|
1 // -*- c++ -*- |
|
2 #ifndef HUGO_MINLENGTHPATHS_H |
|
3 #define HUGO_MINLENGTHPATHS_H |
|
4 |
|
5 ///\file |
|
6 ///\brief An algorithm for finding k paths of minimal total length. |
|
7 |
|
8 #include <iostream> |
|
9 #include <dijkstra.h> |
|
10 #include <graph_wrapper.h> |
|
11 #include <maps.h> |
|
12 |
|
13 namespace hugo { |
|
14 |
|
15 |
|
16 ///\brief Implementation of an algorithm for finding k paths between 2 nodes |
|
17 /// of minimal total length |
|
18 /// |
|
19 /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements |
|
20 /// an algorithm which finds k edge-disjoint paths |
|
21 /// from a given source node to a given target node in an |
|
22 /// edge-weighted directed graph having minimal total weigth (length). |
|
23 /// |
|
24 /// |
|
25 |
|
26 template <typename Graph, typename T, |
|
27 typename LengthMap=typename Graph::EdgeMap<T> > |
|
28 class MinLengthPaths { |
|
29 |
|
30 |
|
31 // class ConstMap { |
|
32 // public : |
|
33 // typedef int ValueType; |
|
34 // typedef typename Graph::Edge KeyType; |
|
35 |
|
36 // int operator[](typename Graph::Edge e) const { |
|
37 // return 1; |
|
38 // } |
|
39 // }; |
|
40 |
|
41 |
|
42 typedef typename Graph::Node Node; |
|
43 typedef typename Graph::NodeIt NodeIt; |
|
44 typedef typename Graph::Edge Edge; |
|
45 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
46 typedef typename Graph::EdgeMap<int> EdgeIntMap; |
|
47 |
|
48 typedef ConstMap<Edge,int> ConstMap; |
|
49 |
|
50 typedef TrivGraphWrapper<const Graph> TrivGraphType; |
|
51 typedef ResGraphWrapper<TrivGraphType,int,EdgeIntMap, |
|
52 ConstMap> ResGraphType; |
|
53 |
|
54 |
|
55 //template <typename Graph, typename T> |
|
56 class ModLengthMap { |
|
57 typedef typename ResGraphType::NodeMap<T> NodeMap; |
|
58 const ResGraphType& G; |
|
59 const EdgeIntMap& rev; |
|
60 const LengthMap &ol; |
|
61 const NodeMap &pot; |
|
62 public : |
|
63 typedef typename LengthMap::KeyType KeyType; |
|
64 typedef typename LengthMap::ValueType ValueType; |
|
65 |
|
66 ValueType operator[](typename ResGraphType::Edge e) const { |
|
67 if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){ |
|
68 ///\TODO This has to be removed |
|
69 std::cout<<"Negative length!!"<<std::endl; |
|
70 } |
|
71 return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); |
|
72 } |
|
73 |
|
74 ModLengthMap( const ResGraphType& _G, const EdgeIntMap& _rev, |
|
75 const LengthMap &o, const NodeMap &p) : |
|
76 G(_G), rev(_rev), ol(o), pot(p){}; |
|
77 }; |
|
78 |
|
79 |
|
80 const Graph& G; |
|
81 const LengthMap& length; |
|
82 |
|
83 //auxiliary variable |
|
84 //The value is 1 iff the edge is reversed |
|
85 EdgeIntMap reversed; |
|
86 |
|
87 |
|
88 public : |
|
89 |
|
90 |
|
91 MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), |
|
92 length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ } |
|
93 |
|
94 ///Runs the algorithm |
|
95 |
|
96 ///Runs the algorithm |
|
97 ///Returns k if there are at least k edge-disjoint paths from s to t. |
|
98 ///Otherwise it returns the number of edge-disjoint paths from s to t. |
|
99 int run(Node s, Node t, int k) { |
|
100 ConstMap const1map(1); |
|
101 |
|
102 ResGraphType res_graph(G, reversed, const1map); |
|
103 |
|
104 //Initialize the copy of the Dijkstra potential to zero |
|
105 typename ResGraphType::NodeMap<T> dijkstra_dist(G); |
|
106 ModLengthMap mod_length( res_graph, reversed, length, dijkstra_dist); |
|
107 |
|
108 Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length); |
|
109 |
|
110 for (int i=0; i<k; ++i){ |
|
111 dijkstra.run(s); |
|
112 if (!dijkstra.reached(t)){ |
|
113 //There is no k path from s to t |
|
114 return ++i; |
|
115 }; |
|
116 |
|
117 { |
|
118 //We have to copy the potential |
|
119 typename ResGraphType::NodeIt n; |
|
120 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { |
|
121 dijkstra_dist[n] += dijkstra.distMap()[n]; |
|
122 } |
|
123 } |
|
124 |
|
125 |
|
126 /* |
|
127 { |
|
128 //We have to copy the potential |
|
129 typename ResGraphType::EdgeIt e; |
|
130 for ( res_graph.first(e) ; res_graph.valid(e) ; res_graph.next(e) ) { |
|
131 //dijkstra_dist[e] = dijkstra.distMap()[e]; |
|
132 mod_length_c[Edge(e)] = mod_length_c[Edge(e)] - |
|
133 dijkstra.distMap()[res_graph.head(e)] + |
|
134 dijkstra.distMap()[res_graph.tail(e)]; |
|
135 } |
|
136 } |
|
137 */ |
|
138 |
|
139 //Reversing the sortest path |
|
140 Node n=t; |
|
141 Edge e; |
|
142 while (n!=s){ |
|
143 e = dijkstra.pred(n); |
|
144 n = dijkstra.predNode(n); |
|
145 reversed[e] = 1-reversed[e]; |
|
146 } |
|
147 |
|
148 |
|
149 } |
|
150 return k; |
|
151 } |
|
152 |
|
153 |
|
154 |
|
155 |
|
156 |
|
157 };//class MinLengthPaths |
|
158 |
|
159 |
|
160 |
|
161 |
|
162 } //namespace hugo |
|
163 |
|
164 #endif //HUGO_MINLENGTHPATHS_H |