lemon/belmann_ford.h
changeset 1740 4cade8579363
parent 1710 f531c16dd923
child 1741 7a98fe2ed989
equal deleted inserted replaced
1:fcf0f9a68a57 2:d856d3b462f7
   142   };
   142   };
   143   
   143   
   144   /// \brief BelmannFord algorithm class.
   144   /// \brief BelmannFord algorithm class.
   145   ///
   145   ///
   146   /// \ingroup flowalgs
   146   /// \ingroup flowalgs
   147   /// This class provides an efficient implementation of \c BelmannFord 
   147   /// This class provides an efficient implementation of \c Belmann-Ford 
   148   /// algorithm. The edge lengths are passed to the algorithm using a
   148   /// algorithm. The edge lengths are passed to the algorithm using a
   149   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   149   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   150   /// kind of length.
   150   /// kind of length.
       
   151   ///
       
   152   /// The Belmann-Ford algorithm solves the shortest path from one node
       
   153   /// problem when the edges can have negative length but the graph should
       
   154   /// not contain circle with negative sum of length. If we can assume
       
   155   /// that all edge is non-negative in the graph then the dijkstra algorithm
       
   156   /// should be used rather.
       
   157   ///
       
   158   /// The complexity of the algorithm is O(n * e).
   151   ///
   159   ///
   152   /// The type of the length is determined by the
   160   /// The type of the length is determined by the
   153   /// \ref concept::ReadMap::Value "Value" of the length map.
   161   /// \ref concept::ReadMap::Value "Value" of the length map.
   154   ///
   162   ///
   155   /// \param _Graph The graph type the algorithm runs on. The default value
   163   /// \param _Graph The graph type the algorithm runs on. The default value
   400     /// in order to compute the shortest path to each node. The algorithm 
   408     /// in order to compute the shortest path to each node. The algorithm 
   401     /// computes 
   409     /// computes 
   402     /// - The shortest path tree.
   410     /// - The shortest path tree.
   403     /// - The distance of each node from the root(s).
   411     /// - The distance of each node from the root(s).
   404     void start() {
   412     void start() {
   405       bool ready = false;
   413       int num = countNodes(*graph) - 1;
   406       while (!ready) {
   414       for (int i = 0; i < num; ++i) {
   407 	ready = true;
   415 	bool ready = true;
   408 	for (EdgeIt it(*graph); it != INVALID; ++it) {
   416 	for (EdgeIt it(*graph); it != INVALID; ++it) {
   409 	  Node source = graph->source(it);
   417 	  Node source = graph->source(it);
   410 	  Node target = graph->target(it);
   418 	  Node target = graph->target(it);
   411 	  Value relaxed = 
   419 	  Value relaxed = 
   412 	    OperationTraits::plus((*_dist)[source], (*length)[it]);
   420 	    OperationTraits::plus((*_dist)[source], (*length)[it]);
   414 	    _pred->set(target, it);
   422 	    _pred->set(target, it);
   415 	    _dist->set(target, relaxed);
   423 	    _dist->set(target, relaxed);
   416 	    ready = false; 
   424 	    ready = false; 
   417 	  }
   425 	  }
   418 	}
   426 	}
   419       }
   427 	if (ready) return;
       
   428       }
       
   429     }
       
   430 
       
   431     /// \brief Executes the algorithm and check the negative circles.
       
   432     ///
       
   433     /// \pre init() must be called and at least one node should be added
       
   434     /// with addSource() before using this function. If there is
       
   435     /// a negative circle in the graph it gives back false.
       
   436     ///
       
   437     /// This method runs the %BelmannFord algorithm from the root node(s)
       
   438     /// in order to compute the shortest path to each node. The algorithm 
       
   439     /// computes 
       
   440     /// - The shortest path tree.
       
   441     /// - The distance of each node from the root(s).
       
   442     bool checkedStart() {
       
   443       int num = countNodes(*graph);
       
   444       for (int i = 0; i < num; ++i) {
       
   445 	bool ready = true;
       
   446 	for (EdgeIt it(*graph); it != INVALID; ++it) {
       
   447 	  Node source = graph->source(it);
       
   448 	  Node target = graph->target(it);
       
   449 	  Value relaxed = 
       
   450 	    OperationTraits::plus((*_dist)[source], (*length)[it]);
       
   451 	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
       
   452 	    _pred->set(target, it);
       
   453 	    _dist->set(target, relaxed);
       
   454 	    ready = false; 
       
   455 	  }
       
   456 	}
       
   457 	if (ready) return true;
       
   458       }
       
   459       return false;
   420     }
   460     }
   421     
   461     
   422     /// \brief Runs %BelmannFord algorithm from node \c s.
   462     /// \brief Runs %BelmannFord algorithm from node \c s.
   423     ///    
   463     ///    
   424     /// This method runs the %BelmannFord algorithm from a root node \c s
   464     /// This method runs the %BelmannFord algorithm from a root node \c s