|
1 // -*- c++ -*- // |
|
2 |
|
3 /** |
|
4 @defgroup paths Path Structures |
|
5 @ingroup datas |
|
6 \brief Path structures implemented in Hugo. |
|
7 |
|
8 Hugolib provides flexible data structures |
|
9 to work with paths. |
|
10 |
|
11 All of them have the same interface, especially they can be built or extended |
|
12 using a standard Builder subclass. This make is easy to have e.g. the Dijkstra |
|
13 algorithm to store its result in any kind of path structure. |
|
14 |
|
15 \sa hugo::skeleton::Path |
|
16 |
|
17 */ |
|
18 |
|
19 ///\ingroup paths |
|
20 ///\file |
|
21 ///\brief Classes for representing paths in graphs. |
|
22 |
|
23 #ifndef HUGO_PATH_H |
|
24 #define HUGO_PATH_H |
|
25 |
|
26 #include <deque> |
|
27 #include <vector> |
|
28 #include <algorithm> |
|
29 |
|
30 #include <hugo/invalid.h> |
|
31 #include <hugo/error.h> |
|
32 #include <debug.h> |
|
33 |
|
34 namespace hugo { |
|
35 |
|
36 /// \addtogroup paths |
|
37 /// @{ |
|
38 |
|
39 |
|
40 //! \brief A structure for representing directed paths in a graph. |
|
41 //! |
|
42 //! A structure for representing directed path in a graph. |
|
43 //! \param Graph The graph type in which the path is. |
|
44 //! \param DM DebugMode, defaults to DefaultDebugMode. |
|
45 //! |
|
46 //! In a sense, the path can be treated as a graph, for is has \c NodeIt |
|
47 //! and \c EdgeIt with the same usage. These types converts to the \c Node |
|
48 //! and \c Edge of the original graph. |
|
49 //! |
|
50 //! \todo Thoroughfully check all the range and consistency tests. |
|
51 template<typename Graph, typename DM = DefaultDebugMode> |
|
52 class DirPath { |
|
53 public: |
|
54 /// Edge type of the underlying graph. |
|
55 typedef typename Graph::Edge GraphEdge; |
|
56 /// Node type of the underlying graph. |
|
57 typedef typename Graph::Node GraphNode; |
|
58 class NodeIt; |
|
59 class EdgeIt; |
|
60 |
|
61 protected: |
|
62 const Graph *gr; |
|
63 typedef std::vector<GraphEdge> Container; |
|
64 Container edges; |
|
65 |
|
66 public: |
|
67 |
|
68 /// \param _G The graph in which the path is. |
|
69 /// |
|
70 DirPath(const Graph &_G) : gr(&_G) {} |
|
71 |
|
72 /// \brief Subpath constructor. |
|
73 /// |
|
74 /// Subpath defined by two nodes. |
|
75 /// \warning It is an error if the two edges are not in order! |
|
76 DirPath(const DirPath &P, const NodeIt &a, const NodeIt &b) { |
|
77 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
78 // FIXME: this check should be more elaborate... |
|
79 fault("DirPath, subpath ctor: invalid bounding nodes"); |
|
80 } |
|
81 gr = P.gr; |
|
82 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
83 } |
|
84 |
|
85 /// \brief Subpath constructor. |
|
86 /// |
|
87 /// Subpath defined by two edges. Contains edges in [a,b) |
|
88 /// \warning It is an error if the two edges are not in order! |
|
89 DirPath(const DirPath &P, const EdgeIt &a, const EdgeIt &b) { |
|
90 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
91 // FIXME: this check should be more elaborate... |
|
92 fault("DirPath, subpath ctor: invalid bounding nodes"); |
|
93 } |
|
94 gr = P.gr; |
|
95 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
96 } |
|
97 |
|
98 /// Length of the path. |
|
99 size_t length() const { return edges.size(); } |
|
100 /// Returns whether the path is empty. |
|
101 bool empty() const { return edges.empty(); } |
|
102 |
|
103 /// Resets the path to an empty path. |
|
104 void clear() { edges.clear(); } |
|
105 |
|
106 /// \brief Starting point of the path. |
|
107 /// |
|
108 /// Starting point of the path. |
|
109 /// Returns INVALID if the path is empty. |
|
110 GraphNode from() const { |
|
111 return empty() ? INVALID : gr->tail(edges[0]); |
|
112 } |
|
113 /// \brief End point of the path. |
|
114 /// |
|
115 /// End point of the path. |
|
116 /// Returns INVALID if the path is empty. |
|
117 GraphNode to() const { |
|
118 return empty() ? INVALID : gr->head(edges[length()-1]); |
|
119 } |
|
120 |
|
121 /// \brief Initializes node or edge iterator to point to the first |
|
122 /// node or edge. |
|
123 /// |
|
124 /// \sa nth |
|
125 template<typename It> |
|
126 It& first(It &i) const { return i=It(*this); } |
|
127 |
|
128 /// \brief Initializes node iterator to point to the node of a given index. |
|
129 NodeIt& nth(NodeIt &i, int n) const { |
|
130 if( DM::range_check && (n<0 || n>int(length())) ) |
|
131 fault("DirPath::nth: index out of range"); |
|
132 return i=NodeIt(*this, n); |
|
133 } |
|
134 |
|
135 /// \brief Initializes edge iterator to point to the edge of a given index. |
|
136 EdgeIt& nth(EdgeIt &i, int n) const { |
|
137 if( DM::range_check && (n<0 || n>=int(length())) ) |
|
138 fault("DirPath::nth: index out of range"); |
|
139 return i=EdgeIt(*this, n); |
|
140 } |
|
141 |
|
142 /// Checks validity of a node or edge iterator. |
|
143 template<typename It> |
|
144 static |
|
145 bool valid(const It &i) { return i.valid(); } |
|
146 |
|
147 /// Steps the given node or edge iterator. |
|
148 template<typename It> |
|
149 static |
|
150 It& next(It &e) { |
|
151 if( DM::range_check && !e.valid() ) |
|
152 fault("DirPath::next() on invalid iterator"); |
|
153 return ++e; |
|
154 } |
|
155 |
|
156 /// \brief Returns node iterator pointing to the head node of the |
|
157 /// given edge iterator. |
|
158 NodeIt head(const EdgeIt& e) const { |
|
159 if( DM::range_check && !e.valid() ) |
|
160 fault("DirPath::head() on invalid iterator"); |
|
161 return NodeIt(*this, e.idx+1); |
|
162 } |
|
163 |
|
164 /// \brief Returns node iterator pointing to the tail node of the |
|
165 /// given edge iterator. |
|
166 NodeIt tail(const EdgeIt& e) const { |
|
167 if( DM::range_check && !e.valid() ) |
|
168 fault("DirPath::tail() on invalid iterator"); |
|
169 return NodeIt(*this, e.idx); |
|
170 } |
|
171 |
|
172 |
|
173 /* Iterator classes */ |
|
174 |
|
175 /** |
|
176 * \brief Iterator class to iterate on the edges of the paths |
|
177 * |
|
178 * \ingroup paths |
|
179 * This class is used to iterate on the edges of the paths |
|
180 * |
|
181 * Of course it converts to Graph::Edge |
|
182 * |
|
183 * \todo Its interface differs from the standard edge iterator. |
|
184 * Yes, it shouldn't. |
|
185 */ |
|
186 class EdgeIt { |
|
187 friend class DirPath; |
|
188 |
|
189 int idx; |
|
190 const DirPath *p; |
|
191 public: |
|
192 /// Default constructor |
|
193 EdgeIt() {} |
|
194 /// Invalid constructor |
|
195 EdgeIt(Invalid) : idx(-1), p(0) {} |
|
196 /// Constructor with starting point |
|
197 EdgeIt(const DirPath &_p, int _idx = 0) : |
|
198 idx(_idx), p(&_p) { validate(); } |
|
199 |
|
200 ///Validity check |
|
201 bool valid() const { return idx!=-1; } |
|
202 |
|
203 ///Conversion to Graph::Edge |
|
204 operator GraphEdge () const { |
|
205 return valid() ? p->edges[idx] : INVALID; |
|
206 } |
|
207 |
|
208 /// Next edge |
|
209 EdgeIt& operator++() { ++idx; validate(); return *this; } |
|
210 |
|
211 /// Comparison operator |
|
212 bool operator==(const EdgeIt& e) const { return idx==e.idx; } |
|
213 /// Comparison operator |
|
214 bool operator!=(const EdgeIt& e) const { return idx!=e.idx; } |
|
215 /// Comparison operator |
|
216 bool operator<(const EdgeIt& e) const { return idx<e.idx; } |
|
217 |
|
218 private: |
|
219 // FIXME: comparison between signed and unsigned... |
|
220 // Jo ez igy? Vagy esetleg legyen a length() int? |
|
221 void validate() { if( size_t(idx) >= p->length() ) idx=-1; } |
|
222 }; |
|
223 |
|
224 /** |
|
225 * \brief Iterator class to iterate on the nodes of the paths |
|
226 * |
|
227 * \ingroup paths |
|
228 * This class is used to iterate on the nodes of the paths |
|
229 * |
|
230 * Of course it converts to Graph::Node |
|
231 * |
|
232 * \todo Its interface differs from the standard node iterator. |
|
233 * Yes, it shouldn't. |
|
234 */ |
|
235 class NodeIt { |
|
236 friend class DirPath; |
|
237 |
|
238 int idx; |
|
239 const DirPath *p; |
|
240 public: |
|
241 /// Default constructor |
|
242 NodeIt() {} |
|
243 /// Invalid constructor |
|
244 NodeIt(Invalid) : idx(-1), p(0) {} |
|
245 /// Constructor with starting point |
|
246 NodeIt(const DirPath &_p, int _idx = 0) : |
|
247 idx(_idx), p(&_p) { validate(); } |
|
248 |
|
249 ///Validity check |
|
250 bool valid() const { return idx!=-1; } |
|
251 |
|
252 ///Conversion to Graph::Node |
|
253 operator const GraphNode& () const { |
|
254 if(idx >= p->length()) |
|
255 return p->to(); |
|
256 else if(idx >= 0) |
|
257 return p->gr->tail(p->edges[idx]); |
|
258 else |
|
259 return INVALID; |
|
260 } |
|
261 /// Next node |
|
262 NodeIt& operator++() { ++idx; validate(); return *this; } |
|
263 |
|
264 /// Comparison operator |
|
265 bool operator==(const NodeIt& e) const { return idx==e.idx; } |
|
266 /// Comparison operator |
|
267 bool operator!=(const NodeIt& e) const { return idx!=e.idx; } |
|
268 /// Comparison operator |
|
269 bool operator<(const NodeIt& e) const { return idx<e.idx; } |
|
270 |
|
271 private: |
|
272 void validate() { if( size_t(idx) > p->length() ) idx=-1; } |
|
273 }; |
|
274 |
|
275 friend class Builder; |
|
276 |
|
277 /** |
|
278 * \brief Class to build paths |
|
279 * |
|
280 * \ingroup paths |
|
281 * This class is used to fill a path with edges. |
|
282 * |
|
283 * You can push new edges to the front and to the back of the path in |
|
284 * arbitrary order then you should commit these changes to the graph. |
|
285 * |
|
286 * Fundamentally, for most "Paths" (classes fulfilling the |
|
287 * PathConcept) while the builder is active (after the first modifying |
|
288 * operation and until the commit()) the original Path is in a |
|
289 * "transitional" state (operations on it have undefined result). But |
|
290 * in the case of DirPath the original path remains unchanged until the |
|
291 * commit. However we don't recomend that you use this feature. |
|
292 */ |
|
293 class Builder { |
|
294 DirPath &P; |
|
295 Container front, back; |
|
296 |
|
297 public: |
|
298 ///\param _P the path you want to fill in. |
|
299 /// |
|
300 Builder(DirPath &_P) : P(_P) {} |
|
301 |
|
302 /// Sets the starting node of the path. |
|
303 |
|
304 /// Sets the starting node of the path. Edge added to the path |
|
305 /// afterwards have to be incident to this node. |
|
306 /// It should be called iff the path is empty and before any call to |
|
307 /// \ref pushFront() or \ref pushBack() |
|
308 void setStartNode(const GraphNode &) {} |
|
309 |
|
310 ///Push a new edge to the front of the path |
|
311 |
|
312 ///Push a new edge to the front of the path. |
|
313 ///\sa setStartNode |
|
314 void pushFront(const GraphEdge& e) { |
|
315 if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) { |
|
316 fault("DirPath::Builder::pushFront: nonincident edge"); |
|
317 } |
|
318 front.push_back(e); |
|
319 } |
|
320 |
|
321 ///Push a new edge to the back of the path |
|
322 |
|
323 ///Push a new edge to the back of the path. |
|
324 ///\sa setStartNode |
|
325 void pushBack(const GraphEdge& e) { |
|
326 if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) { |
|
327 fault("DirPath::Builder::pushBack: nonincident edge"); |
|
328 } |
|
329 back.push_back(e); |
|
330 } |
|
331 |
|
332 ///Commit the changes to the path. |
|
333 void commit() { |
|
334 if( !(front.empty() && back.empty()) ) { |
|
335 Container tmp; |
|
336 tmp.reserve(front.size()+back.size()+P.length()); |
|
337 tmp.insert(tmp.end(), front.rbegin(), front.rend()); |
|
338 tmp.insert(tmp.end(), P.edges.begin(), P.edges.end()); |
|
339 tmp.insert(tmp.end(), back.begin(), back.end()); |
|
340 P.edges.swap(tmp); |
|
341 front.clear(); |
|
342 back.clear(); |
|
343 } |
|
344 } |
|
345 |
|
346 // FIXME: Hmm, pontosan hogy is kene ezt csinalni? |
|
347 // Hogy kenyelmes egy ilyet hasznalni? |
|
348 |
|
349 ///Reserve storage for the builder in advance. |
|
350 |
|
351 ///If you know an reasonable upper bound of the number of the edges |
|
352 ///to add, using this function you can speed up the building. |
|
353 void reserve(size_t r) { |
|
354 front.reserve(r); |
|
355 back.reserve(r); |
|
356 } |
|
357 |
|
358 private: |
|
359 bool empty() { |
|
360 return front.empty() && back.empty() && P.empty(); |
|
361 } |
|
362 |
|
363 GraphNode from() const { |
|
364 if( ! front.empty() ) |
|
365 return P.gr->tail(front[front.size()-1]); |
|
366 else if( ! P.empty() ) |
|
367 return P.gr->tail(P.edges[0]); |
|
368 else if( ! back.empty() ) |
|
369 return P.gr->tail(back[0]); |
|
370 else |
|
371 return INVALID; |
|
372 } |
|
373 GraphNode to() const { |
|
374 if( ! back.empty() ) |
|
375 return P.gr->head(back[back.size()-1]); |
|
376 else if( ! P.empty() ) |
|
377 return P.gr->head(P.edges[P.length()-1]); |
|
378 else if( ! front.empty() ) |
|
379 return P.gr->head(front[0]); |
|
380 else |
|
381 return INVALID; |
|
382 } |
|
383 |
|
384 }; |
|
385 |
|
386 }; |
|
387 |
|
388 |
|
389 |
|
390 |
|
391 |
|
392 |
|
393 |
|
394 |
|
395 |
|
396 |
|
397 /**********************************************************************/ |
|
398 |
|
399 |
|
400 //! \brief A structure for representing undirected path in a graph. |
|
401 //! |
|
402 //! A structure for representing undirected path in a graph. Ie. this is |
|
403 //! a path in a \e directed graph but the edges should not be directed |
|
404 //! forward. |
|
405 //! |
|
406 //! \param Graph The graph type in which the path is. |
|
407 //! \param DM DebugMode, defaults to DefaultDebugMode. |
|
408 //! |
|
409 //! In a sense, the path can be treated as a graph, for is has \c NodeIt |
|
410 //! and \c EdgeIt with the same usage. These types converts to the \c Node |
|
411 //! and \c Edge of the original graph. |
|
412 //! |
|
413 //! \todo Thoroughfully check all the range and consistency tests. |
|
414 template<typename Graph, typename DM = DefaultDebugMode> |
|
415 class UndirPath { |
|
416 public: |
|
417 /// Edge type of the underlying graph. |
|
418 typedef typename Graph::Edge GraphEdge; |
|
419 /// Node type of the underlying graph. |
|
420 typedef typename Graph::Node GraphNode; |
|
421 class NodeIt; |
|
422 class EdgeIt; |
|
423 |
|
424 protected: |
|
425 const Graph *gr; |
|
426 typedef std::vector<GraphEdge> Container; |
|
427 Container edges; |
|
428 |
|
429 public: |
|
430 |
|
431 /// \param _G The graph in which the path is. |
|
432 /// |
|
433 UndirPath(const Graph &_G) : gr(&_G) {} |
|
434 |
|
435 /// \brief Subpath constructor. |
|
436 /// |
|
437 /// Subpath defined by two nodes. |
|
438 /// \warning It is an error if the two edges are not in order! |
|
439 UndirPath(const UndirPath &P, const NodeIt &a, const NodeIt &b) { |
|
440 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
441 // FIXME: this check should be more elaborate... |
|
442 fault("UndirPath, subpath ctor: invalid bounding nodes"); |
|
443 } |
|
444 gr = P.gr; |
|
445 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
446 } |
|
447 |
|
448 /// \brief Subpath constructor. |
|
449 /// |
|
450 /// Subpath defined by two edges. Contains edges in [a,b) |
|
451 /// \warning It is an error if the two edges are not in order! |
|
452 UndirPath(const UndirPath &P, const EdgeIt &a, const EdgeIt &b) { |
|
453 if( DM::range_check && (!a.valid() || !b.valid) ) { |
|
454 // FIXME: this check should be more elaborate... |
|
455 fault("UndirPath, subpath ctor: invalid bounding nodes"); |
|
456 } |
|
457 gr = P.gr; |
|
458 edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx); |
|
459 } |
|
460 |
|
461 /// Length of the path. |
|
462 size_t length() const { return edges.size(); } |
|
463 /// Returns whether the path is empty. |
|
464 bool empty() const { return edges.empty(); } |
|
465 |
|
466 /// Resets the path to an empty path. |
|
467 void clear() { edges.clear(); } |
|
468 |
|
469 /// \brief Starting point of the path. |
|
470 /// |
|
471 /// Starting point of the path. |
|
472 /// Returns INVALID if the path is empty. |
|
473 GraphNode from() const { |
|
474 return empty() ? INVALID : gr->tail(edges[0]); |
|
475 } |
|
476 /// \brief End point of the path. |
|
477 /// |
|
478 /// End point of the path. |
|
479 /// Returns INVALID if the path is empty. |
|
480 GraphNode to() const { |
|
481 return empty() ? INVALID : gr->head(edges[length()-1]); |
|
482 } |
|
483 |
|
484 /// \brief Initializes node or edge iterator to point to the first |
|
485 /// node or edge. |
|
486 /// |
|
487 /// \sa nth |
|
488 template<typename It> |
|
489 It& first(It &i) const { return i=It(*this); } |
|
490 |
|
491 /// \brief Initializes node iterator to point to the node of a given index. |
|
492 NodeIt& nth(NodeIt &i, int n) const { |
|
493 if( DM::range_check && (n<0 || n>int(length())) ) |
|
494 fault("UndirPath::nth: index out of range"); |
|
495 return i=NodeIt(*this, n); |
|
496 } |
|
497 |
|
498 /// \brief Initializes edge iterator to point to the edge of a given index. |
|
499 EdgeIt& nth(EdgeIt &i, int n) const { |
|
500 if( DM::range_check && (n<0 || n>=int(length())) ) |
|
501 fault("UndirPath::nth: index out of range"); |
|
502 return i=EdgeIt(*this, n); |
|
503 } |
|
504 |
|
505 /// Checks validity of a node or edge iterator. |
|
506 template<typename It> |
|
507 static |
|
508 bool valid(const It &i) { return i.valid(); } |
|
509 |
|
510 /// Steps the given node or edge iterator. |
|
511 template<typename It> |
|
512 static |
|
513 It& next(It &e) { |
|
514 if( DM::range_check && !e.valid() ) |
|
515 fault("UndirPath::next() on invalid iterator"); |
|
516 return ++e; |
|
517 } |
|
518 |
|
519 /// \brief Returns node iterator pointing to the head node of the |
|
520 /// given edge iterator. |
|
521 NodeIt head(const EdgeIt& e) const { |
|
522 if( DM::range_check && !e.valid() ) |
|
523 fault("UndirPath::head() on invalid iterator"); |
|
524 return NodeIt(*this, e.idx+1); |
|
525 } |
|
526 |
|
527 /// \brief Returns node iterator pointing to the tail node of the |
|
528 /// given edge iterator. |
|
529 NodeIt tail(const EdgeIt& e) const { |
|
530 if( DM::range_check && !e.valid() ) |
|
531 fault("UndirPath::tail() on invalid iterator"); |
|
532 return NodeIt(*this, e.idx); |
|
533 } |
|
534 |
|
535 |
|
536 |
|
537 /** |
|
538 * \brief Iterator class to iterate on the edges of the paths |
|
539 * |
|
540 * \ingroup paths |
|
541 * This class is used to iterate on the edges of the paths |
|
542 * |
|
543 * Of course it converts to Graph::Edge |
|
544 * |
|
545 * \todo Its interface differs from the standard edge iterator. |
|
546 * Yes, it shouldn't. |
|
547 */ |
|
548 class EdgeIt { |
|
549 friend class UndirPath; |
|
550 |
|
551 int idx; |
|
552 const UndirPath *p; |
|
553 public: |
|
554 /// Default constructor |
|
555 EdgeIt() {} |
|
556 /// Invalid constructor |
|
557 EdgeIt(Invalid) : idx(-1), p(0) {} |
|
558 /// Constructor with starting point |
|
559 EdgeIt(const UndirPath &_p, int _idx = 0) : |
|
560 idx(_idx), p(&_p) { validate(); } |
|
561 |
|
562 ///Validity check |
|
563 bool valid() const { return idx!=-1; } |
|
564 |
|
565 ///Conversion to Graph::Edge |
|
566 operator GraphEdge () const { |
|
567 return valid() ? p->edges[idx] : INVALID; |
|
568 } |
|
569 /// Next edge |
|
570 EdgeIt& operator++() { ++idx; validate(); return *this; } |
|
571 |
|
572 /// Comparison operator |
|
573 bool operator==(const EdgeIt& e) const { return idx==e.idx; } |
|
574 /// Comparison operator |
|
575 bool operator!=(const EdgeIt& e) const { return idx!=e.idx; } |
|
576 /// Comparison operator |
|
577 bool operator<(const EdgeIt& e) const { return idx<e.idx; } |
|
578 |
|
579 private: |
|
580 // FIXME: comparison between signed and unsigned... |
|
581 // Jo ez igy? Vagy esetleg legyen a length() int? |
|
582 void validate() { if( size_t(idx) >= p->length() ) idx=-1; } |
|
583 }; |
|
584 |
|
585 /** |
|
586 * \brief Iterator class to iterate on the nodes of the paths |
|
587 * |
|
588 * \ingroup paths |
|
589 * This class is used to iterate on the nodes of the paths |
|
590 * |
|
591 * Of course it converts to Graph::Node |
|
592 * |
|
593 * \todo Its interface differs from the standard node iterator. |
|
594 * Yes, it shouldn't. |
|
595 */ |
|
596 class NodeIt { |
|
597 friend class UndirPath; |
|
598 |
|
599 int idx; |
|
600 const UndirPath *p; |
|
601 public: |
|
602 /// Default constructor |
|
603 NodeIt() {} |
|
604 /// Invalid constructor |
|
605 NodeIt(Invalid) : idx(-1), p(0) {} |
|
606 /// Constructor with starting point |
|
607 NodeIt(const UndirPath &_p, int _idx = 0) : |
|
608 idx(_idx), p(&_p) { validate(); } |
|
609 |
|
610 ///Validity check |
|
611 bool valid() const { return idx!=-1; } |
|
612 |
|
613 ///Conversion to Graph::Node |
|
614 operator const GraphNode& () const { |
|
615 if(idx >= p->length()) |
|
616 return p->to(); |
|
617 else if(idx >= 0) |
|
618 return p->gr->tail(p->edges[idx]); |
|
619 else |
|
620 return INVALID; |
|
621 } |
|
622 /// Next node |
|
623 NodeIt& operator++() { ++idx; validate(); return *this; } |
|
624 |
|
625 /// Comparison operator |
|
626 bool operator==(const NodeIt& e) const { return idx==e.idx; } |
|
627 /// Comparison operator |
|
628 bool operator!=(const NodeIt& e) const { return idx!=e.idx; } |
|
629 /// Comparison operator |
|
630 bool operator<(const NodeIt& e) const { return idx<e.idx; } |
|
631 |
|
632 private: |
|
633 void validate() { if( size_t(idx) > p->length() ) idx=-1; } |
|
634 }; |
|
635 |
|
636 friend class Builder; |
|
637 |
|
638 /** |
|
639 * \brief Class to build paths |
|
640 * |
|
641 * \ingroup paths |
|
642 * This class is used to fill a path with edges. |
|
643 * |
|
644 * You can push new edges to the front and to the back of the path in |
|
645 * arbitrary order then you should commit these changes to the graph. |
|
646 * |
|
647 * Fundamentally, for most "Paths" (classes fulfilling the |
|
648 * PathConcept) while the builder is active (after the first modifying |
|
649 * operation and until the commit()) the original Path is in a |
|
650 * "transitional" state (operations ot it have undefined result). But |
|
651 * in the case of UndirPath the original path is unchanged until the |
|
652 * commit. However we don't recomend that you use this feature. |
|
653 */ |
|
654 class Builder { |
|
655 UndirPath &P; |
|
656 Container front, back; |
|
657 |
|
658 public: |
|
659 ///\param _P the path you want to fill in. |
|
660 /// |
|
661 Builder(UndirPath &_P) : P(_P) {} |
|
662 |
|
663 /// Sets the starting node of the path. |
|
664 |
|
665 /// Sets the starting node of the path. Edge added to the path |
|
666 /// afterwards have to be incident to this node. |
|
667 /// It should be called iff the path is empty and before any call to |
|
668 /// \ref pushFront() or \ref pushBack() |
|
669 void setStartNode(const GraphNode &) {} |
|
670 |
|
671 ///Push a new edge to the front of the path |
|
672 |
|
673 ///Push a new edge to the front of the path. |
|
674 ///\sa setStartNode |
|
675 void pushFront(const GraphEdge& e) { |
|
676 if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) { |
|
677 fault("UndirPath::Builder::pushFront: nonincident edge"); |
|
678 } |
|
679 front.push_back(e); |
|
680 } |
|
681 |
|
682 ///Push a new edge to the back of the path |
|
683 |
|
684 ///Push a new edge to the back of the path. |
|
685 ///\sa setStartNode |
|
686 void pushBack(const GraphEdge& e) { |
|
687 if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) { |
|
688 fault("UndirPath::Builder::pushBack: nonincident edge"); |
|
689 } |
|
690 back.push_back(e); |
|
691 } |
|
692 |
|
693 ///Commit the changes to the path. |
|
694 void commit() { |
|
695 if( !(front.empty() && back.empty()) ) { |
|
696 Container tmp; |
|
697 tmp.reserve(front.size()+back.size()+P.length()); |
|
698 tmp.insert(tmp.end(), front.rbegin(), front.rend()); |
|
699 tmp.insert(tmp.end(), P.edges.begin(), P.edges.end()); |
|
700 tmp.insert(tmp.end(), back.begin(), back.end()); |
|
701 P.edges.swap(tmp); |
|
702 front.clear(); |
|
703 back.clear(); |
|
704 } |
|
705 } |
|
706 |
|
707 // FIXME: Hmm, pontosan hogy is kene ezt csinalni? |
|
708 // Hogy kenyelmes egy ilyet hasznalni? |
|
709 |
|
710 ///Reserve storage for the builder in advance. |
|
711 |
|
712 ///If you know an reasonable upper bound of the number of the edges |
|
713 ///to add, using this function you can speed up the building. |
|
714 void reserve(size_t r) { |
|
715 front.reserve(r); |
|
716 back.reserve(r); |
|
717 } |
|
718 |
|
719 private: |
|
720 bool empty() { |
|
721 return front.empty() && back.empty() && P.empty(); |
|
722 } |
|
723 |
|
724 GraphNode from() const { |
|
725 if( ! front.empty() ) |
|
726 return P.gr->tail(front[front.size()-1]); |
|
727 else if( ! P.empty() ) |
|
728 return P.gr->tail(P.edges[0]); |
|
729 else if( ! back.empty() ) |
|
730 return P.gr->tail(back[0]); |
|
731 else |
|
732 return INVALID; |
|
733 } |
|
734 GraphNode to() const { |
|
735 if( ! back.empty() ) |
|
736 return P.gr->head(back[back.size()-1]); |
|
737 else if( ! P.empty() ) |
|
738 return P.gr->head(P.edges[P.length()-1]); |
|
739 else if( ! front.empty() ) |
|
740 return P.gr->head(front[0]); |
|
741 else |
|
742 return INVALID; |
|
743 } |
|
744 |
|
745 }; |
|
746 |
|
747 }; |
|
748 |
|
749 |
|
750 |
|
751 |
|
752 |
|
753 |
|
754 |
|
755 |
|
756 |
|
757 |
|
758 /**********************************************************************/ |
|
759 |
|
760 |
|
761 /* Ennek az allocatorosdinak sokkal jobban utana kene nezni a hasznalata |
|
762 elott. Eleg bonyinak nez ki, ahogyan azokat az STL-ben hasznaljak. */ |
|
763 |
|
764 template<typename Graph> |
|
765 class DynamicPath { |
|
766 |
|
767 public: |
|
768 typedef typename Graph::Edge GraphEdge; |
|
769 typedef typename Graph::Node GraphNode; |
|
770 class NodeIt; |
|
771 class EdgeIt; |
|
772 |
|
773 protected: |
|
774 Graph& G; |
|
775 // FIXME: ehelyett eleg lenne tarolni ket boolt: a ket szelso el |
|
776 // iranyitasat: |
|
777 GraphNode _first, _last; |
|
778 typedef std::deque<GraphEdge> Container; |
|
779 Container edges; |
|
780 |
|
781 public: |
|
782 |
|
783 DynamicPath(Graph &_G) : G(_G), _first(INVALID), _last(INVALID) {} |
|
784 |
|
785 /// Subpath defined by two nodes. |
|
786 /// Nodes may be in reversed order, then |
|
787 /// we contstruct the reversed path. |
|
788 DynamicPath(const DynamicPath &P, const NodeIt &a, const NodeIt &b); |
|
789 /// Subpath defined by two edges. Contains edges in [a,b) |
|
790 /// It is an error if the two edges are not in order! |
|
791 DynamicPath(const DynamicPath &P, const EdgeIt &a, const EdgeIt &b); |
|
792 |
|
793 size_t length() const { return edges.size(); } |
|
794 GraphNode from() const { return _first; } |
|
795 GraphNode to() const { return _last; } |
|
796 |
|
797 NodeIt& first(NodeIt &n) const { return nth(n, 0); } |
|
798 EdgeIt& first(EdgeIt &e) const { return nth(e, 0); } |
|
799 template<typename It> |
|
800 It first() const { |
|
801 It e; |
|
802 first(e); |
|
803 return e; |
|
804 } |
|
805 |
|
806 NodeIt& nth(NodeIt &, size_t) const; |
|
807 EdgeIt& nth(EdgeIt &, size_t) const; |
|
808 template<typename It> |
|
809 It nth(size_t n) const { |
|
810 It e; |
|
811 nth(e, n); |
|
812 return e; |
|
813 } |
|
814 |
|
815 bool valid(const NodeIt &n) const { return n.idx <= length(); } |
|
816 bool valid(const EdgeIt &e) const { return e.it < edges.end(); } |
|
817 |
|
818 bool isForward(const EdgeIt &e) const { return e.forw; } |
|
819 |
|
820 /// index of a node on the path. Returns length+2 for the invalid NodeIt |
|
821 int index(const NodeIt &n) const { return n.idx; } |
|
822 /// index of an edge on the path. Returns length+1 for the invalid EdgeIt |
|
823 int index(const EdgeIt &e) const { return e.it - edges.begin(); } |
|
824 |
|
825 EdgeIt& next(EdgeIt &e) const; |
|
826 NodeIt& next(NodeIt &n) const; |
|
827 template <typename It> |
|
828 It getNext(It it) const { |
|
829 It tmp(it); return next(tmp); |
|
830 } |
|
831 |
|
832 // A path is constructed using the following four functions. |
|
833 // They return false if the requested operation is inconsistent |
|
834 // with the path constructed so far. |
|
835 // If your path has only one edge you MUST set either "from" or "to"! |
|
836 // So you probably SHOULD call it in any case to be safe (and check the |
|
837 // returned value to check if your path is consistent with your idea). |
|
838 bool pushFront(const GraphEdge &e); |
|
839 bool pushBack(const GraphEdge &e); |
|
840 bool setFrom(const GraphNode &n); |
|
841 bool setTo(const GraphNode &n); |
|
842 |
|
843 // WARNING: these two functions return the head/tail of an edge with |
|
844 // respect to the direction of the path! |
|
845 // So G.head(P.graphEdge(e)) == P.graphNode(P.head(e)) holds only if |
|
846 // P.forward(e) is true (or the edge is a loop)! |
|
847 NodeIt head(const EdgeIt& e) const; |
|
848 NodeIt tail(const EdgeIt& e) const; |
|
849 |
|
850 // FIXME: ezeknek valami jobb nev kellene!!! |
|
851 GraphEdge graphEdge(const EdgeIt& e) const; |
|
852 GraphNode graphNode(const NodeIt& n) const; |
|
853 |
|
854 |
|
855 /*** Iterator classes ***/ |
|
856 class EdgeIt { |
|
857 friend class DynamicPath; |
|
858 |
|
859 typename Container::const_iterator it; |
|
860 bool forw; |
|
861 public: |
|
862 // FIXME: jarna neki ilyen is... |
|
863 // EdgeIt(Invalid); |
|
864 |
|
865 bool forward() const { return forw; } |
|
866 |
|
867 bool operator==(const EdgeIt& e) const { return it==e.it; } |
|
868 bool operator!=(const EdgeIt& e) const { return it!=e.it; } |
|
869 bool operator<(const EdgeIt& e) const { return it<e.it; } |
|
870 }; |
|
871 |
|
872 class NodeIt { |
|
873 friend class DynamicPath; |
|
874 |
|
875 size_t idx; |
|
876 bool tail; // Is this node the tail of the edge with same idx? |
|
877 |
|
878 public: |
|
879 // FIXME: jarna neki ilyen is... |
|
880 // NodeIt(Invalid); |
|
881 |
|
882 bool operator==(const NodeIt& n) const { return idx==n.idx; } |
|
883 bool operator!=(const NodeIt& n) const { return idx!=n.idx; } |
|
884 bool operator<(const NodeIt& n) const { return idx<n.idx; } |
|
885 }; |
|
886 |
|
887 private: |
|
888 bool edgeIncident(const GraphEdge &e, const GraphNode &a, |
|
889 GraphNode &b); |
|
890 bool connectTwoEdges(const GraphEdge &e, const GraphEdge &f); |
|
891 }; |
|
892 |
|
893 template<typename Gr> |
|
894 typename DynamicPath<Gr>::EdgeIt& |
|
895 DynamicPath<Gr>::next(DynamicPath::EdgeIt &e) const { |
|
896 if( e.it == edges.end() ) |
|
897 return e; |
|
898 |
|
899 GraphNode common_node = ( e.forw ? G.head(*e.it) : G.tail(*e.it) ); |
|
900 ++e.it; |
|
901 |
|
902 // Invalid edgeit is always forward :) |
|
903 if( e.it == edges.end() ) { |
|
904 e.forw = true; |
|
905 return e; |
|
906 } |
|
907 |
|
908 e.forw = ( G.tail(*e.it) == common_node ); |
|
909 return e; |
|
910 } |
|
911 |
|
912 template<typename Gr> |
|
913 typename DynamicPath<Gr>::NodeIt& DynamicPath<Gr>::next(NodeIt &n) const { |
|
914 if( n.idx >= length() ) { |
|
915 // FIXME: invalid |
|
916 n.idx = length()+1; |
|
917 return n; |
|
918 } |
|
919 |
|
920 |
|
921 GraphNode next_node = ( n.tail ? G.head(edges[n.idx]) : |
|
922 G.tail(edges[n.idx]) ); |
|
923 ++n.idx; |
|
924 if( n.idx < length() ) { |
|
925 n.tail = ( next_node == G.tail(edges[n.idx]) ); |
|
926 } |
|
927 else { |
|
928 n.tail = true; |
|
929 } |
|
930 |
|
931 return n; |
|
932 } |
|
933 |
|
934 template<typename Gr> |
|
935 bool DynamicPath<Gr>::edgeIncident(const GraphEdge &e, const GraphNode &a, |
|
936 GraphNode &b) { |
|
937 if( G.tail(e) == a ) { |
|
938 b=G.head(e); |
|
939 return true; |
|
940 } |
|
941 if( G.head(e) == a ) { |
|
942 b=G.tail(e); |
|
943 return true; |
|
944 } |
|
945 return false; |
|
946 } |
|
947 |
|
948 template<typename Gr> |
|
949 bool DynamicPath<Gr>::connectTwoEdges(const GraphEdge &e, |
|
950 const GraphEdge &f) { |
|
951 if( edgeIncident(f, G.tail(e), _last) ) { |
|
952 _first = G.head(e); |
|
953 return true; |
|
954 } |
|
955 if( edgeIncident(f, G.head(e), _last) ) { |
|
956 _first = G.tail(e); |
|
957 return true; |
|
958 } |
|
959 return false; |
|
960 } |
|
961 |
|
962 template<typename Gr> |
|
963 bool DynamicPath<Gr>::pushFront(const GraphEdge &e) { |
|
964 if( G.valid(_first) ) { |
|
965 if( edgeIncident(e, _first, _first) ) { |
|
966 edges.push_front(e); |
|
967 return true; |
|
968 } |
|
969 else |
|
970 return false; |
|
971 } |
|
972 else if( length() < 1 || connectTwoEdges(e, edges[0]) ) { |
|
973 edges.push_front(e); |
|
974 return true; |
|
975 } |
|
976 else |
|
977 return false; |
|
978 } |
|
979 |
|
980 template<typename Gr> |
|
981 bool DynamicPath<Gr>::pushBack(const GraphEdge &e) { |
|
982 if( G.valid(_last) ) { |
|
983 if( edgeIncident(e, _last, _last) ) { |
|
984 edges.push_back(e); |
|
985 return true; |
|
986 } |
|
987 else |
|
988 return false; |
|
989 } |
|
990 else if( length() < 1 || connectTwoEdges(edges[0], e) ) { |
|
991 edges.push_back(e); |
|
992 return true; |
|
993 } |
|
994 else |
|
995 return false; |
|
996 } |
|
997 |
|
998 |
|
999 template<typename Gr> |
|
1000 bool DynamicPath<Gr>::setFrom(const GraphNode &n) { |
|
1001 if( G.valid(_first) ) { |
|
1002 return _first == n; |
|
1003 } |
|
1004 else { |
|
1005 if( length() > 0) { |
|
1006 if( edgeIncident(edges[0], n, _last) ) { |
|
1007 _first = n; |
|
1008 return true; |
|
1009 } |
|
1010 else return false; |
|
1011 } |
|
1012 else { |
|
1013 _first = _last = n; |
|
1014 return true; |
|
1015 } |
|
1016 } |
|
1017 } |
|
1018 |
|
1019 template<typename Gr> |
|
1020 bool DynamicPath<Gr>::setTo(const GraphNode &n) { |
|
1021 if( G.valid(_last) ) { |
|
1022 return _last == n; |
|
1023 } |
|
1024 else { |
|
1025 if( length() > 0) { |
|
1026 if( edgeIncident(edges[0], n, _first) ) { |
|
1027 _last = n; |
|
1028 return true; |
|
1029 } |
|
1030 else return false; |
|
1031 } |
|
1032 else { |
|
1033 _first = _last = n; |
|
1034 return true; |
|
1035 } |
|
1036 } |
|
1037 } |
|
1038 |
|
1039 |
|
1040 template<typename Gr> |
|
1041 typename DynamicPath<Gr>::NodeIt |
|
1042 DynamicPath<Gr>::tail(const EdgeIt& e) const { |
|
1043 NodeIt n; |
|
1044 |
|
1045 if( e.it == edges.end() ) { |
|
1046 // FIXME: invalid-> invalid |
|
1047 n.idx = length() + 1; |
|
1048 n.tail = true; |
|
1049 return n; |
|
1050 } |
|
1051 |
|
1052 n.idx = e.it-edges.begin(); |
|
1053 n.tail = e.forw; |
|
1054 return n; |
|
1055 } |
|
1056 |
|
1057 template<typename Gr> |
|
1058 typename DynamicPath<Gr>::NodeIt |
|
1059 DynamicPath<Gr>::head(const EdgeIt& e) const { |
|
1060 if( e.it == edges.end()-1 ) { |
|
1061 return _last; |
|
1062 } |
|
1063 |
|
1064 EdgeIt next_edge = e; |
|
1065 next(next_edge); |
|
1066 return tail(next_edge); |
|
1067 } |
|
1068 |
|
1069 template<typename Gr> |
|
1070 typename DynamicPath<Gr>::GraphEdge |
|
1071 DynamicPath<Gr>::graphEdge(const EdgeIt& e) const { |
|
1072 if( e.it != edges.end() ) { |
|
1073 return *e.it; |
|
1074 } |
|
1075 else { |
|
1076 return INVALID; |
|
1077 } |
|
1078 } |
|
1079 |
|
1080 template<typename Gr> |
|
1081 typename DynamicPath<Gr>::GraphNode |
|
1082 DynamicPath<Gr>::graphNode(const NodeIt& n) const { |
|
1083 if( n.idx < length() ) { |
|
1084 return n.tail ? G.tail(edges[n.idx]) : G.head(edges[n.idx]); |
|
1085 } |
|
1086 else if( n.idx == length() ) { |
|
1087 return _last; |
|
1088 } |
|
1089 else { |
|
1090 return INVALID; |
|
1091 } |
|
1092 } |
|
1093 |
|
1094 template<typename Gr> |
|
1095 typename DynamicPath<Gr>::EdgeIt& |
|
1096 DynamicPath<Gr>::nth(EdgeIt &e, size_t k) const { |
|
1097 if( k>=length() ) { |
|
1098 // FIXME: invalid EdgeIt |
|
1099 e.it = edges.end(); |
|
1100 e.forw = true; |
|
1101 return e; |
|
1102 } |
|
1103 |
|
1104 e.it = edges.begin()+k; |
|
1105 if(k==0) { |
|
1106 e.forw = ( G.tail(*e.it) == _first ); |
|
1107 } |
|
1108 else { |
|
1109 e.forw = ( G.tail(*e.it) == G.tail(edges[k-1]) || |
|
1110 G.tail(*e.it) == G.head(edges[k-1]) ); |
|
1111 } |
|
1112 return e; |
|
1113 } |
|
1114 |
|
1115 template<typename Gr> |
|
1116 typename DynamicPath<Gr>::NodeIt& |
|
1117 DynamicPath<Gr>::nth(NodeIt &n, size_t k) const { |
|
1118 if( k>length() ) { |
|
1119 // FIXME: invalid NodeIt |
|
1120 n.idx = length()+1; |
|
1121 n.tail = true; |
|
1122 return n; |
|
1123 } |
|
1124 if( k==length() ) { |
|
1125 n.idx = length(); |
|
1126 n.tail = true; |
|
1127 return n; |
|
1128 } |
|
1129 n = tail(nth<EdgeIt>(k)); |
|
1130 return n; |
|
1131 } |
|
1132 |
|
1133 // Reszut konstruktorok: |
|
1134 |
|
1135 |
|
1136 template<typename Gr> |
|
1137 DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const EdgeIt &a, |
|
1138 const EdgeIt &b) : |
|
1139 G(P.G), edges(a.it, b.it) // WARNING: if b.it < a.it this will blow up! |
|
1140 { |
|
1141 if( G.valid(P._first) && a.it < P.edges.end() ) { |
|
1142 _first = ( a.forw ? G.tail(*a.it) : G.head(*a.it) ); |
|
1143 if( b.it < P.edges.end() ) { |
|
1144 _last = ( b.forw ? G.tail(*b.it) : G.head(*b.it) ); |
|
1145 } |
|
1146 else { |
|
1147 _last = P._last; |
|
1148 } |
|
1149 } |
|
1150 } |
|
1151 |
|
1152 template<typename Gr> |
|
1153 DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const NodeIt &a, |
|
1154 const NodeIt &b) : G(P.G) |
|
1155 { |
|
1156 if( !P.valid(a) || !P.valid(b) ) |
|
1157 return; |
|
1158 |
|
1159 int ai = a.idx, bi = b.idx; |
|
1160 if( bi<ai ) |
|
1161 std::swap(ai,bi); |
|
1162 |
|
1163 edges.resize(bi-ai); |
|
1164 copy(P.edges.begin()+ai, P.edges.begin()+bi, edges.begin()); |
|
1165 |
|
1166 _first = P.graphNode(a); |
|
1167 _last = P.graphNode(b); |
|
1168 } |
|
1169 |
|
1170 ///@} |
|
1171 |
|
1172 } // namespace hugo |
|
1173 |
|
1174 #endif // HUGO_PATH_H |