|
1 // -*- C++ -*- |
|
2 |
|
3 /* |
|
4 *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> > |
|
5 * |
|
6 *Constructor: |
|
7 * |
|
8 *Dijkstra(Graph G, LengthMap length) |
|
9 * |
|
10 * |
|
11 *Methods: |
|
12 * |
|
13 *void run(Node s) |
|
14 * |
|
15 *T dist(Node v) : After run(s) was run, it returns the distance from s to v. |
|
16 * Returns T() if v is not reachable from s. |
|
17 * |
|
18 *Edge pred(Node v) : After run(s) was run, it returns the last |
|
19 * edge of a shortest s-v path. It is INVALID for s and for |
|
20 * the nodes not reachable from s. |
|
21 * |
|
22 *bool reached(Node v) : After run(s) was run, it is true iff v is |
|
23 * reachable from s |
|
24 * |
|
25 */ |
|
26 |
|
27 #ifndef HUGO_DIJKSTRA_H |
|
28 #define HUGO_DIJKSTRA_H |
|
29 |
|
30 ///\file |
|
31 ///\brief Dijkstra algorithm. |
|
32 |
|
33 #include "fib_heap.h" |
|
34 #include "bin_heap.hh" |
|
35 #include "invalid.h" |
|
36 |
|
37 namespace hugo { |
|
38 |
|
39 //Alpar: Changed the order of the parameters |
|
40 |
|
41 ///%Dijkstra algorithm class. |
|
42 |
|
43 ///This class provides an efficient implementation of %Dijkstra algorithm. |
|
44 ///The edge lengths are passed to the algorithm using a |
|
45 ///\ref ReadMapSkeleton "readable map", |
|
46 ///so it is easy to change it to any kind of length. |
|
47 /// |
|
48 ///The type of the length is determined by the \c ValueType of the length map. |
|
49 /// |
|
50 ///It is also possible to change the underlying priority heap. |
|
51 /// |
|
52 ///\param Graph The graph type the algorithm runs on. |
|
53 ///\param LengthMap This read-only |
|
54 ///EdgeMap |
|
55 ///determines the |
|
56 ///lengths of the edges. It is read once for each edge, so the map |
|
57 ///may involve in relatively time consuming process to compute the edge |
|
58 ///length if it is necessary. The default map type is |
|
59 ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" |
|
60 ///\param Heap The heap type used by the %Dijkstra |
|
61 ///algorithm. The default |
|
62 ///is using \ref BinHeap "binary heap". |
|
63 |
|
64 #ifdef DOXYGEN |
|
65 template <typename Graph, |
|
66 typename LengthMap, |
|
67 typename Heap> |
|
68 #else |
|
69 template <typename Graph, |
|
70 typename LengthMap=typename Graph::EdgeMap<int>, |
|
71 template <class,class,class> class Heap = BinHeap > |
|
72 // typename Heap=BinHeap <typename Graph::Node, |
|
73 // typename LengthMap::ValueType, |
|
74 // typename Graph::NodeMap<int> > > |
|
75 #endif |
|
76 class Dijkstra{ |
|
77 public: |
|
78 typedef typename Graph::Node Node; |
|
79 typedef typename Graph::NodeIt NodeIt; |
|
80 typedef typename Graph::Edge Edge; |
|
81 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
82 |
|
83 typedef typename LengthMap::ValueType ValueType; |
|
84 typedef typename Graph::NodeMap<Edge> PredMap; |
|
85 typedef typename Graph::NodeMap<Node> PredNodeMap; |
|
86 typedef typename Graph::NodeMap<ValueType> DistMap; |
|
87 |
|
88 private: |
|
89 const Graph& G; |
|
90 const LengthMap& length; |
|
91 PredMap predecessor; |
|
92 //In place of reach: |
|
93 PredNodeMap pred_node; |
|
94 DistMap distance; |
|
95 //I don't like this: |
|
96 // //FIXME: |
|
97 // typename Graph::NodeMap<bool> reach; |
|
98 // //typename Graph::NodeMap<int> reach; |
|
99 |
|
100 public : |
|
101 |
|
102 /* |
|
103 The distance of the nodes is 0. |
|
104 */ |
|
105 Dijkstra(Graph& _G, LengthMap& _length) : |
|
106 G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } |
|
107 |
|
108 void run(Node s); |
|
109 |
|
110 ///The distance of a node from the source. |
|
111 |
|
112 ///Returns the distance of a node from the source. |
|
113 ///\pre \ref run() must be called before using this function. |
|
114 ///\warning If node \c v in unreachable from the source the return value |
|
115 ///of this funcion is undefined. |
|
116 ValueType dist(Node v) const { return distance[v]; } |
|
117 ///Returns the edges of the shortest path tree. |
|
118 |
|
119 ///For a node \c v it returns the last edge of the shortest path |
|
120 ///from the source to \c v or INVALID if \c v is unreachable |
|
121 ///from the source. |
|
122 ///\pre \ref run() must be called before using this function. |
|
123 Edge pred(Node v) const { return predecessor[v]; } |
|
124 ///Returns the nodes of the shortest paths. |
|
125 |
|
126 ///For a node \c v it returns the last but one node of the shortest path |
|
127 ///from the source to \c v or INVALID if \c v is unreachable |
|
128 ///from the source. |
|
129 ///\pre \ref run() must be called before using this function. |
|
130 Node predNode(Node v) const { return pred_node[v]; } |
|
131 |
|
132 ///Returns a reference to the NodeMap of distances. |
|
133 |
|
134 ///\pre \ref run() must be called before using this function. |
|
135 /// |
|
136 const DistMap &distMap() const { return distance;} |
|
137 ///Returns a reference to the shortest path tree map. |
|
138 |
|
139 ///Returns a reference to the NodeMap of the edges of the |
|
140 ///shortest path tree. |
|
141 ///\pre \ref run() must be called before using this function. |
|
142 const PredMap &predMap() const { return predecessor;} |
|
143 ///Returns a reference to the map of nodes of shortest paths. |
|
144 |
|
145 ///Returns a reference to the NodeMap of the last but one nodes of the |
|
146 ///shortest paths. |
|
147 ///\pre \ref run() must be called before using this function. |
|
148 const PredNodeMap &predNodeMap() const { return pred_node;} |
|
149 |
|
150 // bool reached(Node v) { return reach[v]; } |
|
151 |
|
152 ///Checks if a node is reachable from the source. |
|
153 |
|
154 ///Returns \c true if \c v is reachable from the source. |
|
155 ///\warning the source node is reported to be unreached! |
|
156 ///\todo Is this what we want? |
|
157 ///\pre \ref run() must be called before using this function. |
|
158 /// |
|
159 bool reached(Node v) { return G.valid(predecessor[v]); } |
|
160 |
|
161 }; |
|
162 |
|
163 |
|
164 // ********************************************************************** |
|
165 // IMPLEMENTATIONS |
|
166 // ********************************************************************** |
|
167 |
|
168 ///Runs %Dijkstra algorithm from node the source. |
|
169 |
|
170 ///This method runs the %Dijkstra algorithm from a source node \c s |
|
171 ///in order to |
|
172 ///compute the |
|
173 ///shortest path to each node. The algorithm computes |
|
174 ///- The shortest path tree. |
|
175 ///- The distance of each node from the source. |
|
176 template <typename Graph, typename LengthMap, |
|
177 template<class,class,class> class Heap > |
|
178 void Dijkstra<Graph,LengthMap,Heap>::run(Node s) { |
|
179 |
|
180 NodeIt u; |
|
181 for ( G.first(u) ; G.valid(u) ; G.next(u) ) { |
|
182 predecessor.set(u,INVALID); |
|
183 pred_node.set(u,INVALID); |
|
184 // If a node is unreacheable, then why should be the dist=0? |
|
185 // distance.set(u,0); |
|
186 // reach.set(u,false); |
|
187 } |
|
188 |
|
189 //We don't need it at all. |
|
190 // //FIXME: |
|
191 // typename Graph::NodeMap<bool> scanned(G,false); |
|
192 // //typename Graph::NodeMap<int> scanned(G,false); |
|
193 typename Graph::NodeMap<int> heap_map(G,-1); |
|
194 |
|
195 //Heap heap(heap_map); |
|
196 Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map); |
|
197 |
|
198 heap.push(s,0); |
|
199 // reach.set(s, true); |
|
200 |
|
201 while ( !heap.empty() ) { |
|
202 |
|
203 Node v=heap.top(); |
|
204 ValueType oldvalue=heap[v]; |
|
205 heap.pop(); |
|
206 distance.set(v, oldvalue); |
|
207 |
|
208 for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) { |
|
209 Node w=G.head(e); |
|
210 |
|
211 switch(heap.state(w)) { |
|
212 case heap.PRE_HEAP: |
|
213 // reach.set(w,true); |
|
214 heap.push(w,oldvalue+length[e]); |
|
215 predecessor.set(w,e); |
|
216 pred_node.set(w,v); |
|
217 break; |
|
218 case heap.IN_HEAP: |
|
219 if ( oldvalue+length[e] < heap[w] ) { |
|
220 heap.decrease(w, oldvalue+length[e]); |
|
221 predecessor.set(w,e); |
|
222 pred_node.set(w,v); |
|
223 } |
|
224 break; |
|
225 case heap.POST_HEAP: |
|
226 break; |
|
227 } |
|
228 } |
|
229 } |
|
230 } |
|
231 |
|
232 } //END OF NAMESPACE HUGO |
|
233 |
|
234 #endif |
|
235 |
|
236 |