::iterator next=euler.begin();
       
   182 
       
   183       while(nedge[s]!=INVALID) {
       
   184 	while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s];
       
   185 	if(nedge[s]==INVALID) break;
       
   186 	else {
       
   187 	  euler.insert(next,nedge[s]);
       
   188 	  Node n=g.target(nedge[s]);
       
   189 	  ++nedge[s];
       
   190 	  s=n;
       
   191 	}
       
   192       }
       
   193       return *this;
       
   194     }
       
   195     
       
   196     ///Postfix incrementation
       
   197     
       
   198     ///\warning This incrementation
       
   199     ///returns an \c Edge, not an \ref UndirEulerIt, as one may
       
   200     ///expect.
       
   201     Edge operator++(int) 
       
   202     {
       
   203       Edge e=*this;
       
   204       ++(*this);
       
   205       return e;
       
   206     }
       
   207   };
       
   208 
       
   209 
   114   ///Checks if the graph is Euler
   210   ///Checks if the graph is Euler
   115 
   211 
   116   /// \ingroup gutils
   212   /// \ingroup topology
   117   ///Checks if the graph is Euler. It works for both directed and
   213   ///Checks if the graph is Euler. It works for both directed and
   118   ///undirected graphs.
   214   ///undirected graphs.
       
   215   ///\note By definition, a directed graph is called \e Euler if
       
   216   ///and only if connected and the number of it is incoming and outgoing edges
       
   217   ///are the same for each node.
       
   218   ///Similarly, an undirected graph is called \e Euler if
       
   219   ///and only if it is connected and the number of incident edges is even
       
   220   ///for each node. <em>Therefore, there are graphs which are not Euler, but
       
   221   ///still have an Euler tour</em>.
   119   ///\todo Test required
   222   ///\todo Test required
   120   template<class Graph>
   223   template<class Graph>
   121 #ifdef DOXYGEN
   224 #ifdef DOXYGEN
   122   bool
   225   bool
   123 #else
   226 #else
   124   typename enable_if<typename Graph::UndirTag,bool>::type
   227   typename enable_if<typename Graph::UndirTag,bool>::type
       
   228   euler(const Graph &g) 
       
   229   {
       
   230     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
       
   231       if(countIncEdges(g,n)%2) return false;
       
   232     return connected(g);
       
   233   }
       
   234   template<class Graph>
       
   235   typename disable_if<typename Graph::UndirTag,bool>::type
   125 #endif
   236 #endif
   126   euler(const Graph &g) 
   237   euler(const Graph &g) 
   127   {
   238   {
   128     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   239     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
   129       if(countIncEdges(g,n)%2) return false;
       
   130     return true;
       
   131   }
       
   132   template<class Graph>
       
   133   typename disable_if<typename Graph::UndirTag,bool>::type
       
   134   euler(const Graph &g) 
       
   135   {
       
   136     for(typename Graph::NodeIt n(g);n!=INVALID;++n)
       
   137       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   240       if(countInEdges(g,n)!=countOutEdges(g,n)) return false;
   138     return true;
   241     return connected(g);
   139   }
   242   }
   140   
   243   
   141 }
   244 }