|
1 /* -*- C++ -*- |
|
2 * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library |
|
3 * |
|
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
5 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
6 * |
|
7 * Permission to use, modify and distribute this software is granted |
|
8 * provided that this copyright notice appears in all copies. For |
|
9 * precise terms see the accompanying LICENSE file. |
|
10 * |
|
11 * This software is provided "AS IS" with no warranty of any kind, |
|
12 * express or implied, and with no claim as to its suitability for any |
|
13 * purpose. |
|
14 * |
|
15 */ |
|
16 |
|
17 #ifndef LEMON_BELMANN_FORD_H |
|
18 #define LEMON_BELMANN_FORD_H |
|
19 |
|
20 ///\ingroup flowalgs |
|
21 /// \file |
|
22 /// \brief BelmannFord algorithm. |
|
23 /// |
|
24 /// \todo getPath() should be implemented! (also for BFS and DFS) |
|
25 |
|
26 #include <lemon/list_graph.h> |
|
27 #include <lemon/invalid.h> |
|
28 #include <lemon/error.h> |
|
29 #include <lemon/maps.h> |
|
30 |
|
31 #include <limits> |
|
32 |
|
33 namespace lemon { |
|
34 |
|
35 /// \brief Default OperationTraits for the BelmannFord algorithm class. |
|
36 /// |
|
37 /// It defines all computational operations and constants which are |
|
38 /// used in the belmann ford algorithm. The default implementation |
|
39 /// is based on the numeric_limits class. If the numeric type does not |
|
40 /// have infinity value then the maximum value is used as extremal |
|
41 /// infinity value. |
|
42 template < |
|
43 typename Value, |
|
44 bool has_infinity = std::numeric_limits<Value>::has_infinity> |
|
45 struct BelmannFordDefaultOperationTraits { |
|
46 /// \brief Gives back the zero value of the type. |
|
47 static Value zero() { |
|
48 return static_cast<Value>(0); |
|
49 } |
|
50 /// \brief Gives back the positive infinity value of the type. |
|
51 static Value infinity() { |
|
52 return std::numeric_limits<Value>::infinity(); |
|
53 } |
|
54 /// \brief Gives back the sum of the given two elements. |
|
55 static Value plus(const Value& left, const Value& right) { |
|
56 return left + right; |
|
57 } |
|
58 /// \brief Gives back true only if the first value less than the second. |
|
59 static bool less(const Value& left, const Value& right) { |
|
60 return left < right; |
|
61 } |
|
62 }; |
|
63 |
|
64 template <typename Value> |
|
65 struct BelmannFordDefaultOperationTraits<Value, false> { |
|
66 static Value zero() { |
|
67 return static_cast<Value>(0); |
|
68 } |
|
69 static Value infinity() { |
|
70 return std::numeric_limits<Value>::max(); |
|
71 } |
|
72 static Value plus(const Value& left, const Value& right) { |
|
73 if (left == infinity() || right == infinity()) return infinity(); |
|
74 return left + right; |
|
75 } |
|
76 static bool less(const Value& left, const Value& right) { |
|
77 return left < right; |
|
78 } |
|
79 }; |
|
80 |
|
81 /// \brief Default traits class of BelmannFord class. |
|
82 /// |
|
83 /// Default traits class of BelmannFord class. |
|
84 /// \param _Graph Graph type. |
|
85 /// \param _LegthMap Type of length map. |
|
86 template<class _Graph, class _LengthMap> |
|
87 struct BelmannFordDefaultTraits { |
|
88 /// The graph type the algorithm runs on. |
|
89 typedef _Graph Graph; |
|
90 |
|
91 /// \brief The type of the map that stores the edge lengths. |
|
92 /// |
|
93 /// The type of the map that stores the edge lengths. |
|
94 /// It must meet the \ref concept::ReadMap "ReadMap" concept. |
|
95 typedef _LengthMap LengthMap; |
|
96 |
|
97 // The type of the length of the edges. |
|
98 typedef typename _LengthMap::Value Value; |
|
99 |
|
100 /// \brief Operation traits for belmann-ford algorithm. |
|
101 /// |
|
102 /// It defines the infinity type on the given Value type |
|
103 /// and the used operation. |
|
104 /// \see BelmannFordDefaultOperationTraits |
|
105 typedef BelmannFordDefaultOperationTraits<Value> OperationTraits; |
|
106 |
|
107 /// \brief The type of the map that stores the last edges of the |
|
108 /// shortest paths. |
|
109 /// |
|
110 /// The type of the map that stores the last |
|
111 /// edges of the shortest paths. |
|
112 /// It must meet the \ref concept::WriteMap "WriteMap" concept. |
|
113 /// |
|
114 typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap; |
|
115 |
|
116 /// \brief Instantiates a PredMap. |
|
117 /// |
|
118 /// This function instantiates a \ref PredMap. |
|
119 /// \param G is the graph, to which we would like to define the PredMap. |
|
120 /// \todo The graph alone may be insufficient for the initialization |
|
121 static PredMap *createPredMap(const _Graph& graph) { |
|
122 return new PredMap(graph); |
|
123 } |
|
124 |
|
125 /// \brief The type of the map that stores the dists of the nodes. |
|
126 /// |
|
127 /// The type of the map that stores the dists of the nodes. |
|
128 /// It must meet the \ref concept::WriteMap "WriteMap" concept. |
|
129 /// |
|
130 typedef typename Graph::template NodeMap<typename _LengthMap::Value> |
|
131 DistMap; |
|
132 |
|
133 /// \brief Instantiates a DistMap. |
|
134 /// |
|
135 /// This function instantiates a \ref DistMap. |
|
136 /// \param G is the graph, to which we would like to define the |
|
137 /// \ref DistMap |
|
138 static DistMap *createDistMap(const _Graph& graph) { |
|
139 return new DistMap(graph); |
|
140 } |
|
141 |
|
142 }; |
|
143 |
|
144 /// \brief BelmannFord algorithm class. |
|
145 /// |
|
146 /// \ingroup flowalgs |
|
147 /// This class provides an efficient implementation of \c BelmannFord |
|
148 /// algorithm. The edge lengths are passed to the algorithm using a |
|
149 /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any |
|
150 /// kind of length. |
|
151 /// |
|
152 /// The type of the length is determined by the |
|
153 /// \ref concept::ReadMap::Value "Value" of the length map. |
|
154 /// |
|
155 /// \param _Graph The graph type the algorithm runs on. The default value |
|
156 /// is \ref ListGraph. The value of _Graph is not used directly by |
|
157 /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits. |
|
158 /// \param _LengthMap This read-only EdgeMap determines the lengths of the |
|
159 /// edges. The default map type is \ref concept::StaticGraph::EdgeMap |
|
160 /// "Graph::EdgeMap<int>". The value of _LengthMap is not used directly |
|
161 /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits. |
|
162 /// \param _Traits Traits class to set various data types used by the |
|
163 /// algorithm. The default traits class is \ref BelmannFordDefaultTraits |
|
164 /// "BelmannFordDefaultTraits<_Graph,_LengthMap>". See \ref |
|
165 /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits |
|
166 /// class. |
|
167 /// |
|
168 /// \author Balazs Dezso |
|
169 |
|
170 template <typename _Graph=ListGraph, |
|
171 typename _LengthMap=typename _Graph::template EdgeMap<int>, |
|
172 typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> > |
|
173 class BelmannFord { |
|
174 public: |
|
175 |
|
176 /// \brief \ref Exception for uninitialized parameters. |
|
177 /// |
|
178 /// This error represents problems in the initialization |
|
179 /// of the parameters of the algorithms. |
|
180 |
|
181 class UninitializedParameter : public lemon::UninitializedParameter { |
|
182 public: |
|
183 virtual const char* exceptionName() const { |
|
184 return "lemon::BelmannFord::UninitializedParameter"; |
|
185 } |
|
186 }; |
|
187 |
|
188 typedef _Traits Traits; |
|
189 ///The type of the underlying graph. |
|
190 typedef typename _Traits::Graph Graph; |
|
191 |
|
192 typedef typename Graph::Node Node; |
|
193 typedef typename Graph::NodeIt NodeIt; |
|
194 typedef typename Graph::Edge Edge; |
|
195 typedef typename Graph::EdgeIt EdgeIt; |
|
196 |
|
197 /// \brief The type of the length of the edges. |
|
198 typedef typename _Traits::LengthMap::Value Value; |
|
199 /// \brief The type of the map that stores the edge lengths. |
|
200 typedef typename _Traits::LengthMap LengthMap; |
|
201 /// \brief The type of the map that stores the last |
|
202 /// edges of the shortest paths. |
|
203 typedef typename _Traits::PredMap PredMap; |
|
204 /// \brief The type of the map that stores the dists of the nodes. |
|
205 typedef typename _Traits::DistMap DistMap; |
|
206 /// \brief The operation traits. |
|
207 typedef typename _Traits::OperationTraits OperationTraits; |
|
208 private: |
|
209 /// Pointer to the underlying graph. |
|
210 const Graph *graph; |
|
211 /// Pointer to the length map |
|
212 const LengthMap *length; |
|
213 ///Pointer to the map of predecessors edges. |
|
214 PredMap *_pred; |
|
215 ///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
216 bool local_pred; |
|
217 ///Pointer to the map of distances. |
|
218 DistMap *_dist; |
|
219 ///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
220 bool local_dist; |
|
221 |
|
222 /// Creates the maps if necessary. |
|
223 void create_maps() { |
|
224 if(!_pred) { |
|
225 local_pred = true; |
|
226 _pred = Traits::createPredMap(*graph); |
|
227 } |
|
228 if(!_dist) { |
|
229 local_dist = true; |
|
230 _dist = Traits::createDistMap(*graph); |
|
231 } |
|
232 } |
|
233 |
|
234 public : |
|
235 |
|
236 /// \name Named template parameters |
|
237 |
|
238 ///@{ |
|
239 |
|
240 template <class T> |
|
241 struct DefPredMapTraits : public Traits { |
|
242 typedef T PredMap; |
|
243 static PredMap *createPredMap(const Graph& graph) { |
|
244 throw UninitializedParameter(); |
|
245 } |
|
246 }; |
|
247 |
|
248 /// \brief \ref named-templ-param "Named parameter" for setting PredMap |
|
249 /// type |
|
250 /// \ref named-templ-param "Named parameter" for setting PredMap type |
|
251 /// |
|
252 template <class T> |
|
253 class DefPredMap |
|
254 : public BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > {}; |
|
255 |
|
256 template <class T> |
|
257 struct DefDistMapTraits : public Traits { |
|
258 typedef T DistMap; |
|
259 static DistMap *createDistMap(const Graph& graph) { |
|
260 throw UninitializedParameter(); |
|
261 } |
|
262 }; |
|
263 |
|
264 /// \brief \ref named-templ-param "Named parameter" for setting DistMap |
|
265 /// type |
|
266 /// |
|
267 /// \ref named-templ-param "Named parameter" for setting DistMap type |
|
268 /// |
|
269 template <class T> |
|
270 class DefDistMap |
|
271 : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {}; |
|
272 |
|
273 template <class T> |
|
274 struct DefOperationTraitsTraits : public Traits { |
|
275 typedef T OperationTraits; |
|
276 }; |
|
277 |
|
278 /// \brief \ref named-templ-param "Named parameter" for setting |
|
279 /// OperationTraits type |
|
280 /// |
|
281 /// \ref named-templ-param "Named parameter" for setting PredMap type |
|
282 template <class T> |
|
283 class DefOperationTraits |
|
284 : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > { |
|
285 public: |
|
286 typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > |
|
287 BelmannFord; |
|
288 }; |
|
289 |
|
290 ///@} |
|
291 |
|
292 public: |
|
293 |
|
294 /// \brief Constructor. |
|
295 /// |
|
296 /// \param _graph the graph the algorithm will run on. |
|
297 /// \param _length the length map used by the algorithm. |
|
298 BelmannFord(const Graph& _graph, const LengthMap& _length) : |
|
299 graph(&_graph), length(&_length), |
|
300 _pred(0), local_pred(false), |
|
301 _dist(0), local_dist(false) {} |
|
302 |
|
303 ///Destructor. |
|
304 ~BelmannFord() { |
|
305 if(local_pred) delete _pred; |
|
306 if(local_dist) delete _dist; |
|
307 } |
|
308 |
|
309 /// \brief Sets the length map. |
|
310 /// |
|
311 /// Sets the length map. |
|
312 /// \return \c (*this) |
|
313 BelmannFord &lengthMap(const LengthMap &m) { |
|
314 length = &m; |
|
315 return *this; |
|
316 } |
|
317 |
|
318 /// \brief Sets the map storing the predecessor edges. |
|
319 /// |
|
320 /// Sets the map storing the predecessor edges. |
|
321 /// If you don't use this function before calling \ref run(), |
|
322 /// it will allocate one. The destuctor deallocates this |
|
323 /// automatically allocated map, of course. |
|
324 /// \return \c (*this) |
|
325 BelmannFord &predMap(PredMap &m) { |
|
326 if(local_pred) { |
|
327 delete _pred; |
|
328 local_pred=false; |
|
329 } |
|
330 _pred = &m; |
|
331 return *this; |
|
332 } |
|
333 |
|
334 /// \brief Sets the map storing the distances calculated by the algorithm. |
|
335 /// |
|
336 /// Sets the map storing the distances calculated by the algorithm. |
|
337 /// If you don't use this function before calling \ref run(), |
|
338 /// it will allocate one. The destuctor deallocates this |
|
339 /// automatically allocated map, of course. |
|
340 /// \return \c (*this) |
|
341 BelmannFord &distMap(DistMap &m) { |
|
342 if(local_dist) { |
|
343 delete _dist; |
|
344 local_dist=false; |
|
345 } |
|
346 _dist = &m; |
|
347 return *this; |
|
348 } |
|
349 |
|
350 /// \name Execution control |
|
351 /// The simplest way to execute the algorithm is to use |
|
352 /// one of the member functions called \c run(...). |
|
353 /// \n |
|
354 /// If you need more control on the execution, |
|
355 /// first you must call \ref init(), then you can add several source nodes |
|
356 /// with \ref addSource(). |
|
357 /// Finally \ref start() will perform the actual path |
|
358 /// computation. |
|
359 |
|
360 ///@{ |
|
361 |
|
362 /// \brief Initializes the internal data structures. |
|
363 /// |
|
364 /// Initializes the internal data structures. |
|
365 void init() { |
|
366 create_maps(); |
|
367 for (NodeIt it(*graph); it != INVALID; ++it) { |
|
368 _pred->set(it, INVALID); |
|
369 _dist->set(it, OperationTraits::infinity()); |
|
370 } |
|
371 } |
|
372 |
|
373 /// \brief Adds a new source node. |
|
374 /// |
|
375 /// The optional second parameter is the initial distance of the node. |
|
376 /// It just sets the distance of the node to the given value. |
|
377 void addSource(Node source, Value dst = OperationTraits::zero()) { |
|
378 _dist->set(source, dst); |
|
379 } |
|
380 |
|
381 /// \brief Executes the algorithm. |
|
382 /// |
|
383 /// \pre init() must be called and at least one node should be added |
|
384 /// with addSource() before using this function. |
|
385 /// |
|
386 /// This method runs the %BelmannFord algorithm from the root node(s) |
|
387 /// in order to compute the shortest path to each node. The algorithm |
|
388 /// computes |
|
389 /// - The shortest path tree. |
|
390 /// - The distance of each node from the root(s). |
|
391 void start() { |
|
392 bool ready = false; |
|
393 while (!ready) { |
|
394 ready = true; |
|
395 for (EdgeIt it(*graph); it != INVALID; ++it) { |
|
396 Node source = graph->source(it); |
|
397 Node target = graph->target(it); |
|
398 Value relaxed = |
|
399 OperationTraits::plus((*_dist)[source], (*length)[it]); |
|
400 if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
401 _pred->set(target, it); |
|
402 _dist->set(target, relaxed); |
|
403 ready = false; |
|
404 } |
|
405 } |
|
406 } |
|
407 } |
|
408 |
|
409 /// \brief Runs %BelmannFord algorithm from node \c s. |
|
410 /// |
|
411 /// This method runs the %BelmannFord algorithm from a root node \c s |
|
412 /// in order to compute the shortest path to each node. The algorithm |
|
413 /// computes |
|
414 /// - The shortest path tree. |
|
415 /// - The distance of each node from the root. |
|
416 /// |
|
417 /// \note d.run(s) is just a shortcut of the following code. |
|
418 /// \code |
|
419 /// d.init(); |
|
420 /// d.addSource(s); |
|
421 /// d.start(); |
|
422 /// \endcode |
|
423 void run(Node s) { |
|
424 init(); |
|
425 addSource(s); |
|
426 start(); |
|
427 } |
|
428 |
|
429 ///@} |
|
430 |
|
431 /// \name Query Functions |
|
432 /// The result of the %BelmannFord algorithm can be obtained using these |
|
433 /// functions.\n |
|
434 /// Before the use of these functions, |
|
435 /// either run() or start() must be called. |
|
436 |
|
437 ///@{ |
|
438 |
|
439 /// \brief Copies the shortest path to \c t into \c p |
|
440 /// |
|
441 /// This function copies the shortest path to \c t into \c p. |
|
442 /// If it \c t is a source itself or unreachable, then it does not |
|
443 /// alter \c p. |
|
444 /// \todo Is it the right way to handle unreachable nodes? |
|
445 /// \return Returns \c true if a path to \c t was actually copied to \c p, |
|
446 /// \c false otherwise. |
|
447 /// \sa DirPath |
|
448 template <typename Path> |
|
449 bool getPath(Path &p, Node t) { |
|
450 if(reached(t)) { |
|
451 p.clear(); |
|
452 typename Path::Builder b(p); |
|
453 for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t)) |
|
454 b.pushFront(pred(t)); |
|
455 b.commit(); |
|
456 return true; |
|
457 } |
|
458 return false; |
|
459 } |
|
460 |
|
461 /// \brief The distance of a node from the root. |
|
462 /// |
|
463 /// Returns the distance of a node from the root. |
|
464 /// \pre \ref run() must be called before using this function. |
|
465 /// \warning If node \c v in unreachable from the root the return value |
|
466 /// of this funcion is undefined. |
|
467 Value dist(Node v) const { return (*_dist)[v]; } |
|
468 |
|
469 /// \brief Returns the 'previous edge' of the shortest path tree. |
|
470 /// |
|
471 /// For a node \c v it returns the 'previous edge' of the shortest path |
|
472 /// tree, i.e. it returns the last edge of a shortest path from the root |
|
473 /// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
|
474 /// if \c v=s. The shortest path tree used here is equal to the shortest |
|
475 /// path tree used in \ref predNode(). |
|
476 /// \pre \ref run() must be called before using |
|
477 /// this function. |
|
478 /// \todo predEdge could be a better name. |
|
479 Edge pred(Node v) const { return (*_pred)[v]; } |
|
480 |
|
481 /// \brief Returns the 'previous node' of the shortest path tree. |
|
482 /// |
|
483 /// For a node \c v it returns the 'previous node' of the shortest path |
|
484 /// tree, i.e. it returns the last but one node from a shortest path from |
|
485 /// the root to \c /v. It is INVALID if \c v is unreachable from the root |
|
486 /// or if \c v=s. The shortest path tree used here is equal to the |
|
487 /// shortest path tree used in \ref pred(). \pre \ref run() must be |
|
488 /// called before using this function. |
|
489 Node predNode(Node v) const { |
|
490 return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]); |
|
491 } |
|
492 |
|
493 /// \brief Returns a reference to the NodeMap of distances. |
|
494 /// |
|
495 /// Returns a reference to the NodeMap of distances. \pre \ref run() must |
|
496 /// be called before using this function. |
|
497 const DistMap &distMap() const { return *_dist;} |
|
498 |
|
499 /// \brief Returns a reference to the shortest path tree map. |
|
500 /// |
|
501 /// Returns a reference to the NodeMap of the edges of the |
|
502 /// shortest path tree. |
|
503 /// \pre \ref run() must be called before using this function. |
|
504 const PredMap &predMap() const { return *_pred; } |
|
505 |
|
506 /// \brief Checks if a node is reachable from the root. |
|
507 /// |
|
508 /// Returns \c true if \c v is reachable from the root. |
|
509 /// \pre \ref run() must be called before using this function. |
|
510 /// |
|
511 bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); } |
|
512 |
|
513 ///@} |
|
514 }; |
|
515 |
|
516 /// \brief Default traits class of BelmannFord function. |
|
517 /// |
|
518 /// Default traits class of BelmannFord function. |
|
519 /// \param _Graph Graph type. |
|
520 /// \param _LengthMap Type of length map. |
|
521 template <typename _Graph, typename _LengthMap> |
|
522 struct BelmannFordWizardDefaultTraits { |
|
523 /// \brief The graph type the algorithm runs on. |
|
524 typedef _Graph Graph; |
|
525 |
|
526 /// \brief The type of the map that stores the edge lengths. |
|
527 /// |
|
528 /// The type of the map that stores the edge lengths. |
|
529 /// It must meet the \ref concept::ReadMap "ReadMap" concept. |
|
530 typedef _LengthMap LengthMap; |
|
531 |
|
532 /// \brief The value type of the length map. |
|
533 typedef typename _LengthMap::Value Value; |
|
534 |
|
535 /// \brief Operation traits for belmann-ford algorithm. |
|
536 /// |
|
537 /// It defines the infinity type on the given Value type |
|
538 /// and the used operation. |
|
539 /// \see BelmannFordDefaultOperationTraits |
|
540 typedef BelmannFordDefaultOperationTraits<Value> OperationTraits; |
|
541 |
|
542 /// \brief The type of the map that stores the last |
|
543 /// edges of the shortest paths. |
|
544 /// |
|
545 /// The type of the map that stores the last |
|
546 /// edges of the shortest paths. |
|
547 /// It must meet the \ref concept::WriteMap "WriteMap" concept. |
|
548 typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap; |
|
549 |
|
550 /// \brief Instantiates a PredMap. |
|
551 /// |
|
552 /// This function instantiates a \ref PredMap. |
|
553 static PredMap *createPredMap(const _Graph &) { |
|
554 return new PredMap(); |
|
555 } |
|
556 /// \brief The type of the map that stores the dists of the nodes. |
|
557 /// |
|
558 /// The type of the map that stores the dists of the nodes. |
|
559 /// It must meet the \ref concept::WriteMap "WriteMap" concept. |
|
560 typedef NullMap<typename Graph::Node, Value> DistMap; |
|
561 /// \brief Instantiates a DistMap. |
|
562 /// |
|
563 /// This function instantiates a \ref DistMap. |
|
564 static DistMap *createDistMap(const _Graph &) { |
|
565 return new DistMap(); |
|
566 } |
|
567 }; |
|
568 |
|
569 /// \brief Default traits used by \ref BelmannFordWizard |
|
570 /// |
|
571 /// To make it easier to use BelmannFord algorithm |
|
572 /// we have created a wizard class. |
|
573 /// This \ref BelmannFordWizard class needs default traits, |
|
574 /// as well as the \ref BelmannFord class. |
|
575 /// The \ref BelmannFordWizardBase is a class to be the default traits of the |
|
576 /// \ref BelmannFordWizard class. |
|
577 /// \todo More named parameters are required... |
|
578 template<class _Graph,class _LengthMap> |
|
579 class BelmannFordWizardBase |
|
580 : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> { |
|
581 |
|
582 typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base; |
|
583 protected: |
|
584 /// Type of the nodes in the graph. |
|
585 typedef typename Base::Graph::Node Node; |
|
586 |
|
587 /// Pointer to the underlying graph. |
|
588 void *_graph; |
|
589 /// Pointer to the length map |
|
590 void *_length; |
|
591 ///Pointer to the map of predecessors edges. |
|
592 void *_pred; |
|
593 ///Pointer to the map of distances. |
|
594 void *_dist; |
|
595 ///Pointer to the source node. |
|
596 Node _source; |
|
597 |
|
598 public: |
|
599 /// Constructor. |
|
600 |
|
601 /// This constructor does not require parameters, therefore it initiates |
|
602 /// all of the attributes to default values (0, INVALID). |
|
603 BelmannFordWizardBase() : _graph(0), _length(0), _pred(0), |
|
604 _dist(0), _source(INVALID) {} |
|
605 |
|
606 /// Constructor. |
|
607 |
|
608 /// This constructor requires some parameters, |
|
609 /// listed in the parameters list. |
|
610 /// Others are initiated to 0. |
|
611 /// \param graph is the initial value of \ref _graph |
|
612 /// \param length is the initial value of \ref _length |
|
613 /// \param source is the initial value of \ref _source |
|
614 BelmannFordWizardBase(const _Graph& graph, |
|
615 const _LengthMap& length, |
|
616 Node source = INVALID) : |
|
617 _graph((void *)&graph), _length((void *)&length), _pred(0), |
|
618 _dist(0), _source(source) {} |
|
619 |
|
620 }; |
|
621 |
|
622 /// A class to make the usage of BelmannFord algorithm easier |
|
623 |
|
624 /// This class is created to make it easier to use BelmannFord algorithm. |
|
625 /// It uses the functions and features of the plain \ref BelmannFord, |
|
626 /// but it is much simpler to use it. |
|
627 /// |
|
628 /// Simplicity means that the way to change the types defined |
|
629 /// in the traits class is based on functions that returns the new class |
|
630 /// and not on templatable built-in classes. |
|
631 /// When using the plain \ref BelmannFord |
|
632 /// the new class with the modified type comes from |
|
633 /// the original class by using the :: |
|
634 /// operator. In the case of \ref BelmannFordWizard only |
|
635 /// a function have to be called and it will |
|
636 /// return the needed class. |
|
637 /// |
|
638 /// It does not have own \ref run method. When its \ref run method is called |
|
639 /// it initiates a plain \ref BelmannFord class, and calls the \ref |
|
640 /// BelmannFord::run method of it. |
|
641 template<class _Traits> |
|
642 class BelmannFordWizard : public _Traits { |
|
643 typedef _Traits Base; |
|
644 |
|
645 ///The type of the underlying graph. |
|
646 typedef typename _Traits::Graph Graph; |
|
647 |
|
648 typedef typename Graph::Node Node; |
|
649 typedef typename Graph::NodeIt NodeIt; |
|
650 typedef typename Graph::Edge Edge; |
|
651 typedef typename Graph::OutEdgeIt EdgeIt; |
|
652 |
|
653 ///The type of the map that stores the edge lengths. |
|
654 typedef typename _Traits::LengthMap LengthMap; |
|
655 |
|
656 ///The type of the length of the edges. |
|
657 typedef typename LengthMap::Value Value; |
|
658 |
|
659 ///\brief The type of the map that stores the last |
|
660 ///edges of the shortest paths. |
|
661 typedef typename _Traits::PredMap PredMap; |
|
662 |
|
663 ///The type of the map that stores the dists of the nodes. |
|
664 typedef typename _Traits::DistMap DistMap; |
|
665 |
|
666 public: |
|
667 /// Constructor. |
|
668 BelmannFordWizard() : _Traits() {} |
|
669 |
|
670 /// \brief Constructor that requires parameters. |
|
671 /// |
|
672 /// Constructor that requires parameters. |
|
673 /// These parameters will be the default values for the traits class. |
|
674 BelmannFordWizard(const Graph& graph, const LengthMap& length, |
|
675 Node source = INVALID) |
|
676 : _Traits(graph, length, source) {} |
|
677 |
|
678 /// \brief Copy constructor |
|
679 BelmannFordWizard(const _Traits &b) : _Traits(b) {} |
|
680 |
|
681 ~BelmannFordWizard() {} |
|
682 |
|
683 /// \brief Runs BelmannFord algorithm from a given node. |
|
684 /// |
|
685 /// Runs BelmannFord algorithm from a given node. |
|
686 /// The node can be given by the \ref source function. |
|
687 void run() { |
|
688 if(Base::_source == INVALID) throw UninitializedParameter(); |
|
689 BelmannFord<Graph,LengthMap,_Traits> |
|
690 bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length); |
|
691 if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred); |
|
692 if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist); |
|
693 bf.run(Base::_source); |
|
694 } |
|
695 |
|
696 /// \brief Runs BelmannFord algorithm from the given node. |
|
697 /// |
|
698 /// Runs BelmannFord algorithm from the given node. |
|
699 /// \param s is the given source. |
|
700 void run(Node source) { |
|
701 Base::_source = source; |
|
702 run(); |
|
703 } |
|
704 |
|
705 template<class T> |
|
706 struct DefPredMapBase : public Base { |
|
707 typedef T PredMap; |
|
708 static PredMap *createPredMap(const Graph &) { return 0; }; |
|
709 DefPredMapBase(const _Traits &b) : _Traits(b) {} |
|
710 }; |
|
711 |
|
712 ///\brief \ref named-templ-param "Named parameter" |
|
713 ///function for setting PredMap type |
|
714 /// |
|
715 /// \ref named-templ-param "Named parameter" |
|
716 ///function for setting PredMap type |
|
717 /// |
|
718 template<class T> |
|
719 BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t) |
|
720 { |
|
721 Base::_pred=(void *)&t; |
|
722 return BelmannFordWizard<DefPredMapBase<T> >(*this); |
|
723 } |
|
724 |
|
725 template<class T> |
|
726 struct DefDistMapBase : public Base { |
|
727 typedef T DistMap; |
|
728 static DistMap *createDistMap(const Graph &) { return 0; }; |
|
729 DefDistMapBase(const _Traits &b) : _Traits(b) {} |
|
730 }; |
|
731 |
|
732 ///\brief \ref named-templ-param "Named parameter" |
|
733 ///function for setting DistMap type |
|
734 /// |
|
735 /// \ref named-templ-param "Named parameter" |
|
736 ///function for setting DistMap type |
|
737 /// |
|
738 template<class T> |
|
739 BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) { |
|
740 Base::_dist=(void *)&t; |
|
741 return BelmannFordWizard<DefDistMapBase<T> >(*this); |
|
742 } |
|
743 |
|
744 /// \brief Sets the source node, from which the BelmannFord algorithm runs. |
|
745 /// |
|
746 /// Sets the source node, from which the BelmannFord algorithm runs. |
|
747 /// \param s is the source node. |
|
748 BelmannFordWizard<_Traits>& source(Node source) { |
|
749 Base::_source = source; |
|
750 return *this; |
|
751 } |
|
752 |
|
753 }; |
|
754 |
|
755 /// \brief Function type interface for BelmannFord algorithm. |
|
756 /// |
|
757 /// \ingroup flowalgs |
|
758 /// Function type interface for BelmannFord algorithm. |
|
759 /// |
|
760 /// This function also has several \ref named-templ-func-param |
|
761 /// "named parameters", they are declared as the members of class |
|
762 /// \ref BelmannFordWizard. |
|
763 /// The following |
|
764 /// example shows how to use these parameters. |
|
765 /// \code |
|
766 /// belmannford(g,length,source).predMap(preds).run(); |
|
767 /// \endcode |
|
768 /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()" |
|
769 /// to the end of the parameter list. |
|
770 /// \sa BelmannFordWizard |
|
771 /// \sa BelmannFord |
|
772 template<class _Graph, class _LengthMap> |
|
773 BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> > |
|
774 belmannFord(const _Graph& graph, |
|
775 const _LengthMap& length, |
|
776 typename _Graph::Node source = INVALID) { |
|
777 return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> > |
|
778 (graph, length, source); |
|
779 } |
|
780 |
|
781 } //END OF NAMESPACE LEMON |
|
782 |
|
783 #endif |
|
784 |