src/work/athos/preflow_push_wogw.h
changeset 631 26819ef1611f
child 921 818510fa3d99
equal deleted inserted replaced
-1:000000000000 0:17e6f45c0a03
       
     1 #ifndef HUGO_PREFLOW_PUSH_HH
       
     2 #define HUGO_PREFLOW_PUSH_HH
       
     3 
       
     4 //#include <algorithm>
       
     5 #include <list>
       
     6 #include <vector>
       
     7 #include <queue>
       
     8 //#include "pf_hiba.hh"
       
     9 //#include <marci_list_graph.hh>
       
    10 //#include <marci_graph_traits.hh>
       
    11 #include <invalid.h>
       
    12 //#include <reverse_bfs.hh>
       
    13 
       
    14 using namespace std;
       
    15 
       
    16 namespace hugo {
       
    17 
       
    18   template <typename Graph, typename T>
       
    19   class preflow_push {
       
    20 
       
    21     //Useful typedefs
       
    22     typedef typename Graph::Node Node;
       
    23     typedef typename Graph::NodeIt NodeIt;
       
    24     typedef typename Graph::Edge Edge;
       
    25     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    26     typedef typename Graph::InEdgeIt InEdgeIt;
       
    27 
       
    28 
       
    29     //---------------------------------------------
       
    30     //Parameters of the algorithm
       
    31     //---------------------------------------------
       
    32     //Fully examine an active node until excess becomes 0
       
    33     enum node_examination_t {examine_full, examine_to_relabel};
       
    34     //No more implemented yet:, examine_only_one_edge};
       
    35     node_examination_t node_examination;
       
    36     //Which implementation to be used
       
    37     enum implementation_t {impl_fifo, impl_highest_label};
       
    38     //No more implemented yet:};
       
    39     implementation_t implementation;
       
    40     //---------------------------------------------
       
    41     //Parameters of the algorithm
       
    42     //---------------------------------------------
       
    43  
       
    44   private:
       
    45     //input
       
    46     Graph& G;
       
    47     Node s;
       
    48     Node t;
       
    49     typename Graph::EdgeMap<T> &capacity;
       
    50 
       
    51     //output
       
    52     typename Graph::EdgeMap<T> preflow;
       
    53     T maxflow_value;
       
    54   
       
    55     //auxiliary variables for computation
       
    56     //The number of the nodes
       
    57     int number_of_nodes;
       
    58     //A nodemap for the level
       
    59     typename Graph::NodeMap<int> level;
       
    60     //A nodemap for the excess
       
    61     typename Graph::NodeMap<T> excess;
       
    62     
       
    63     //Number of nodes on each level
       
    64     vector<int> num_of_nodes_on_level;
       
    65     
       
    66     //For the FIFO implementation
       
    67     list<Node> fifo_nodes;
       
    68     //For 'highest label' implementation
       
    69     int highest_active;
       
    70     //int second_highest_active;
       
    71     vector< list<Node> > active_nodes;
       
    72 
       
    73   public:
       
    74   
       
    75     //Constructing the object using the graph, source, sink and capacity vector
       
    76     preflow_push(
       
    77 		      Graph& _G, 
       
    78 		      Node _s, 
       
    79 		      Node _t, 
       
    80 		      typename Graph::EdgeMap<T> & _capacity)
       
    81       : G(_G), s(_s), t(_t), 
       
    82 	capacity(_capacity), 
       
    83 	preflow(_G),
       
    84 	//Counting the number of nodes
       
    85 	//number_of_nodes(count(G.first<EachNodeIt>())),
       
    86 	number_of_nodes(G.nodeNum()),
       
    87 
       
    88 	level(_G),
       
    89 	excess(_G)//,
       
    90         // Default constructor: active_nodes()
       
    91     { 
       
    92       //Simplest parameter settings
       
    93       node_examination = examine_full;//examine_to_relabel;//
       
    94       //Which implementation to be usedexamine_full
       
    95       implementation = impl_highest_label;//impl_fifo;
       
    96  
       
    97       //
       
    98       num_of_nodes_on_level.resize(2*number_of_nodes-1);
       
    99       num_of_nodes_on_level.clear();
       
   100 
       
   101       switch(implementation){
       
   102       case impl_highest_label :{
       
   103 	active_nodes.clear();
       
   104 	active_nodes.resize(2*number_of_nodes-1);
       
   105 	
       
   106 	break;
       
   107       }
       
   108       default:
       
   109 	break;
       
   110       }
       
   111 
       
   112     }
       
   113 
       
   114     //Returns the value of a maximal flow 
       
   115     T run();
       
   116   
       
   117     typename Graph::EdgeMap<T>  getmaxflow(){
       
   118       return preflow;
       
   119     }
       
   120 
       
   121 
       
   122   private:
       
   123     //For testing purposes only
       
   124     //Lists the node_properties
       
   125     void write_property_vector(typename Graph::NodeMap<T> a,
       
   126 			       //node_property_vector<Graph, T> a, 
       
   127 			       char* prop_name="property"){
       
   128       for(NodeIt i=G.template first<NodeIt>(); G.valid(i); G.next(i)) {
       
   129 	cout<<"Node id.: "<<G.id(i)<<", "<<prop_name<<" value: "<<a[i]<<endl;
       
   130       }
       
   131       cout<<endl;
       
   132     }
       
   133 
       
   134     //Modifies the excess of the node and makes sufficient changes
       
   135     void modify_excess(const Node& a ,T v){
       
   136       //T old_value=excess[a];
       
   137       excess[a] += v;
       
   138     }
       
   139   
       
   140     //This private procedure is supposed to modify the preflow on edge j
       
   141     //by value v (which can be positive or negative as well) 
       
   142     //and maintain the excess on the head and tail
       
   143     //Here we do not check whether this is possible or not
       
   144     void modify_preflow(Edge j, const T& v){
       
   145 
       
   146       //Modifiyng the edge
       
   147       preflow[j] += v;
       
   148 
       
   149 
       
   150       //Modifiyng the head
       
   151       modify_excess(G.head(j),v);
       
   152 	
       
   153       //Modifiyng the tail
       
   154       modify_excess(G.tail(j),-v);
       
   155 
       
   156     }
       
   157 
       
   158     //Gives the active node to work with 
       
   159     //(depending on the implementation to be used)
       
   160     Node get_active_node(){
       
   161       
       
   162 
       
   163       switch(implementation) {
       
   164       case impl_highest_label : {
       
   165 
       
   166 	//First need to find the highest label for which there's an active node
       
   167 	while( highest_active>=0 && active_nodes[highest_active].empty() ){ 
       
   168 	  --highest_active;
       
   169 	}
       
   170 
       
   171 	if( highest_active>=0) {
       
   172 	  
       
   173 
       
   174 	  Node a=active_nodes[highest_active].front();
       
   175 	  active_nodes[highest_active].pop_front();
       
   176 	  
       
   177 	  return a;
       
   178 	}
       
   179 	else {
       
   180 	  return INVALID;
       
   181 	}
       
   182 	
       
   183 	break;
       
   184 	
       
   185       }
       
   186       case impl_fifo : {
       
   187 
       
   188 	if( ! fifo_nodes.empty() ) {
       
   189 	  Node a=fifo_nodes.front();
       
   190 	  fifo_nodes.pop_front();
       
   191 	  return a;
       
   192 	}
       
   193 	else {
       
   194 	  return INVALID;
       
   195 	}
       
   196 	break;
       
   197       }
       
   198       }
       
   199       //
       
   200       return INVALID;
       
   201     }
       
   202 
       
   203     //Puts node 'a' among the active nodes
       
   204     void make_active(const Node& a){
       
   205       //s and t never become active
       
   206       if (a!=s && a!= t){
       
   207 	switch(implementation){
       
   208 	case impl_highest_label :
       
   209 	  active_nodes[level[a]].push_back(a);
       
   210 	  break;
       
   211 	case impl_fifo :
       
   212 	  fifo_nodes.push_back(a);
       
   213 	  break;
       
   214 	}
       
   215 
       
   216       }
       
   217 
       
   218       //Update highest_active label
       
   219       if (highest_active<level[a]){
       
   220 	highest_active=level[a];
       
   221       }
       
   222 
       
   223     }
       
   224 
       
   225     //Changes the level of node a and make sufficent changes
       
   226     void change_level_to(Node a, int new_value){
       
   227       int seged = level[a];
       
   228       level.set(a,new_value);
       
   229       --num_of_nodes_on_level[seged];
       
   230       ++num_of_nodes_on_level[new_value];
       
   231     }
       
   232 
       
   233     //Collection of things useful (or necessary) to do before running
       
   234 
       
   235     void preprocess(){
       
   236 
       
   237       //---------------------------------------
       
   238       //Initialize parameters
       
   239       //---------------------------------------
       
   240 
       
   241       //Setting starting preflow, level and excess values to zero
       
   242       //This can be important, if the algorithm is run more then once
       
   243       for(NodeIt i=G.template first<NodeIt>(); G.valid(i); G.next(i)) {
       
   244         level.set(i,0);
       
   245         excess.set(i,0);
       
   246 	for(OutEdgeIt j=G.template first<OutEdgeIt>(i); G.valid(j); G.next(j)) 
       
   247 	  preflow.set(j, 0);
       
   248       }
       
   249       num_of_nodes_on_level[0]=number_of_nodes;
       
   250       highest_active=0;
       
   251       //---------------------------------------
       
   252       //Initialize parameters
       
   253       //---------------------------------------
       
   254 
       
   255       
       
   256       //------------------------------------
       
   257       //This is the only part that uses BFS
       
   258       //------------------------------------
       
   259 
       
   260       /*Reverse_bfs from t, to find the starting level.*/
       
   261       //Copyright: Jacint
       
   262       change_level_to(t,0);
       
   263 
       
   264       std::queue<Node> bfs_queue;
       
   265       bfs_queue.push(t);
       
   266 
       
   267       while (!bfs_queue.empty()) {
       
   268 
       
   269 	Node v=bfs_queue.front();	
       
   270 	bfs_queue.pop();
       
   271 	int l=level[v]+1;
       
   272 
       
   273 	InEdgeIt e;
       
   274 	for(G.first(e,v); G.valid(e); G.next(e)) {
       
   275 	  Node w=G.tail(e);
       
   276 	  if ( level[w] == number_of_nodes && w != s ) {
       
   277 	    bfs_queue.push(w);
       
   278 	    //Node first=level_list[l];
       
   279 	    //if ( G.valid(first) ) left.set(first,w);
       
   280 	    //right.set(w,first);
       
   281 	    //level_list[l]=w;
       
   282 	    change_level_to(w, l);
       
   283 	    //level.set(w, l);
       
   284 	  }
       
   285 	}
       
   286       }
       
   287       change_level_to(s,number_of_nodes);
       
   288       //level.set(s,number_of_nodes);
       
   289 
       
   290       /*
       
   291       //Setting starting level values using reverse bfs
       
   292       reverse_bfs<Graph> rev_bfs(G,t);
       
   293       rev_bfs.run();
       
   294       //write_property_vector(rev_bfs.dist,"rev_bfs");
       
   295       for(NodeIt i=G.template first<NodeIt>(); G.valid(i); G.next(i)) {
       
   296         change_level_to(i,rev_bfs.dist(i));
       
   297 	//level.put(i,rev_bfs.dist.get(i));
       
   298       }
       
   299       */
       
   300       //------------------------------------
       
   301       //This is the only part that uses BFS
       
   302       //------------------------------------
       
   303       
       
   304       
       
   305       //Starting level of s
       
   306       change_level_to(s,number_of_nodes);
       
   307       //level.put(s,number_of_nodes);
       
   308       
       
   309       
       
   310       //we push as much preflow from s as possible to start with
       
   311       for(OutEdgeIt j=G.template first<OutEdgeIt>(s); G.valid(j); G.next(j)){ 
       
   312 	modify_preflow(j,capacity[j] );
       
   313 	make_active(G.head(j));
       
   314 	int lev=level[G.head(j)];
       
   315 	if(highest_active<lev){
       
   316 	  highest_active=lev;
       
   317 	}
       
   318       }
       
   319       //cout<<highest_active<<endl;
       
   320     } 
       
   321 
       
   322     
       
   323     //If the preflow is less than the capacity on the given edge
       
   324     //then it is an edge in the residual graph
       
   325     bool is_admissible_forward_edge(Edge j, int& new_level){
       
   326 
       
   327       if (capacity[j]>preflow[j]){
       
   328 	if(level[G.tail(j)]==level[G.head(j)]+1){
       
   329 	  return true;
       
   330 	}
       
   331 	else{
       
   332 	  if (level[G.head(j)] < new_level)
       
   333 	    new_level=level[G.head(j)];
       
   334 	}
       
   335       }
       
   336       return false;
       
   337     }
       
   338 
       
   339     //If the preflow is greater than 0 on the given edge
       
   340     //then the edge reversd is an edge in the residual graph
       
   341     bool is_admissible_backward_edge(Edge j, int& new_level){
       
   342       
       
   343       if (0<preflow[j]){
       
   344 	if(level[G.tail(j)]==level[G.head(j)]-1){
       
   345 	 
       
   346 	  return true;
       
   347 	}
       
   348 	else{
       
   349 	  if (level[G.tail(j)] < new_level)
       
   350 	    new_level=level[G.tail(j)];
       
   351 	}
       
   352 	
       
   353       }
       
   354       return false;
       
   355     }
       
   356 
       
   357  
       
   358   };  //class preflow_push  
       
   359 
       
   360   template<typename Graph, typename T>
       
   361     T preflow_push<Graph, T>::run() {
       
   362     
       
   363     preprocess();
       
   364     //write_property_vector(level,"level");
       
   365     T e,v;
       
   366     Node a;
       
   367     while (a=get_active_node(), G.valid(a)){
       
   368       
       
   369       //cout<<G.id(a)<<endl;
       
   370       //write_property_vector(excess,"excess");
       
   371       //write_property_vector(level,"level");
       
   372 
       
   373 
       
   374       bool go_to_next_node=false;
       
   375       e = excess[a];
       
   376       while (!go_to_next_node){
       
   377 	//Initial value for the new level for the active node we are dealing with
       
   378 	int new_level=2*number_of_nodes;
       
   379 	//write_property_vector(excess,"excess");
       
   380 	//write_property_vector(level,"level");
       
   381 	//cout<<G.id(a)<<endl;
       
   382 	//Out edges from node a
       
   383 	{
       
   384 	  OutEdgeIt j=G.template first<OutEdgeIt>(a);
       
   385 	  while (G.valid(j) && e){
       
   386 
       
   387 	    if (is_admissible_forward_edge(j,new_level)){
       
   388 	      v=min(e,capacity[j] - preflow[j]);
       
   389 	      e -= v;
       
   390 	      //New node might become active
       
   391 	      if (excess[G.head(j)]==0){
       
   392 		make_active(G.head(j));
       
   393 	      }
       
   394 	      modify_preflow(j,v);
       
   395 	    }
       
   396 	    G.next(j);
       
   397 	  }
       
   398 	}
       
   399 	//In edges to node a
       
   400 	{
       
   401 	  InEdgeIt j=G.template first<InEdgeIt>(a);
       
   402 	  while (G.valid(j) && e){
       
   403 	    if (is_admissible_backward_edge(j,new_level)){
       
   404 	      v=min(e,preflow[j]);
       
   405 	      e -= v;
       
   406 	      //New node might become active
       
   407 	      if (excess[G.tail(j)]==0){
       
   408 		make_active(G.tail(j));
       
   409 	      }
       
   410 	      modify_preflow(j,-v);
       
   411 	    }
       
   412 	    G.next(j);
       
   413 	  }
       
   414 	}
       
   415 
       
   416 	//if (G.id(a)==999)
       
   417 	//cout<<new_level<<" e: "<<e<<endl;
       
   418 	//cout<<G.id(a)<<" "<<new_level<<endl;
       
   419 
       
   420 	if (0==e){
       
   421 	  //Saturating push
       
   422 	  go_to_next_node=true;
       
   423 	}
       
   424 	else{//If there is still excess in node a
       
   425 	  
       
   426 	  //change_level_to(a,new_level+1);
       
   427 	  
       
   428 	  //Level remains empty
       
   429 	  if (num_of_nodes_on_level[level[a]]==1){
       
   430 	    change_level_to(a,number_of_nodes);
       
   431 	    //go_to_next_node=True;
       
   432 	  }
       
   433 	  else{
       
   434 	    change_level_to(a,new_level+1);
       
   435 	    //increase_level(a);
       
   436 	  }
       
   437 	  
       
   438     
       
   439 	  
       
   440 
       
   441 	  switch(node_examination){
       
   442 	  case examine_to_relabel:
       
   443 	    make_active(a);
       
   444 
       
   445 	    go_to_next_node = true;
       
   446 	    break;
       
   447 	  default:
       
   448 	    break;
       
   449 	  }
       
   450 	  
       
   451     
       
   452 	
       
   453 	}//if (0==e)
       
   454       }
       
   455     }
       
   456     maxflow_value = excess[t];
       
   457     return maxflow_value;
       
   458   }//run
       
   459 
       
   460 
       
   461 }//namespace hugo
       
   462 
       
   463 #endif //PREFLOW_PUSH_HH