|
1 /* -*- C++ -*- |
|
2 * lemon/min_cut.h - Part of LEMON, a generic C++ optimization library |
|
3 * |
|
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
5 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
6 * |
|
7 * Permission to use, modify and distribute this software is granted |
|
8 * provided that this copyright notice appears in all copies. For |
|
9 * precise terms see the accompanying LICENSE file. |
|
10 * |
|
11 * This software is provided "AS IS" with no warranty of any kind, |
|
12 * express or implied, and with no claim as to its suitability for any |
|
13 * purpose. |
|
14 * |
|
15 */ |
|
16 |
|
17 #ifndef LEMON_MIN_CUT_H |
|
18 #define LEMON_MIN_CUT_H |
|
19 |
|
20 |
|
21 /// \ingroup topology |
|
22 /// \file |
|
23 /// \brief Maximum cardinality search and min cut in undirected graphs. |
|
24 |
|
25 #include <lemon/list_graph.h> |
|
26 #include <lemon/bin_heap.h> |
|
27 #include <lemon/bucket_heap.h> |
|
28 |
|
29 #include <lemon/bits/invalid.h> |
|
30 #include <lemon/error.h> |
|
31 #include <lemon/maps.h> |
|
32 |
|
33 #include <functional> |
|
34 |
|
35 namespace lemon { |
|
36 |
|
37 namespace _min_cut_bits { |
|
38 |
|
39 template <typename CapacityMap> |
|
40 struct HeapSelector { |
|
41 template <typename Value, typename Ref> |
|
42 struct Selector { |
|
43 typedef BinHeap<Value, Ref, std::greater<Value> > Heap; |
|
44 }; |
|
45 }; |
|
46 |
|
47 template <typename CapacityKey> |
|
48 struct HeapSelector<ConstMap<CapacityKey, Const<int, 1> > > { |
|
49 template <typename Value, typename Ref> |
|
50 struct Selector { |
|
51 typedef BucketHeap<Ref, false > Heap; |
|
52 }; |
|
53 }; |
|
54 |
|
55 } |
|
56 |
|
57 /// \brief Default traits class of MaxCardinalitySearch class. |
|
58 /// |
|
59 /// Default traits class of MaxCardinalitySearch class. |
|
60 /// \param Graph Graph type. |
|
61 /// \param CapacityMap Type of length map. |
|
62 template <typename _Graph, typename _CapacityMap> |
|
63 struct MaxCardinalitySearchDefaultTraits { |
|
64 /// The graph type the algorithm runs on. |
|
65 typedef _Graph Graph; |
|
66 |
|
67 /// \brief The type of the map that stores the edge capacities. |
|
68 /// |
|
69 /// The type of the map that stores the edge capacities. |
|
70 /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
71 typedef _CapacityMap CapacityMap; |
|
72 |
|
73 /// \brief The type of the capacity of the edges. |
|
74 typedef typename CapacityMap::Value Value; |
|
75 |
|
76 /// \brief The cross reference type used by heap. |
|
77 /// |
|
78 /// The cross reference type used by heap. |
|
79 /// Usually it is \c Graph::NodeMap<int>. |
|
80 typedef typename Graph::template NodeMap<int> HeapCrossRef; |
|
81 |
|
82 /// \brief Instantiates a HeapCrossRef. |
|
83 /// |
|
84 /// This function instantiates a \ref HeapCrossRef. |
|
85 /// \param graph is the graph, to which we would like to define the |
|
86 /// HeapCrossRef. |
|
87 static HeapCrossRef *createHeapCrossRef(const Graph &graph) { |
|
88 return new HeapCrossRef(graph); |
|
89 } |
|
90 |
|
91 /// \brief The heap type used by MaxCardinalitySearch algorithm. |
|
92 /// |
|
93 /// The heap type used by MaxCardinalitySearch algorithm. It should |
|
94 /// maximalize the priorities. The default heap type is |
|
95 /// the \ref BinHeap, but it is specialized when the |
|
96 /// CapacityMap is ConstMap<Graph::Node, Const<int, 1> > |
|
97 /// to BucketHeap. |
|
98 /// |
|
99 /// \sa MaxCardinalitySearch |
|
100 typedef typename _min_cut_bits |
|
101 ::HeapSelector<CapacityMap> |
|
102 ::template Selector<Value, HeapCrossRef> |
|
103 ::Heap Heap; |
|
104 |
|
105 /// \brief Instantiates a Heap. |
|
106 /// |
|
107 /// This function instantiates a \ref Heap. |
|
108 /// \param crossref The cross reference of the heap. |
|
109 static Heap *createHeap(HeapCrossRef& crossref) { |
|
110 return new Heap(crossref); |
|
111 } |
|
112 |
|
113 /// \brief The type of the map that stores whether a nodes is processed. |
|
114 /// |
|
115 /// The type of the map that stores whether a nodes is processed. |
|
116 /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
117 /// By default it is a NullMap. |
|
118 typedef NullMap<typename Graph::Node, bool> ProcessedMap; |
|
119 |
|
120 /// \brief Instantiates a ProcessedMap. |
|
121 /// |
|
122 /// This function instantiates a \ref ProcessedMap. |
|
123 /// \param graph is the graph, to which |
|
124 /// we would like to define the \ref ProcessedMap |
|
125 #ifdef DOXYGEN |
|
126 static ProcessedMap *createProcessedMap(const Graph &graph) |
|
127 #else |
|
128 static ProcessedMap *createProcessedMap(const Graph &) |
|
129 #endif |
|
130 { |
|
131 return new ProcessedMap(); |
|
132 } |
|
133 |
|
134 /// \brief The type of the map that stores the cardinalties of the nodes. |
|
135 /// |
|
136 /// The type of the map that stores the cardinalities of the nodes. |
|
137 /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
138 typedef typename Graph::template NodeMap<Value> CardinalityMap; |
|
139 |
|
140 /// \brief Instantiates a CardinalityMap. |
|
141 /// |
|
142 /// This function instantiates a \ref CardinalityMap. |
|
143 /// \param graph is the graph, to which we would like to define the \ref |
|
144 /// CardinalityMap |
|
145 static CardinalityMap *createCardinalityMap(const Graph &graph) { |
|
146 return new CardinalityMap(graph); |
|
147 } |
|
148 |
|
149 }; |
|
150 |
|
151 /// \ingroup topology |
|
152 /// |
|
153 /// \brief Maximum Cardinality Search algorithm class. |
|
154 /// |
|
155 /// This class provides an efficient implementation of Maximum Cardinality |
|
156 /// Search algorithm. The maximum cardinality search chooses first time any |
|
157 /// node of the graph. Then every time it chooses the node which is connected |
|
158 /// to the processed nodes at most in the sum of capacities on the out |
|
159 /// edges. If there is a cut in the graph the algorithm should choose |
|
160 /// again any unprocessed node of the graph. Each node cardinality is |
|
161 /// the sum of capacities on the out edges to the nodes which are processed |
|
162 /// before the given node. |
|
163 /// |
|
164 /// The edge capacities are passed to the algorithm using a |
|
165 /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
166 /// kind of capacity. |
|
167 /// |
|
168 /// The type of the capacity is determined by the \ref |
|
169 /// concepts::ReadMap::Value "Value" of the capacity map. |
|
170 /// |
|
171 /// It is also possible to change the underlying priority heap. |
|
172 /// |
|
173 /// |
|
174 /// \param _Graph The graph type the algorithm runs on. The default value |
|
175 /// is \ref ListGraph. The value of Graph is not used directly by |
|
176 /// the search algorithm, it is only passed to |
|
177 /// \ref MaxCardinalitySearchDefaultTraits. |
|
178 /// \param _CapacityMap This read-only EdgeMap determines the capacities of |
|
179 /// the edges. It is read once for each edge, so the map may involve in |
|
180 /// relatively time consuming process to compute the edge capacity if |
|
181 /// it is necessary. The default map type is \ref |
|
182 /// concepts::Graph::EdgeMap "Graph::EdgeMap<int>". The value |
|
183 /// of CapacityMap is not used directly by search algorithm, it is only |
|
184 /// passed to \ref MaxCardinalitySearchDefaultTraits. |
|
185 /// \param _Traits Traits class to set various data types used by the |
|
186 /// algorithm. The default traits class is |
|
187 /// \ref MaxCardinalitySearchDefaultTraits |
|
188 /// "MaxCardinalitySearchDefaultTraits<_Graph, _CapacityMap>". |
|
189 /// See \ref MaxCardinalitySearchDefaultTraits |
|
190 /// for the documentation of a MaxCardinalitySearch traits class. |
|
191 /// |
|
192 /// \author Balazs Dezso |
|
193 |
|
194 #ifdef DOXYGEN |
|
195 template <typename _Graph, typename _CapacityMap, typename _Traits> |
|
196 #else |
|
197 template <typename _Graph = ListUGraph, |
|
198 typename _CapacityMap = typename _Graph::template EdgeMap<int>, |
|
199 typename _Traits = |
|
200 MaxCardinalitySearchDefaultTraits<_Graph, _CapacityMap> > |
|
201 #endif |
|
202 class MaxCardinalitySearch { |
|
203 public: |
|
204 /// \brief \ref Exception for uninitialized parameters. |
|
205 /// |
|
206 /// This error represents problems in the initialization |
|
207 /// of the parameters of the algorithms. |
|
208 class UninitializedParameter : public lemon::UninitializedParameter { |
|
209 public: |
|
210 virtual const char* what() const throw() { |
|
211 return "lemon::MaxCardinalitySearch::UninitializedParameter"; |
|
212 } |
|
213 }; |
|
214 |
|
215 typedef _Traits Traits; |
|
216 ///The type of the underlying graph. |
|
217 typedef typename Traits::Graph Graph; |
|
218 |
|
219 ///The type of the capacity of the edges. |
|
220 typedef typename Traits::CapacityMap::Value Value; |
|
221 ///The type of the map that stores the edge capacities. |
|
222 typedef typename Traits::CapacityMap CapacityMap; |
|
223 ///The type of the map indicating if a node is processed. |
|
224 typedef typename Traits::ProcessedMap ProcessedMap; |
|
225 ///The type of the map that stores the cardinalities of the nodes. |
|
226 typedef typename Traits::CardinalityMap CardinalityMap; |
|
227 ///The cross reference type used for the current heap. |
|
228 typedef typename Traits::HeapCrossRef HeapCrossRef; |
|
229 ///The heap type used by the algorithm. It maximize the priorities. |
|
230 typedef typename Traits::Heap Heap; |
|
231 private: |
|
232 /// Pointer to the underlying graph. |
|
233 const Graph *_graph; |
|
234 /// Pointer to the capacity map |
|
235 const CapacityMap *_capacity; |
|
236 ///Pointer to the map of cardinality. |
|
237 CardinalityMap *_cardinality; |
|
238 ///Indicates if \ref _cardinality is locally allocated (\c true) or not. |
|
239 bool local_cardinality; |
|
240 ///Pointer to the map of processed status of the nodes. |
|
241 ProcessedMap *_processed; |
|
242 ///Indicates if \ref _processed is locally allocated (\c true) or not. |
|
243 bool local_processed; |
|
244 ///Pointer to the heap cross references. |
|
245 HeapCrossRef *_heap_cross_ref; |
|
246 ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
|
247 bool local_heap_cross_ref; |
|
248 ///Pointer to the heap. |
|
249 Heap *_heap; |
|
250 ///Indicates if \ref _heap is locally allocated (\c true) or not. |
|
251 bool local_heap; |
|
252 |
|
253 public : |
|
254 |
|
255 typedef MaxCardinalitySearch Create; |
|
256 |
|
257 ///\name Named template parameters |
|
258 |
|
259 ///@{ |
|
260 |
|
261 template <class T> |
|
262 struct DefCardinalityMapTraits : public Traits { |
|
263 typedef T CardinalityMap; |
|
264 static CardinalityMap *createCardinalityMap(const Graph &) |
|
265 { |
|
266 throw UninitializedParameter(); |
|
267 } |
|
268 }; |
|
269 /// \brief \ref named-templ-param "Named parameter" for setting |
|
270 /// CardinalityMap type |
|
271 /// |
|
272 /// \ref named-templ-param "Named parameter" for setting CardinalityMap |
|
273 /// type |
|
274 template <class T> |
|
275 struct DefCardinalityMap |
|
276 : public MaxCardinalitySearch<Graph, CapacityMap, |
|
277 DefCardinalityMapTraits<T> > { |
|
278 typedef MaxCardinalitySearch<Graph, CapacityMap, |
|
279 DefCardinalityMapTraits<T> > Create; |
|
280 }; |
|
281 |
|
282 template <class T> |
|
283 struct DefProcessedMapTraits : public Traits { |
|
284 typedef T ProcessedMap; |
|
285 static ProcessedMap *createProcessedMap(const Graph &) { |
|
286 throw UninitializedParameter(); |
|
287 } |
|
288 }; |
|
289 /// \brief \ref named-templ-param "Named parameter" for setting |
|
290 /// ProcessedMap type |
|
291 /// |
|
292 /// \ref named-templ-param "Named parameter" for setting ProcessedMap type |
|
293 /// |
|
294 template <class T> |
|
295 struct DefProcessedMap |
|
296 : public MaxCardinalitySearch<Graph, CapacityMap, |
|
297 DefProcessedMapTraits<T> > { |
|
298 typedef MaxCardinalitySearch<Graph, CapacityMap, |
|
299 DefProcessedMapTraits<T> > Create; |
|
300 }; |
|
301 |
|
302 template <class H, class CR> |
|
303 struct DefHeapTraits : public Traits { |
|
304 typedef CR HeapCrossRef; |
|
305 typedef H Heap; |
|
306 static HeapCrossRef *createHeapCrossRef(const Graph &) { |
|
307 throw UninitializedParameter(); |
|
308 } |
|
309 static Heap *createHeap(HeapCrossRef &) { |
|
310 throw UninitializedParameter(); |
|
311 } |
|
312 }; |
|
313 /// \brief \ref named-templ-param "Named parameter" for setting heap |
|
314 /// and cross reference type |
|
315 /// |
|
316 /// \ref named-templ-param "Named parameter" for setting heap and cross |
|
317 /// reference type |
|
318 template <class H, class CR = typename Graph::template NodeMap<int> > |
|
319 struct DefHeap |
|
320 : public MaxCardinalitySearch<Graph, CapacityMap, |
|
321 DefHeapTraits<H, CR> > { |
|
322 typedef MaxCardinalitySearch< Graph, CapacityMap, |
|
323 DefHeapTraits<H, CR> > Create; |
|
324 }; |
|
325 |
|
326 template <class H, class CR> |
|
327 struct DefStandardHeapTraits : public Traits { |
|
328 typedef CR HeapCrossRef; |
|
329 typedef H Heap; |
|
330 static HeapCrossRef *createHeapCrossRef(const Graph &graph) { |
|
331 return new HeapCrossRef(graph); |
|
332 } |
|
333 static Heap *createHeap(HeapCrossRef &crossref) { |
|
334 return new Heap(crossref); |
|
335 } |
|
336 }; |
|
337 |
|
338 /// \brief \ref named-templ-param "Named parameter" for setting heap and |
|
339 /// cross reference type with automatic allocation |
|
340 /// |
|
341 /// \ref named-templ-param "Named parameter" for setting heap and cross |
|
342 /// reference type. It can allocate the heap and the cross reference |
|
343 /// object if the cross reference's constructor waits for the graph as |
|
344 /// parameter and the heap's constructor waits for the cross reference. |
|
345 template <class H, class CR = typename Graph::template NodeMap<int> > |
|
346 struct DefStandardHeap |
|
347 : public MaxCardinalitySearch<Graph, CapacityMap, |
|
348 DefStandardHeapTraits<H, CR> > { |
|
349 typedef MaxCardinalitySearch<Graph, CapacityMap, |
|
350 DefStandardHeapTraits<H, CR> > |
|
351 Create; |
|
352 }; |
|
353 |
|
354 ///@} |
|
355 |
|
356 |
|
357 protected: |
|
358 |
|
359 MaxCardinalitySearch() {} |
|
360 |
|
361 public: |
|
362 |
|
363 /// \brief Constructor. |
|
364 /// |
|
365 ///\param graph the graph the algorithm will run on. |
|
366 ///\param capacity the capacity map used by the algorithm. |
|
367 MaxCardinalitySearch(const Graph& graph, const CapacityMap& capacity) : |
|
368 _graph(&graph), _capacity(&capacity), |
|
369 _cardinality(0), local_cardinality(false), |
|
370 _processed(0), local_processed(false), |
|
371 _heap_cross_ref(0), local_heap_cross_ref(false), |
|
372 _heap(0), local_heap(false) |
|
373 { } |
|
374 |
|
375 /// \brief Destructor. |
|
376 ~MaxCardinalitySearch() { |
|
377 if(local_cardinality) delete _cardinality; |
|
378 if(local_processed) delete _processed; |
|
379 if(local_heap_cross_ref) delete _heap_cross_ref; |
|
380 if(local_heap) delete _heap; |
|
381 } |
|
382 |
|
383 /// \brief Sets the capacity map. |
|
384 /// |
|
385 /// Sets the capacity map. |
|
386 /// \return <tt> (*this) </tt> |
|
387 MaxCardinalitySearch &capacityMap(const CapacityMap &m) { |
|
388 _capacity = &m; |
|
389 return *this; |
|
390 } |
|
391 |
|
392 /// \brief Sets the map storing the cardinalities calculated by the |
|
393 /// algorithm. |
|
394 /// |
|
395 /// Sets the map storing the cardinalities calculated by the algorithm. |
|
396 /// If you don't use this function before calling \ref run(), |
|
397 /// it will allocate one. The destuctor deallocates this |
|
398 /// automatically allocated map, of course. |
|
399 /// \return <tt> (*this) </tt> |
|
400 MaxCardinalitySearch &cardinalityMap(CardinalityMap &m) { |
|
401 if(local_cardinality) { |
|
402 delete _cardinality; |
|
403 local_cardinality=false; |
|
404 } |
|
405 _cardinality = &m; |
|
406 return *this; |
|
407 } |
|
408 |
|
409 /// \brief Sets the map storing the processed nodes. |
|
410 /// |
|
411 /// Sets the map storing the processed nodes. |
|
412 /// If you don't use this function before calling \ref run(), |
|
413 /// it will allocate one. The destuctor deallocates this |
|
414 /// automatically allocated map, of course. |
|
415 /// \return <tt> (*this) </tt> |
|
416 MaxCardinalitySearch &processedMap(ProcessedMap &m) |
|
417 { |
|
418 if(local_processed) { |
|
419 delete _processed; |
|
420 local_processed=false; |
|
421 } |
|
422 _processed = &m; |
|
423 return *this; |
|
424 } |
|
425 |
|
426 /// \brief Sets the heap and the cross reference used by algorithm. |
|
427 /// |
|
428 /// Sets the heap and the cross reference used by algorithm. |
|
429 /// If you don't use this function before calling \ref run(), |
|
430 /// it will allocate one. The destuctor deallocates this |
|
431 /// automatically allocated map, of course. |
|
432 /// \return <tt> (*this) </tt> |
|
433 MaxCardinalitySearch &heap(Heap& heap, HeapCrossRef &crossRef) { |
|
434 if(local_heap_cross_ref) { |
|
435 delete _heap_cross_ref; |
|
436 local_heap_cross_ref = false; |
|
437 } |
|
438 _heap_cross_ref = &crossRef; |
|
439 if(local_heap) { |
|
440 delete _heap; |
|
441 local_heap = false; |
|
442 } |
|
443 _heap = &heap; |
|
444 return *this; |
|
445 } |
|
446 |
|
447 private: |
|
448 |
|
449 typedef typename Graph::Node Node; |
|
450 typedef typename Graph::NodeIt NodeIt; |
|
451 typedef typename Graph::Edge Edge; |
|
452 typedef typename Graph::InEdgeIt InEdgeIt; |
|
453 |
|
454 void create_maps() { |
|
455 if(!_cardinality) { |
|
456 local_cardinality = true; |
|
457 _cardinality = Traits::createCardinalityMap(*_graph); |
|
458 } |
|
459 if(!_processed) { |
|
460 local_processed = true; |
|
461 _processed = Traits::createProcessedMap(*_graph); |
|
462 } |
|
463 if (!_heap_cross_ref) { |
|
464 local_heap_cross_ref = true; |
|
465 _heap_cross_ref = Traits::createHeapCrossRef(*_graph); |
|
466 } |
|
467 if (!_heap) { |
|
468 local_heap = true; |
|
469 _heap = Traits::createHeap(*_heap_cross_ref); |
|
470 } |
|
471 } |
|
472 |
|
473 void finalizeNodeData(Node node, Value capacity) { |
|
474 _processed->set(node, true); |
|
475 _cardinality->set(node, capacity); |
|
476 } |
|
477 |
|
478 public: |
|
479 /// \name Execution control |
|
480 /// The simplest way to execute the algorithm is to use |
|
481 /// one of the member functions called \c run(...). |
|
482 /// \n |
|
483 /// If you need more control on the execution, |
|
484 /// first you must call \ref init(), then you can add several source nodes |
|
485 /// with \ref addSource(). |
|
486 /// Finally \ref start() will perform the actual path |
|
487 /// computation. |
|
488 |
|
489 ///@{ |
|
490 |
|
491 /// \brief Initializes the internal data structures. |
|
492 /// |
|
493 /// Initializes the internal data structures. |
|
494 void init() { |
|
495 create_maps(); |
|
496 _heap->clear(); |
|
497 for (NodeIt it(*_graph) ; it != INVALID ; ++it) { |
|
498 _processed->set(it, false); |
|
499 _heap_cross_ref->set(it, Heap::PRE_HEAP); |
|
500 } |
|
501 } |
|
502 |
|
503 /// \brief Adds a new source node. |
|
504 /// |
|
505 /// Adds a new source node to the priority heap. |
|
506 /// |
|
507 /// It checks if the node has not yet been added to the heap. |
|
508 void addSource(Node source, Value capacity = 0) { |
|
509 if(_heap->state(source) == Heap::PRE_HEAP) { |
|
510 _heap->push(source, capacity); |
|
511 } |
|
512 } |
|
513 |
|
514 /// \brief Processes the next node in the priority heap |
|
515 /// |
|
516 /// Processes the next node in the priority heap. |
|
517 /// |
|
518 /// \return The processed node. |
|
519 /// |
|
520 /// \warning The priority heap must not be empty! |
|
521 Node processNextNode() { |
|
522 Node node = _heap->top(); |
|
523 finalizeNodeData(node, _heap->prio()); |
|
524 _heap->pop(); |
|
525 |
|
526 for (InEdgeIt it(*_graph, node); it != INVALID; ++it) { |
|
527 Node source = _graph->source(it); |
|
528 switch (_heap->state(source)) { |
|
529 case Heap::PRE_HEAP: |
|
530 _heap->push(source, (*_capacity)[it]); |
|
531 break; |
|
532 case Heap::IN_HEAP: |
|
533 _heap->decrease(source, (*_heap)[source] + (*_capacity)[it]); |
|
534 break; |
|
535 case Heap::POST_HEAP: |
|
536 break; |
|
537 } |
|
538 } |
|
539 return node; |
|
540 } |
|
541 |
|
542 /// \brief Next node to be processed. |
|
543 /// |
|
544 /// Next node to be processed. |
|
545 /// |
|
546 /// \return The next node to be processed or INVALID if the |
|
547 /// priority heap is empty. |
|
548 Node nextNode() { |
|
549 return _heap->empty() ? _heap->top() : INVALID; |
|
550 } |
|
551 |
|
552 /// \brief Returns \c false if there are nodes |
|
553 /// to be processed in the priority heap |
|
554 /// |
|
555 /// Returns \c false if there are nodes |
|
556 /// to be processed in the priority heap |
|
557 bool emptyQueue() { return _heap->empty(); } |
|
558 /// \brief Returns the number of the nodes to be processed |
|
559 /// in the priority heap |
|
560 /// |
|
561 /// Returns the number of the nodes to be processed in the priority heap |
|
562 int queueSize() { return _heap->size(); } |
|
563 |
|
564 /// \brief Executes the algorithm. |
|
565 /// |
|
566 /// Executes the algorithm. |
|
567 /// |
|
568 ///\pre init() must be called and at least one node should be added |
|
569 /// with addSource() before using this function. |
|
570 /// |
|
571 /// This method runs the Maximum Cardinality Search algorithm from the |
|
572 /// source node(s). |
|
573 void start() { |
|
574 while ( !_heap->empty() ) processNextNode(); |
|
575 } |
|
576 |
|
577 /// \brief Executes the algorithm until \c dest is reached. |
|
578 /// |
|
579 /// Executes the algorithm until \c dest is reached. |
|
580 /// |
|
581 /// \pre init() must be called and at least one node should be added |
|
582 /// with addSource() before using this function. |
|
583 /// |
|
584 /// This method runs the %MaxCardinalitySearch algorithm from the source |
|
585 /// nodes. |
|
586 void start(Node dest) { |
|
587 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
|
588 if ( !_heap->empty() ) finalizeNodeData(_heap->top(), _heap->prio()); |
|
589 } |
|
590 |
|
591 /// \brief Executes the algorithm until a condition is met. |
|
592 /// |
|
593 /// Executes the algorithm until a condition is met. |
|
594 /// |
|
595 /// \pre init() must be called and at least one node should be added |
|
596 /// with addSource() before using this function. |
|
597 /// |
|
598 /// \param nm must be a bool (or convertible) node map. The algorithm |
|
599 /// will stop when it reaches a node \c v with <tt>nm[v]==true</tt>. |
|
600 template <typename NodeBoolMap> |
|
601 void start(const NodeBoolMap &nm) { |
|
602 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
|
603 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
|
604 } |
|
605 |
|
606 /// \brief Runs the maximal cardinality search algorithm from node \c s. |
|
607 /// |
|
608 /// This method runs the %MaxCardinalitySearch algorithm from a root |
|
609 /// node \c s. |
|
610 /// |
|
611 ///\note d.run(s) is just a shortcut of the following code. |
|
612 ///\code |
|
613 /// d.init(); |
|
614 /// d.addSource(s); |
|
615 /// d.start(); |
|
616 ///\endcode |
|
617 void run(Node s) { |
|
618 init(); |
|
619 addSource(s); |
|
620 start(); |
|
621 } |
|
622 |
|
623 /// \brief Runs the maximal cardinality search algorithm for the |
|
624 /// whole graph. |
|
625 /// |
|
626 /// This method runs the %MaxCardinalitySearch algorithm from all |
|
627 /// unprocessed node of the graph. |
|
628 /// |
|
629 ///\note d.run(s) is just a shortcut of the following code. |
|
630 ///\code |
|
631 /// d.init(); |
|
632 /// for (NodeIt it(graph); it != INVALID; ++it) { |
|
633 /// if (!d.reached(it)) { |
|
634 /// d.addSource(s); |
|
635 /// d.start(); |
|
636 /// } |
|
637 /// } |
|
638 ///\endcode |
|
639 void run() { |
|
640 init(); |
|
641 for (NodeIt it(*_graph); it != INVALID; ++it) { |
|
642 if (!reached(it)) { |
|
643 addSource(it); |
|
644 start(); |
|
645 } |
|
646 } |
|
647 } |
|
648 |
|
649 ///@} |
|
650 |
|
651 /// \name Query Functions |
|
652 /// The result of the maximum cardinality search algorithm can be |
|
653 /// obtained using these functions. |
|
654 /// \n |
|
655 /// Before the use of these functions, either run() or start() must be |
|
656 /// called. |
|
657 |
|
658 ///@{ |
|
659 |
|
660 /// \brief The cardinality of a node. |
|
661 /// |
|
662 /// Returns the cardinality of a node. |
|
663 /// \pre \ref run() must be called before using this function. |
|
664 /// \warning If node \c v in unreachable from the root the return value |
|
665 /// of this funcion is undefined. |
|
666 Value cardinality(Node node) const { return (*_cardinality)[node]; } |
|
667 |
|
668 /// \brief Returns a reference to the NodeMap of cardinalities. |
|
669 /// |
|
670 /// Returns a reference to the NodeMap of cardinalities. \pre \ref run() |
|
671 /// must be called before using this function. |
|
672 const CardinalityMap &cardinalityMap() const { return *_cardinality;} |
|
673 |
|
674 /// \brief Checks if a node is reachable from the root. |
|
675 /// |
|
676 /// Returns \c true if \c v is reachable from the root. |
|
677 /// \warning The source nodes are inditated as unreached. |
|
678 /// \pre \ref run() must be called before using this function. |
|
679 bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } |
|
680 |
|
681 /// \brief Checks if a node is processed. |
|
682 /// |
|
683 /// Returns \c true if \c v is processed, i.e. the shortest |
|
684 /// path to \c v has already found. |
|
685 /// \pre \ref run() must be called before using this function. |
|
686 bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } |
|
687 |
|
688 ///@} |
|
689 }; |
|
690 |
|
691 /// \brief Default traits class of NagamochiIbaraki class. |
|
692 /// |
|
693 /// Default traits class of NagamochiIbaraki class. |
|
694 /// \param Graph Graph type. |
|
695 /// \param CapacityMap Type of length map. |
|
696 template <typename _Graph, typename _CapacityMap> |
|
697 struct NagamochiIbarakiDefaultTraits { |
|
698 /// \brief The type of the capacity of the edges. |
|
699 typedef typename _CapacityMap::Value Value; |
|
700 |
|
701 /// The graph type the algorithm runs on. |
|
702 typedef _Graph Graph; |
|
703 |
|
704 /// The AuxGraph type which is an Graph |
|
705 typedef ListUGraph AuxGraph; |
|
706 |
|
707 /// \brief Instantiates a AuxGraph. |
|
708 /// |
|
709 /// This function instantiates a \ref AuxGraph. |
|
710 static AuxGraph *createAuxGraph() { |
|
711 return new AuxGraph(); |
|
712 } |
|
713 |
|
714 /// \brief The type of the map that stores the edge capacities. |
|
715 /// |
|
716 /// The type of the map that stores the edge capacities. |
|
717 /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
718 typedef _CapacityMap CapacityMap; |
|
719 |
|
720 /// \brief Instantiates a CapacityMap. |
|
721 /// |
|
722 /// This function instantiates a \ref CapacityMap. |
|
723 #ifdef DOXYGEN |
|
724 static CapacityMap *createCapacityMap(const Graph& graph) |
|
725 #else |
|
726 static CapacityMap *createCapacityMap(const Graph&) |
|
727 #endif |
|
728 { |
|
729 throw UninitializedParameter(); |
|
730 } |
|
731 |
|
732 /// \brief The AuxCapacityMap type |
|
733 /// |
|
734 /// The type of the map that stores the auxing edge capacities. |
|
735 typedef AuxGraph::UEdgeMap<Value> AuxCapacityMap; |
|
736 |
|
737 /// \brief Instantiates a AuxCapacityMap. |
|
738 /// |
|
739 /// This function instantiates a \ref AuxCapacityMap. |
|
740 static AuxCapacityMap *createAuxCapacityMap(const AuxGraph& graph) { |
|
741 return new AuxCapacityMap(graph); |
|
742 } |
|
743 |
|
744 /// \brief The cross reference type used by heap. |
|
745 /// |
|
746 /// The cross reference type used by heap. |
|
747 /// Usually it is \c Graph::NodeMap<int>. |
|
748 typedef AuxGraph::NodeMap<int> HeapCrossRef; |
|
749 |
|
750 /// \brief Instantiates a HeapCrossRef. |
|
751 /// |
|
752 /// This function instantiates a \ref HeapCrossRef. |
|
753 /// \param graph is the graph, to which we would like to define the |
|
754 /// HeapCrossRef. |
|
755 static HeapCrossRef *createHeapCrossRef(const AuxGraph &graph) { |
|
756 return new HeapCrossRef(graph); |
|
757 } |
|
758 |
|
759 /// \brief The heap type used by NagamochiIbaraki algorithm. |
|
760 /// |
|
761 /// The heap type used by NagamochiIbaraki algorithm. It should |
|
762 /// maximalize the priorities and the heap's key type is |
|
763 /// the aux graph's node. |
|
764 /// |
|
765 /// \sa BinHeap |
|
766 /// \sa NagamochiIbaraki |
|
767 typedef typename _min_cut_bits |
|
768 ::HeapSelector<CapacityMap> |
|
769 ::template Selector<Value, HeapCrossRef> |
|
770 ::Heap Heap; |
|
771 |
|
772 /// \brief Instantiates a Heap. |
|
773 /// |
|
774 /// This function instantiates a \ref Heap. |
|
775 /// \param crossref The cross reference of the heap. |
|
776 static Heap *createHeap(HeapCrossRef& crossref) { |
|
777 return new Heap(crossref); |
|
778 } |
|
779 |
|
780 /// \brief Map from the AuxGraph's node type to the Graph's node type. |
|
781 /// |
|
782 /// Map from the AuxGraph's node type to the Graph's node type. |
|
783 typedef typename AuxGraph |
|
784 ::template NodeMap<typename Graph::Node> NodeRefMap; |
|
785 |
|
786 /// \brief Instantiates a NodeRefMap. |
|
787 /// |
|
788 /// This function instantiates a \ref NodeRefMap. |
|
789 static NodeRefMap *createNodeRefMap(const AuxGraph& graph) { |
|
790 return new NodeRefMap(graph); |
|
791 } |
|
792 |
|
793 /// \brief Map from the Graph's node type to the Graph's node type. |
|
794 /// |
|
795 /// Map from the Graph's node type to the Graph's node type. |
|
796 typedef typename Graph |
|
797 ::template NodeMap<typename Graph::Node> ListRefMap; |
|
798 |
|
799 /// \brief Instantiates a ListRefMap. |
|
800 /// |
|
801 /// This function instantiates a \ref ListRefMap. |
|
802 static ListRefMap *createListRefMap(const Graph& graph) { |
|
803 return new ListRefMap(graph); |
|
804 } |
|
805 |
|
806 |
|
807 }; |
|
808 |
|
809 namespace _min_cut_bits { |
|
810 template <typename _Key> |
|
811 class LastTwoMap { |
|
812 public: |
|
813 typedef _Key Key; |
|
814 typedef bool Value; |
|
815 |
|
816 LastTwoMap(int _num) : num(_num) {} |
|
817 void set(const Key& key, bool val) { |
|
818 if (!val) return; |
|
819 --num; |
|
820 if (num > 1) return; |
|
821 keys[num] = key; |
|
822 } |
|
823 |
|
824 Key operator[](int index) const { return keys[index]; } |
|
825 private: |
|
826 Key keys[2]; |
|
827 int num; |
|
828 }; |
|
829 } |
|
830 |
|
831 /// \ingroup topology |
|
832 /// |
|
833 /// \brief Calculates the minimum cut in an undirected graph. |
|
834 /// |
|
835 /// Calculates the minimum cut in an undirected graph with the |
|
836 /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's |
|
837 /// nodes into two partitions with the minimum sum of edge capacities |
|
838 /// between the two partitions. The algorithm can be used to test |
|
839 /// the network reliability specifically to test how many links have |
|
840 /// to be destroyed in the network to split it at least two |
|
841 /// distinict subnetwork. |
|
842 /// |
|
843 /// The complexity of the algorithm is \f$ O(ne\log(n)) \f$ but with |
|
844 /// Fibonacci heap it can be decreased to \f$ O(ne+n^2\log(n)) |
|
845 /// \f$. When capacity map is neutral then it uses BucketHeap which |
|
846 /// results \f$ O(ne) \f$ time complexity. |
|
847 #ifdef DOXYGEN |
|
848 template <typename _Graph, typename _CapacityMap, typename _Traits> |
|
849 #else |
|
850 template <typename _Graph = ListUGraph, |
|
851 typename _CapacityMap = typename _Graph::template UEdgeMap<int>, |
|
852 typename _Traits |
|
853 = NagamochiIbarakiDefaultTraits<_Graph, _CapacityMap> > |
|
854 #endif |
|
855 class NagamochiIbaraki { |
|
856 public: |
|
857 /// \brief \ref Exception for uninitialized parameters. |
|
858 /// |
|
859 /// This error represents problems in the initialization |
|
860 /// of the parameters of the algorithms. |
|
861 class UninitializedParameter : public lemon::UninitializedParameter { |
|
862 public: |
|
863 virtual const char* what() const throw() { |
|
864 return "lemon::NagamochiIbaraki::UninitializedParameter"; |
|
865 } |
|
866 }; |
|
867 |
|
868 |
|
869 private: |
|
870 |
|
871 typedef _Traits Traits; |
|
872 /// The type of the underlying graph. |
|
873 typedef typename Traits::Graph Graph; |
|
874 |
|
875 /// The type of the capacity of the edges. |
|
876 typedef typename Traits::CapacityMap::Value Value; |
|
877 /// The type of the map that stores the edge capacities. |
|
878 typedef typename Traits::CapacityMap CapacityMap; |
|
879 /// The type of the aux graph |
|
880 typedef typename Traits::AuxGraph AuxGraph; |
|
881 /// The type of the aux capacity map |
|
882 typedef typename Traits::AuxCapacityMap AuxCapacityMap; |
|
883 /// The cross reference type used for the current heap. |
|
884 typedef typename Traits::HeapCrossRef HeapCrossRef; |
|
885 /// The heap type used by the max cardinality algorithm. |
|
886 typedef typename Traits::Heap Heap; |
|
887 /// The node refrefernces between the original and aux graph type. |
|
888 typedef typename Traits::NodeRefMap NodeRefMap; |
|
889 /// The list node refrefernces in the original graph type. |
|
890 typedef typename Traits::ListRefMap ListRefMap; |
|
891 |
|
892 public: |
|
893 |
|
894 ///\name Named template parameters |
|
895 |
|
896 ///@{ |
|
897 |
|
898 struct DefNeutralCapacityTraits : public Traits { |
|
899 typedef ConstMap<typename Graph::UEdge, Const<int, 1> > CapacityMap; |
|
900 static CapacityMap *createCapacityMap(const Graph&) { |
|
901 return new CapacityMap(); |
|
902 } |
|
903 }; |
|
904 /// \brief \ref named-templ-param "Named parameter" for setting |
|
905 /// the capacity type to constMap<UEdge, int, 1>() |
|
906 /// |
|
907 /// \ref named-templ-param "Named parameter" for setting |
|
908 /// the capacity type to constMap<UEdge, int, 1>() |
|
909 struct DefNeutralCapacity |
|
910 : public NagamochiIbaraki<Graph, CapacityMap, |
|
911 DefNeutralCapacityTraits> { |
|
912 typedef NagamochiIbaraki<Graph, CapacityMap, |
|
913 DefNeutralCapacityTraits> Create; |
|
914 }; |
|
915 |
|
916 |
|
917 template <class H, class CR> |
|
918 struct DefHeapTraits : public Traits { |
|
919 typedef CR HeapCrossRef; |
|
920 typedef H Heap; |
|
921 static HeapCrossRef *createHeapCrossRef(const AuxGraph &) { |
|
922 throw UninitializedParameter(); |
|
923 } |
|
924 static Heap *createHeap(HeapCrossRef &) { |
|
925 throw UninitializedParameter(); |
|
926 } |
|
927 }; |
|
928 /// \brief \ref named-templ-param "Named parameter" for setting heap |
|
929 /// and cross reference type |
|
930 /// |
|
931 /// \ref named-templ-param "Named parameter" for setting heap and cross |
|
932 /// reference type |
|
933 template <class H, class CR = typename Graph::template NodeMap<int> > |
|
934 struct DefHeap |
|
935 : public NagamochiIbaraki<Graph, CapacityMap, |
|
936 DefHeapTraits<H, CR> > { |
|
937 typedef NagamochiIbaraki< Graph, CapacityMap, |
|
938 DefHeapTraits<H, CR> > Create; |
|
939 }; |
|
940 |
|
941 template <class H, class CR> |
|
942 struct DefStandardHeapTraits : public Traits { |
|
943 typedef CR HeapCrossRef; |
|
944 typedef H Heap; |
|
945 static HeapCrossRef *createHeapCrossRef(const AuxGraph &graph) { |
|
946 return new HeapCrossRef(graph); |
|
947 } |
|
948 static Heap *createHeap(HeapCrossRef &crossref) { |
|
949 return new Heap(crossref); |
|
950 } |
|
951 }; |
|
952 |
|
953 /// \brief \ref named-templ-param "Named parameter" for setting heap and |
|
954 /// cross reference type with automatic allocation |
|
955 /// |
|
956 /// \ref named-templ-param "Named parameter" for setting heap and cross |
|
957 /// reference type. It can allocate the heap and the cross reference |
|
958 /// object if the cross reference's constructor waits for the graph as |
|
959 /// parameter and the heap's constructor waits for the cross reference. |
|
960 template <class H, class CR = typename Graph::template NodeMap<int> > |
|
961 struct DefStandardHeap |
|
962 : public NagamochiIbaraki<Graph, CapacityMap, |
|
963 DefStandardHeapTraits<H, CR> > { |
|
964 typedef NagamochiIbaraki<Graph, CapacityMap, |
|
965 DefStandardHeapTraits<H, CR> > |
|
966 Create; |
|
967 }; |
|
968 |
|
969 ///@} |
|
970 |
|
971 |
|
972 private: |
|
973 /// Pointer to the underlying graph. |
|
974 const Graph *_graph; |
|
975 /// Pointer to the capacity map |
|
976 const CapacityMap *_capacity; |
|
977 /// \brief Indicates if \ref _capacity is locally allocated |
|
978 /// (\c true) or not. |
|
979 bool local_capacity; |
|
980 |
|
981 /// Pointer to the aux graph. |
|
982 AuxGraph *_aux_graph; |
|
983 /// \brief Indicates if \ref _aux_graph is locally allocated |
|
984 /// (\c true) or not. |
|
985 bool local_aux_graph; |
|
986 /// Pointer to the aux capacity map |
|
987 AuxCapacityMap *_aux_capacity; |
|
988 /// \brief Indicates if \ref _aux_capacity is locally allocated |
|
989 /// (\c true) or not. |
|
990 bool local_aux_capacity; |
|
991 /// Pointer to the heap cross references. |
|
992 HeapCrossRef *_heap_cross_ref; |
|
993 /// \brief Indicates if \ref _heap_cross_ref is locally allocated |
|
994 /// (\c true) or not. |
|
995 bool local_heap_cross_ref; |
|
996 /// Pointer to the heap. |
|
997 Heap *_heap; |
|
998 /// Indicates if \ref _heap is locally allocated (\c true) or not. |
|
999 bool local_heap; |
|
1000 |
|
1001 /// The min cut value. |
|
1002 Value _min_cut; |
|
1003 /// The number of the nodes of the aux graph. |
|
1004 int _node_num; |
|
1005 /// The first and last node of the min cut in the next list; |
|
1006 typename Graph::Node _first_node, _last_node; |
|
1007 |
|
1008 /// \brief The first and last element in the list associated |
|
1009 /// to the aux graph node. |
|
1010 NodeRefMap *_first, *_last; |
|
1011 /// \brief The next node in the node lists. |
|
1012 ListRefMap *_next; |
|
1013 |
|
1014 void create_structures() { |
|
1015 if (!_capacity) { |
|
1016 local_capacity = true; |
|
1017 _capacity = Traits::createCapacityMap(*_graph); |
|
1018 } |
|
1019 if(!_aux_graph) { |
|
1020 local_aux_graph = true; |
|
1021 _aux_graph = Traits::createAuxGraph(); |
|
1022 } |
|
1023 if(!_aux_capacity) { |
|
1024 local_aux_capacity = true; |
|
1025 _aux_capacity = Traits::createAuxCapacityMap(*_aux_graph); |
|
1026 } |
|
1027 |
|
1028 _first = Traits::createNodeRefMap(*_aux_graph); |
|
1029 _last = Traits::createNodeRefMap(*_aux_graph); |
|
1030 |
|
1031 _next = Traits::createListRefMap(*_graph); |
|
1032 |
|
1033 typename Graph::template NodeMap<typename AuxGraph::Node> ref(*_graph); |
|
1034 |
|
1035 for (typename Graph::NodeIt it(*_graph); it != INVALID; ++it) { |
|
1036 _next->set(it, INVALID); |
|
1037 typename AuxGraph::Node node = _aux_graph->addNode(); |
|
1038 _first->set(node, it); |
|
1039 _last->set(node, it); |
|
1040 ref.set(it, node); |
|
1041 } |
|
1042 |
|
1043 for (typename Graph::UEdgeIt it(*_graph); it != INVALID; ++it) { |
|
1044 if (_graph->source(it) == _graph->target(it)) continue; |
|
1045 typename AuxGraph::UEdge uedge = |
|
1046 _aux_graph->addEdge(ref[_graph->source(it)], |
|
1047 ref[_graph->target(it)]); |
|
1048 _aux_capacity->set(uedge, (*_capacity)[it]); |
|
1049 |
|
1050 } |
|
1051 |
|
1052 if (!_heap_cross_ref) { |
|
1053 local_heap_cross_ref = true; |
|
1054 _heap_cross_ref = Traits::createHeapCrossRef(*_aux_graph); |
|
1055 } |
|
1056 if (!_heap) { |
|
1057 local_heap = true; |
|
1058 _heap = Traits::createHeap(*_heap_cross_ref); |
|
1059 } |
|
1060 } |
|
1061 |
|
1062 public : |
|
1063 |
|
1064 typedef NagamochiIbaraki Create; |
|
1065 |
|
1066 |
|
1067 /// \brief Constructor. |
|
1068 /// |
|
1069 ///\param graph the graph the algorithm will run on. |
|
1070 ///\param capacity the capacity map used by the algorithm. |
|
1071 NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) |
|
1072 : _graph(&graph), |
|
1073 _capacity(&capacity), local_capacity(false), |
|
1074 _aux_graph(0), local_aux_graph(false), |
|
1075 _aux_capacity(0), local_aux_capacity(false), |
|
1076 _heap_cross_ref(0), local_heap_cross_ref(false), |
|
1077 _heap(0), local_heap(false), |
|
1078 _first(0), _last(0), _next(0) {} |
|
1079 |
|
1080 /// \brief Constructor. |
|
1081 /// |
|
1082 /// This constructor can be used only when the Traits class |
|
1083 /// defines how can we instantiate a local capacity map. |
|
1084 /// If the DefNeutralCapacity used the algorithm automatically |
|
1085 /// construct the capacity map. |
|
1086 /// |
|
1087 ///\param graph the graph the algorithm will run on. |
|
1088 NagamochiIbaraki(const Graph& graph) |
|
1089 : _graph(&graph), |
|
1090 _capacity(0), local_capacity(false), |
|
1091 _aux_graph(0), local_aux_graph(false), |
|
1092 _aux_capacity(0), local_aux_capacity(false), |
|
1093 _heap_cross_ref(0), local_heap_cross_ref(false), |
|
1094 _heap(0), local_heap(false), |
|
1095 _first(0), _last(0), _next(0) {} |
|
1096 |
|
1097 /// \brief Destructor. |
|
1098 /// |
|
1099 /// Destructor. |
|
1100 ~NagamochiIbaraki() { |
|
1101 if (local_heap) delete _heap; |
|
1102 if (local_heap_cross_ref) delete _heap_cross_ref; |
|
1103 if (_first) delete _first; |
|
1104 if (_last) delete _last; |
|
1105 if (_next) delete _next; |
|
1106 if (local_aux_capacity) delete _aux_capacity; |
|
1107 if (local_aux_graph) delete _aux_graph; |
|
1108 if (local_capacity) delete _capacity; |
|
1109 } |
|
1110 |
|
1111 /// \brief Sets the heap and the cross reference used by algorithm. |
|
1112 /// |
|
1113 /// Sets the heap and the cross reference used by algorithm. |
|
1114 /// If you don't use this function before calling \ref run(), |
|
1115 /// it will allocate one. The destuctor deallocates this |
|
1116 /// automatically allocated heap and cross reference, of course. |
|
1117 /// \return <tt> (*this) </tt> |
|
1118 NagamochiIbaraki &heap(Heap& heap, HeapCrossRef &crossRef) |
|
1119 { |
|
1120 if (local_heap_cross_ref) { |
|
1121 delete _heap_cross_ref; |
|
1122 local_heap_cross_ref=false; |
|
1123 } |
|
1124 _heap_cross_ref = &crossRef; |
|
1125 if (local_heap) { |
|
1126 delete _heap; |
|
1127 local_heap=false; |
|
1128 } |
|
1129 _heap = &heap; |
|
1130 return *this; |
|
1131 } |
|
1132 |
|
1133 /// \brief Sets the aux graph. |
|
1134 /// |
|
1135 /// Sets the aux graph used by algorithm. |
|
1136 /// If you don't use this function before calling \ref run(), |
|
1137 /// it will allocate one. The destuctor deallocates this |
|
1138 /// automatically allocated graph, of course. |
|
1139 /// \return <tt> (*this) </tt> |
|
1140 NagamochiIbaraki &auxGraph(AuxGraph& aux_graph) |
|
1141 { |
|
1142 if(local_aux_graph) { |
|
1143 delete _aux_graph; |
|
1144 local_aux_graph=false; |
|
1145 } |
|
1146 _aux_graph = &aux_graph; |
|
1147 return *this; |
|
1148 } |
|
1149 |
|
1150 /// \brief Sets the aux capacity map. |
|
1151 /// |
|
1152 /// Sets the aux capacity map used by algorithm. |
|
1153 /// If you don't use this function before calling \ref run(), |
|
1154 /// it will allocate one. The destuctor deallocates this |
|
1155 /// automatically allocated graph, of course. |
|
1156 /// \return <tt> (*this) </tt> |
|
1157 NagamochiIbaraki &auxCapacityMap(AuxCapacityMap& aux_capacity_map) |
|
1158 { |
|
1159 if(local_aux_capacity) { |
|
1160 delete _aux_capacity; |
|
1161 local_aux_capacity=false; |
|
1162 } |
|
1163 _aux_capacity = &aux_capacity_map; |
|
1164 return *this; |
|
1165 } |
|
1166 |
|
1167 /// \name Execution control |
|
1168 /// The simplest way to execute the algorithm is to use |
|
1169 /// one of the member functions called \c run(). |
|
1170 /// \n |
|
1171 /// If you need more control on the execution, |
|
1172 /// first you must call \ref init() and then call the start() |
|
1173 /// or proper times the processNextPhase() member functions. |
|
1174 |
|
1175 ///@{ |
|
1176 |
|
1177 /// \brief Initializes the internal data structures. |
|
1178 /// |
|
1179 /// Initializes the internal data structures. |
|
1180 void init() { |
|
1181 create_structures(); |
|
1182 _first_node = _last_node = INVALID; |
|
1183 _node_num = countNodes(*_graph); |
|
1184 } |
|
1185 |
|
1186 /// \brief Processes the next phase |
|
1187 /// |
|
1188 /// Processes the next phase in the algorithm. The function |
|
1189 /// should be called countNodes(graph) - 1 times to get |
|
1190 /// surely the min cut in the graph. The |
|
1191 /// |
|
1192 ///\return %True when the algorithm finished. |
|
1193 bool processNextPhase() { |
|
1194 if (_node_num <= 1) return true; |
|
1195 using namespace _min_cut_bits; |
|
1196 |
|
1197 typedef typename AuxGraph::Node Node; |
|
1198 typedef typename AuxGraph::NodeIt NodeIt; |
|
1199 typedef typename AuxGraph::UEdge UEdge; |
|
1200 typedef typename AuxGraph::IncEdgeIt IncEdgeIt; |
|
1201 |
|
1202 typedef typename MaxCardinalitySearch<AuxGraph, AuxCapacityMap>:: |
|
1203 template DefHeap<Heap, HeapCrossRef>:: |
|
1204 template DefCardinalityMap<NullMap<Node, Value> >:: |
|
1205 template DefProcessedMap<LastTwoMap<Node> >:: |
|
1206 Create MaxCardinalitySearch; |
|
1207 |
|
1208 MaxCardinalitySearch mcs(*_aux_graph, *_aux_capacity); |
|
1209 for (NodeIt it(*_aux_graph); it != INVALID; ++it) { |
|
1210 _heap_cross_ref->set(it, Heap::PRE_HEAP); |
|
1211 } |
|
1212 mcs.heap(*_heap, *_heap_cross_ref); |
|
1213 |
|
1214 LastTwoMap<Node> last_two_nodes(_node_num); |
|
1215 mcs.processedMap(last_two_nodes); |
|
1216 |
|
1217 NullMap<Node, Value> cardinality; |
|
1218 mcs.cardinalityMap(cardinality); |
|
1219 |
|
1220 mcs.run(); |
|
1221 |
|
1222 Node new_node = _aux_graph->addNode(); |
|
1223 |
|
1224 typename AuxGraph::template NodeMap<UEdge> edges(*_aux_graph, INVALID); |
|
1225 |
|
1226 Node first_node = last_two_nodes[0]; |
|
1227 Node second_node = last_two_nodes[1]; |
|
1228 |
|
1229 _next->set((*_last)[first_node], (*_first)[second_node]); |
|
1230 _first->set(new_node, (*_first)[first_node]); |
|
1231 _last->set(new_node, (*_last)[second_node]); |
|
1232 |
|
1233 Value current_cut = 0; |
|
1234 for (IncEdgeIt it(*_aux_graph, first_node); it != INVALID; ++it) { |
|
1235 Node node = _aux_graph->runningNode(it); |
|
1236 current_cut += (*_aux_capacity)[it]; |
|
1237 if (node == second_node) continue; |
|
1238 if (edges[node] == INVALID) { |
|
1239 edges[node] = _aux_graph->addEdge(new_node, node); |
|
1240 (*_aux_capacity)[edges[node]] = (*_aux_capacity)[it]; |
|
1241 } else { |
|
1242 (*_aux_capacity)[edges[node]] += (*_aux_capacity)[it]; |
|
1243 } |
|
1244 } |
|
1245 |
|
1246 if (_first_node == INVALID || current_cut < _min_cut) { |
|
1247 _first_node = (*_first)[first_node]; |
|
1248 _last_node = (*_last)[first_node]; |
|
1249 _min_cut = current_cut; |
|
1250 } |
|
1251 |
|
1252 _aux_graph->erase(first_node); |
|
1253 |
|
1254 for (IncEdgeIt it(*_aux_graph, second_node); it != INVALID; ++it) { |
|
1255 Node node = _aux_graph->runningNode(it); |
|
1256 if (edges[node] == INVALID) { |
|
1257 edges[node] = _aux_graph->addEdge(new_node, node); |
|
1258 (*_aux_capacity)[edges[node]] = (*_aux_capacity)[it]; |
|
1259 } else { |
|
1260 (*_aux_capacity)[edges[node]] += (*_aux_capacity)[it]; |
|
1261 } |
|
1262 } |
|
1263 _aux_graph->erase(second_node); |
|
1264 |
|
1265 --_node_num; |
|
1266 return _node_num == 1; |
|
1267 } |
|
1268 |
|
1269 /// \brief Executes the algorithm. |
|
1270 /// |
|
1271 /// Executes the algorithm. |
|
1272 /// |
|
1273 /// \pre init() must be called |
|
1274 void start() { |
|
1275 while (!processNextPhase()); |
|
1276 } |
|
1277 |
|
1278 |
|
1279 /// \brief Runs %NagamochiIbaraki algorithm. |
|
1280 /// |
|
1281 /// This method runs the %Min cut algorithm |
|
1282 /// |
|
1283 /// \note mc.run(s) is just a shortcut of the following code. |
|
1284 ///\code |
|
1285 /// mc.init(); |
|
1286 /// mc.start(); |
|
1287 ///\endcode |
|
1288 void run() { |
|
1289 init(); |
|
1290 start(); |
|
1291 } |
|
1292 |
|
1293 ///@} |
|
1294 |
|
1295 /// \name Query Functions |
|
1296 /// |
|
1297 /// The result of the %NagamochiIbaraki |
|
1298 /// algorithm can be obtained using these functions.\n |
|
1299 /// Before the use of these functions, either run() or start() |
|
1300 /// must be called. |
|
1301 |
|
1302 ///@{ |
|
1303 |
|
1304 /// \brief Returns the min cut value. |
|
1305 /// |
|
1306 /// Returns the min cut value if the algorithm finished. |
|
1307 /// After the first processNextPhase() it is a value of a |
|
1308 /// valid cut in the graph. |
|
1309 Value minCut() const { |
|
1310 return _min_cut; |
|
1311 } |
|
1312 |
|
1313 /// \brief Returns a min cut in a NodeMap. |
|
1314 /// |
|
1315 /// It sets the nodes of one of the two partitions to true in |
|
1316 /// the given BoolNodeMap. The map contains a valid cut if the |
|
1317 /// map have been set false previously. |
|
1318 template <typename NodeMap> |
|
1319 Value quickMinCut(NodeMap& nodeMap) const { |
|
1320 for (typename Graph::Node it = _first_node; |
|
1321 it != _last_node; it = (*_next)[it]) { |
|
1322 nodeMap.set(it, true); |
|
1323 } |
|
1324 nodeMap.set(_last_node, true); |
|
1325 return minCut(); |
|
1326 } |
|
1327 |
|
1328 /// \brief Returns a min cut in a NodeMap. |
|
1329 /// |
|
1330 /// It sets the nodes of one of the two partitions to true and |
|
1331 /// the other partition to false. The function first set all of the |
|
1332 /// nodes to false and after it call the quickMinCut() member. |
|
1333 template <typename NodeMap> |
|
1334 Value minCut(NodeMap& nodeMap) const { |
|
1335 for (typename Graph::NodeIt it(*_graph); it != INVALID; ++it) { |
|
1336 nodeMap.set(it, false); |
|
1337 } |
|
1338 quickMinCut(nodeMap); |
|
1339 return minCut(); |
|
1340 } |
|
1341 |
|
1342 /// \brief Returns a min cut in an EdgeMap. |
|
1343 /// |
|
1344 /// If an undirected edge is in a min cut then it will be |
|
1345 /// set to true and the others will be set to false in the given map. |
|
1346 template <typename EdgeMap> |
|
1347 Value cutEdges(EdgeMap& edgeMap) const { |
|
1348 typename Graph::template NodeMap<bool> cut(*_graph, false); |
|
1349 quickMinCut(cut); |
|
1350 for (typename Graph::EdgeIt it(*_graph); it != INVALID; ++it) { |
|
1351 edgeMap.set(it, cut[_graph->source(it)] ^ cut[_graph->target(it)]); |
|
1352 } |
|
1353 return minCut(); |
|
1354 } |
|
1355 |
|
1356 ///@} |
|
1357 |
|
1358 }; |
|
1359 } |
|
1360 |
|
1361 #endif |