src/work/klao/minlengthpaths.h
changeset 309 50f1d2077d50
child 310 76c005b15354
equal deleted inserted replaced
-1:000000000000 0:c6ccd2971f84
       
     1 // -*- c++ -*-
       
     2 #ifndef HUGO_MINLENGTHPATHS_H
       
     3 #define HUGO_MINLENGTHPATHS_H
       
     4 
       
     5 ///\file
       
     6 ///\brief An algorithm for finding k paths of minimal total length.
       
     7 
       
     8 #include <iostream>
       
     9 #include <dijkstra.h>
       
    10 #include <graph_wrapper.h>
       
    11 #include <maps.h>
       
    12 
       
    13 namespace hugo {
       
    14 
       
    15 
       
    16 ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
       
    17   /// of minimal total length 
       
    18 ///
       
    19 /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
       
    20 /// an algorithm which finds k edge-disjoint paths
       
    21 /// from a given source node to a given target node in an
       
    22 /// edge-weighted directed graph having minimal total weigth (length).
       
    23 /// 
       
    24 /// 
       
    25 
       
    26   template <typename Graph, typename T, 
       
    27     typename LengthMap=typename Graph::EdgeMap<T> >
       
    28   class MinLengthPaths {
       
    29 
       
    30 
       
    31 //      class ConstMap {
       
    32 //      public :
       
    33 //        typedef int ValueType;
       
    34 //        typedef typename Graph::Edge KeyType;
       
    35 
       
    36 //        int operator[](typename Graph::Edge e) const { 
       
    37 //  	return 1;
       
    38 //        } 
       
    39 //      };
       
    40 
       
    41 
       
    42     typedef typename Graph::Node Node;
       
    43     typedef typename Graph::NodeIt NodeIt;
       
    44     typedef typename Graph::Edge Edge;
       
    45     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    46     typedef typename Graph::EdgeMap<int> EdgeIntMap;
       
    47 
       
    48     typedef ConstMap<Edge,int> ConstMap;
       
    49 
       
    50     typedef TrivGraphWrapper<const Graph> TrivGraphType;
       
    51     typedef ResGraphWrapper<TrivGraphType,int,EdgeIntMap,
       
    52       ConstMap> ResGraphType;
       
    53 
       
    54 
       
    55     //template <typename Graph, typename T>
       
    56     class ModLengthMap {   
       
    57       typedef typename ResGraphType::NodeMap<T> NodeMap;
       
    58       const ResGraphType& G;
       
    59       const EdgeIntMap& rev; 
       
    60       const LengthMap &ol;   
       
    61       const NodeMap &pot;     
       
    62     public :
       
    63       typedef typename LengthMap::KeyType KeyType;
       
    64       typedef typename LengthMap::ValueType ValueType;
       
    65 
       
    66       ValueType operator[](typename ResGraphType::Edge e) const {     
       
    67 	if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
       
    68 	  ///\TODO This has to be removed
       
    69 	  std::cout<<"Negative length!!"<<std::endl;
       
    70 	}
       
    71 	return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
       
    72       }     
       
    73 
       
    74       ModLengthMap(  const ResGraphType& _G, const EdgeIntMap& _rev, 
       
    75 		     const LengthMap &o,  const NodeMap &p) : 
       
    76 	G(_G), rev(_rev), ol(o), pot(p){}; 
       
    77     };
       
    78     
       
    79 
       
    80     const Graph& G;
       
    81     const LengthMap& length;
       
    82 
       
    83     //auxiliary variable
       
    84     //The value is 1 iff the edge is reversed
       
    85     EdgeIntMap reversed; 
       
    86 
       
    87     
       
    88   public :
       
    89     
       
    90 
       
    91     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), 
       
    92       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
       
    93 
       
    94     ///Runs the algorithm
       
    95     
       
    96     ///Runs the algorithm
       
    97     ///Returns k if there are at least k edge-disjoint paths from s to t.
       
    98     ///Otherwise it returns the number of edge-disjoint paths from s to t.
       
    99     int run(Node s, Node t, int k) {
       
   100       ConstMap const1map(1);
       
   101 
       
   102       ResGraphType res_graph(G, reversed, const1map);
       
   103 
       
   104       //Initialize the copy of the Dijkstra potential to zero
       
   105       typename ResGraphType::NodeMap<T> dijkstra_dist(G);
       
   106       ModLengthMap mod_length( res_graph, reversed, length, dijkstra_dist);
       
   107 
       
   108       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
       
   109       
       
   110       for (int i=0; i<k; ++i){
       
   111 	dijkstra.run(s);
       
   112 	if (!dijkstra.reached(t)){
       
   113 	  //There is no k path from s to t
       
   114 	  return ++i;
       
   115 	};
       
   116 	
       
   117 	{
       
   118 	  //We have to copy the potential
       
   119 	  typename ResGraphType::NodeIt n;
       
   120 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
       
   121 	      dijkstra_dist[n] += dijkstra.distMap()[n];
       
   122 	  }
       
   123 	}
       
   124 
       
   125 
       
   126 	/*
       
   127 	{
       
   128 	  //We have to copy the potential
       
   129 	  typename ResGraphType::EdgeIt e;
       
   130 	  for ( res_graph.first(e) ; res_graph.valid(e) ; res_graph.next(e) ) {
       
   131 	    //dijkstra_dist[e] = dijkstra.distMap()[e];
       
   132 	    mod_length_c[Edge(e)] = mod_length_c[Edge(e)] - 
       
   133 	      dijkstra.distMap()[res_graph.head(e)] +  
       
   134 	      dijkstra.distMap()[res_graph.tail(e)];
       
   135 	  }
       
   136 	}
       
   137 	*/
       
   138 
       
   139 	//Reversing the sortest path
       
   140 	Node n=t;
       
   141 	Edge e;
       
   142 	while (n!=s){
       
   143 	  e = dijkstra.pred(n);
       
   144 	  n = dijkstra.predNode(n);
       
   145 	  reversed[e] = 1-reversed[e];
       
   146 	}
       
   147 
       
   148 	  
       
   149       }
       
   150       return k;
       
   151     }
       
   152            
       
   153       
       
   154 
       
   155 
       
   156 
       
   157   };//class MinLengthPaths
       
   158 
       
   159 
       
   160 
       
   161 
       
   162 } //namespace hugo
       
   163 
       
   164 #endif //HUGO_MINLENGTHPATHS_H