src/include/dijkstra.h
changeset 256 3ca898fc58a2
child 257 7f832b4e5391
equal deleted inserted replaced
-1:000000000000 0:7951f50c8584
       
     1 // -*- C++ -*-
       
     2 
       
     3 /* 
       
     4  *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
       
     5  *
       
     6  *Constructor: 
       
     7  *
       
     8  *Dijkstra(Graph G, LengthMap length)
       
     9  *
       
    10  *
       
    11  *Methods:
       
    12  *
       
    13  *void run(Node s)
       
    14  *
       
    15  *T dist(Node v) : After run(s) was run, it returns the distance from s to v. 
       
    16  *   Returns T() if v is not reachable from s.
       
    17  *
       
    18  *Edge pred(Node v) : After run(s) was run, it returns the last 
       
    19  *   edge of a shortest s-v path. It is INVALID for s and for 
       
    20  *   the nodes not reachable from s.
       
    21  *
       
    22  *bool reached(Node v) : After run(s) was run, it is true iff v is 
       
    23  *   reachable from s
       
    24  *
       
    25  */
       
    26 
       
    27 #ifndef HUGO_DIJKSTRA_H
       
    28 #define HUGO_DIJKSTRA_H
       
    29 
       
    30 ///\file
       
    31 ///\brief Dijkstra algorithm.
       
    32 
       
    33 #include "fib_heap.h"
       
    34 #include "bin_heap.hh"
       
    35 #include "invalid.h"
       
    36 
       
    37 namespace hugo {
       
    38   
       
    39   //Alpar: Changed the order of the parameters
       
    40   
       
    41   ///%Dijkstra algorithm class.
       
    42 
       
    43   ///This class provides an efficient implementation of %Dijkstra algorithm.
       
    44   ///The edge lengths are passed to the algorithm using a
       
    45   ///\ref ReadMapSkeleton "readable map",
       
    46   ///so it is easy to change it to any kind of length.
       
    47   ///
       
    48   ///The type of the length is determined by the \c ValueType of the length map.
       
    49   ///
       
    50   ///It is also possible to change the underlying priority heap.
       
    51   ///
       
    52   ///\param Graph The graph type the algorithm runs on.
       
    53   ///\param LengthMap This read-only
       
    54   ///EdgeMap
       
    55   ///determines the
       
    56   ///lengths of the edges. It is read once for each edge, so the map
       
    57   ///may involve in relatively time consuming process to compute the edge
       
    58   ///length if it is necessary. The default map type is
       
    59   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
       
    60   ///\param Heap The heap type used by the %Dijkstra
       
    61   ///algorithm. The default
       
    62   ///is using \ref BinHeap "binary heap".
       
    63   
       
    64 #ifdef DOXYGEN
       
    65   template <typename Graph,
       
    66 	    typename LengthMap,
       
    67 	    typename Heap>
       
    68 #else
       
    69   template <typename Graph,
       
    70 	    typename LengthMap=typename Graph::EdgeMap<int>,
       
    71 	    template <class,class,class> class Heap = BinHeap >
       
    72 // 	    typename Heap=BinHeap <typename Graph::Node,
       
    73 // 				   typename LengthMap::ValueType, 
       
    74 // 				   typename Graph::NodeMap<int> > >
       
    75 #endif
       
    76   class Dijkstra{
       
    77   public:
       
    78     typedef typename Graph::Node Node;
       
    79     typedef typename Graph::NodeIt NodeIt;
       
    80     typedef typename Graph::Edge Edge;
       
    81     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    82     
       
    83     typedef typename LengthMap::ValueType ValueType;
       
    84     typedef typename Graph::NodeMap<Edge> PredMap;
       
    85     typedef typename Graph::NodeMap<Node> PredNodeMap;
       
    86     typedef typename Graph::NodeMap<ValueType> DistMap;
       
    87 
       
    88   private:
       
    89     const Graph& G;
       
    90     const LengthMap& length;
       
    91     PredMap predecessor;
       
    92     //In place of reach:
       
    93     PredNodeMap pred_node;
       
    94     DistMap distance;
       
    95     //I don't like this:
       
    96     //     //FIXME:
       
    97     //     typename Graph::NodeMap<bool> reach;
       
    98     //     //typename Graph::NodeMap<int> reach;
       
    99     
       
   100   public :
       
   101     
       
   102     /*
       
   103       The distance of the nodes is 0.
       
   104     */
       
   105     Dijkstra(Graph& _G, LengthMap& _length) :
       
   106       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
       
   107     
       
   108     void run(Node s);
       
   109     
       
   110     ///The distance of a node from the source.
       
   111 
       
   112     ///Returns the distance of a node from the source.
       
   113     ///\pre \ref run() must be called before using this function.
       
   114     ///\warning If node \c v in unreachable from the source the return value
       
   115     ///of this funcion is undefined.
       
   116     ValueType dist(Node v) const { return distance[v]; }
       
   117     ///Returns the edges of the shortest path tree.
       
   118 
       
   119     ///For a node \c v it returns the last edge of the shortest path
       
   120     ///from the source to \c v or INVALID if \c v is unreachable
       
   121     ///from the source.
       
   122     ///\pre \ref run() must be called before using this function.
       
   123     Edge pred(Node v) const { return predecessor[v]; }
       
   124     ///Returns the nodes of the shortest paths.
       
   125 
       
   126     ///For a node \c v it returns the last but one node of the shortest path
       
   127     ///from the source to \c v or INVALID if \c v is unreachable
       
   128     ///from the source.
       
   129     ///\pre \ref run() must be called before using this function.
       
   130     Node predNode(Node v) const { return pred_node[v]; }
       
   131     
       
   132     ///Returns a reference to the NodeMap of distances.
       
   133 
       
   134     ///\pre \ref run() must be called before using this function.
       
   135     ///
       
   136     const DistMap &distMap() const { return distance;}
       
   137     ///Returns a reference to the shortest path tree map.
       
   138 
       
   139     ///Returns a reference to the NodeMap of the edges of the
       
   140     ///shortest path tree.
       
   141     ///\pre \ref run() must be called before using this function.
       
   142     const PredMap &predMap() const { return predecessor;}
       
   143     ///Returns a reference to the map of nodes of  shortest paths.
       
   144 
       
   145     ///Returns a reference to the NodeMap of the last but one nodes of the
       
   146     ///shortest paths.
       
   147     ///\pre \ref run() must be called before using this function.
       
   148     const PredNodeMap &predNodeMap() const { return pred_node;}
       
   149 
       
   150     //    bool reached(Node v) { return reach[v]; }
       
   151 
       
   152     ///Checks if a node is reachable from the source.
       
   153 
       
   154     ///Returns \c true if \c v is reachable from the source.
       
   155     ///\warning the source node is reported to be unreached!
       
   156     ///\todo Is this what we want?
       
   157     ///\pre \ref run() must be called before using this function.
       
   158     ///
       
   159     bool reached(Node v) { return G.valid(predecessor[v]); }
       
   160     
       
   161   };
       
   162   
       
   163 
       
   164   // **********************************************************************
       
   165   //  IMPLEMENTATIONS
       
   166   // **********************************************************************
       
   167 
       
   168   ///Runs %Dijkstra algorithm from node the source.
       
   169 
       
   170   ///This method runs the %Dijkstra algorithm from a source node \c s
       
   171   ///in order to
       
   172   ///compute the
       
   173   ///shortest path to each node. The algorithm computes
       
   174   ///- The shortest path tree.
       
   175   ///- The distance of each node from the source.
       
   176   template <typename Graph, typename LengthMap,
       
   177 	    template<class,class,class> class Heap >
       
   178   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
       
   179     
       
   180     NodeIt u;
       
   181     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
       
   182       predecessor.set(u,INVALID);
       
   183       pred_node.set(u,INVALID);
       
   184       // If a node is unreacheable, then why should be the dist=0?
       
   185       // distance.set(u,0);
       
   186       //      reach.set(u,false);
       
   187     }
       
   188     
       
   189     //We don't need it at all.
       
   190     //     //FIXME:
       
   191     //     typename Graph::NodeMap<bool> scanned(G,false);
       
   192     //     //typename Graph::NodeMap<int> scanned(G,false);
       
   193     typename Graph::NodeMap<int> heap_map(G,-1);
       
   194     
       
   195     //Heap heap(heap_map);
       
   196     Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
       
   197     
       
   198     heap.push(s,0); 
       
   199     //    reach.set(s, true);
       
   200     
       
   201       while ( !heap.empty() ) {
       
   202 	
       
   203 	Node v=heap.top(); 
       
   204 	ValueType oldvalue=heap[v];
       
   205 	heap.pop();
       
   206 	distance.set(v, oldvalue);
       
   207 	
       
   208 	for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) {
       
   209 	  Node w=G.head(e); 
       
   210 	  
       
   211 	  switch(heap.state(w)) {
       
   212 	  case heap.PRE_HEAP:
       
   213 	    //	    reach.set(w,true);
       
   214 	    heap.push(w,oldvalue+length[e]); 
       
   215 	    predecessor.set(w,e);
       
   216 	    pred_node.set(w,v);
       
   217 	    break;
       
   218 	  case heap.IN_HEAP:
       
   219 	    if ( oldvalue+length[e] < heap[w] ) {
       
   220 	      heap.decrease(w, oldvalue+length[e]); 
       
   221 	      predecessor.set(w,e);
       
   222 	      pred_node.set(w,v);
       
   223 	    }
       
   224 	    break;
       
   225 	  case heap.POST_HEAP:
       
   226 	    break;
       
   227 	  }
       
   228 	}
       
   229       }
       
   230   }
       
   231   
       
   232 } //END OF NAMESPACE HUGO
       
   233 
       
   234 #endif
       
   235 
       
   236