|
1 // -*- C++ -*- |
|
2 /* |
|
3 *template <typename Item, |
|
4 * typename Prio, |
|
5 * typename ItemIntMap, |
|
6 * typename Compare = std::less<Prio> > |
|
7 * |
|
8 *constructors: |
|
9 * |
|
10 *FibHeap(ItemIntMap), FibHeap(ItemIntMap, Compare) |
|
11 * |
|
12 *Member functions: |
|
13 * |
|
14 *int size() : returns the number of elements in the heap |
|
15 * |
|
16 *bool empty() : true iff size()=0 |
|
17 * |
|
18 *void set(Item, Prio) : calls push(Item, Prio) if Item is not |
|
19 * in the heap, and calls decrease/increase(Item, Prio) otherwise |
|
20 * |
|
21 *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item |
|
22 * mustn't be in the heap. |
|
23 * |
|
24 *Item top() : returns the Item with least Prio. |
|
25 * Must be called only if heap is nonempty. |
|
26 * |
|
27 *Prio prio() : returns the least Prio |
|
28 * Must be called only if heap is nonempty. |
|
29 * |
|
30 *Prio get(Item) : returns Prio of Item |
|
31 * Must be called only if Item is in heap. |
|
32 * |
|
33 *void pop() : deletes the Item with least Prio |
|
34 * |
|
35 *void erase(Item) : deletes Item from the heap if it was already there |
|
36 * |
|
37 *void decrease(Item, P) : decreases prio of Item to P. |
|
38 * Item must be in the heap with prio at least P. |
|
39 * |
|
40 *void increase(Item, P) : sets prio of Item to P. |
|
41 * |
|
42 *state_enum state(Item) : returns PRE_HEAP if Item has not been in the |
|
43 * heap until now, IN_HEAP if it is in the heap at the moment, and |
|
44 * POST_HEAP otherwise. In the latter case it is possible that Item |
|
45 * will get back to the heap again. |
|
46 * |
|
47 *In Fibonacci heaps, increase and erase are not efficient, in case of |
|
48 *many calls to these operations, it is better to use bin_heap. |
|
49 */ |
|
50 |
|
51 #ifndef FIB_HEAP_H |
|
52 #define FIB_HEAP_H |
|
53 |
|
54 ///\file |
|
55 ///\brief Fibonacci Heap implementation. |
|
56 |
|
57 #include <vector> |
|
58 #include <functional> |
|
59 #include <math.h> |
|
60 |
|
61 namespace hugo { |
|
62 |
|
63 /// A Fibonacci Heap implementation. |
|
64 template <typename Item, typename Prio, typename ItemIntMap, |
|
65 typename Compare = std::less<Prio> > |
|
66 class FibHeap { |
|
67 |
|
68 typedef Prio PrioType; |
|
69 |
|
70 class store; |
|
71 |
|
72 std::vector<store> container; |
|
73 int minimum; |
|
74 ItemIntMap &iimap; |
|
75 Compare comp; |
|
76 int num_items; |
|
77 |
|
78 ///\todo It is use nowhere |
|
79 ///\todo It doesn't conform to the naming conventions. |
|
80 public: |
|
81 enum state_enum { |
|
82 IN_HEAP = 0, |
|
83 PRE_HEAP = -1, |
|
84 POST_HEAP = -2 |
|
85 }; |
|
86 |
|
87 public : |
|
88 |
|
89 FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} |
|
90 FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), |
|
91 iimap(_iimap), comp(_comp), num_items() {} |
|
92 |
|
93 |
|
94 int size() const { |
|
95 return num_items; |
|
96 } |
|
97 |
|
98 |
|
99 bool empty() const { return num_items==0; } |
|
100 |
|
101 |
|
102 void set (Item const it, PrioType const value) { |
|
103 int i=iimap[it]; |
|
104 if ( i >= 0 && container[i].in ) { |
|
105 if ( comp(value, container[i].prio) ) decrease(it, value); |
|
106 if ( comp(container[i].prio, value) ) increase(it, value); |
|
107 } else push(it, value); |
|
108 } |
|
109 |
|
110 |
|
111 void push (Item const it, PrioType const value) { |
|
112 int i=iimap[it]; |
|
113 if ( i < 0 ) { |
|
114 int s=container.size(); |
|
115 iimap.set( it, s ); |
|
116 store st; |
|
117 st.name=it; |
|
118 container.push_back(st); |
|
119 i=s; |
|
120 } else { |
|
121 container[i].parent=container[i].child=-1; |
|
122 container[i].degree=0; |
|
123 container[i].in=true; |
|
124 container[i].marked=false; |
|
125 } |
|
126 |
|
127 if ( num_items ) { |
|
128 container[container[minimum].right_neighbor].left_neighbor=i; |
|
129 container[i].right_neighbor=container[minimum].right_neighbor; |
|
130 container[minimum].right_neighbor=i; |
|
131 container[i].left_neighbor=minimum; |
|
132 if ( comp( value, container[minimum].prio) ) minimum=i; |
|
133 } else { |
|
134 container[i].right_neighbor=container[i].left_neighbor=i; |
|
135 minimum=i; |
|
136 } |
|
137 container[i].prio=value; |
|
138 ++num_items; |
|
139 } |
|
140 |
|
141 |
|
142 Item top() const { |
|
143 return container[minimum].name; |
|
144 } |
|
145 |
|
146 |
|
147 PrioType prio() const { |
|
148 return container[minimum].prio; |
|
149 } |
|
150 |
|
151 |
|
152 |
|
153 |
|
154 PrioType& operator[](const Item& it) { |
|
155 return container[iimap[it]].prio; |
|
156 } |
|
157 |
|
158 const PrioType& operator[](const Item& it) const { |
|
159 return container[iimap[it]].prio; |
|
160 } |
|
161 |
|
162 // const PrioType get(const Item& it) const { |
|
163 // return container[iimap[it]].prio; |
|
164 // } |
|
165 |
|
166 void pop() { |
|
167 /*The first case is that there are only one root.*/ |
|
168 if ( container[minimum].left_neighbor==minimum ) { |
|
169 container[minimum].in=false; |
|
170 if ( container[minimum].degree!=0 ) { |
|
171 makeroot(container[minimum].child); |
|
172 minimum=container[minimum].child; |
|
173 balance(); |
|
174 } |
|
175 } else { |
|
176 int right=container[minimum].right_neighbor; |
|
177 unlace(minimum); |
|
178 container[minimum].in=false; |
|
179 if ( container[minimum].degree > 0 ) { |
|
180 int left=container[minimum].left_neighbor; |
|
181 int child=container[minimum].child; |
|
182 int last_child=container[child].left_neighbor; |
|
183 |
|
184 makeroot(child); |
|
185 |
|
186 container[left].right_neighbor=child; |
|
187 container[child].left_neighbor=left; |
|
188 container[right].left_neighbor=last_child; |
|
189 container[last_child].right_neighbor=right; |
|
190 } |
|
191 minimum=right; |
|
192 balance(); |
|
193 } // the case where there are more roots |
|
194 --num_items; |
|
195 } |
|
196 |
|
197 |
|
198 void erase (const Item& it) { |
|
199 int i=iimap[it]; |
|
200 |
|
201 if ( i >= 0 && container[i].in ) { |
|
202 if ( container[i].parent!=-1 ) { |
|
203 int p=container[i].parent; |
|
204 cut(i,p); |
|
205 cascade(p); |
|
206 } |
|
207 minimum=i; //As if its prio would be -infinity |
|
208 pop(); |
|
209 } |
|
210 } |
|
211 |
|
212 |
|
213 void decrease (Item it, PrioType const value) { |
|
214 int i=iimap[it]; |
|
215 container[i].prio=value; |
|
216 int p=container[i].parent; |
|
217 |
|
218 if ( p!=-1 && comp(value, container[p].prio) ) { |
|
219 cut(i,p); |
|
220 cascade(p); |
|
221 } |
|
222 if ( comp(value, container[minimum].prio) ) minimum=i; |
|
223 } |
|
224 |
|
225 |
|
226 void increase (Item it, PrioType const value) { |
|
227 erase(it); |
|
228 push(it, value); |
|
229 } |
|
230 |
|
231 |
|
232 state_enum state(const Item &it) const { |
|
233 int i=iimap[it]; |
|
234 if( i>=0 ) { |
|
235 if ( container[i].in ) i=0; |
|
236 else i=-2; |
|
237 } |
|
238 return state_enum(i); |
|
239 } |
|
240 |
|
241 |
|
242 private: |
|
243 |
|
244 void balance() { |
|
245 |
|
246 int maxdeg=int( floor( 2.08*log(double(container.size()))))+1; |
|
247 |
|
248 std::vector<int> A(maxdeg,-1); |
|
249 |
|
250 /* |
|
251 *Recall that now minimum does not point to the minimum prio element. |
|
252 *We set minimum to this during balance(). |
|
253 */ |
|
254 int anchor=container[minimum].left_neighbor; |
|
255 int next=minimum; |
|
256 bool end=false; |
|
257 |
|
258 do { |
|
259 int active=next; |
|
260 if ( anchor==active ) end=true; |
|
261 int d=container[active].degree; |
|
262 next=container[active].right_neighbor; |
|
263 |
|
264 while (A[d]!=-1) { |
|
265 if( comp(container[active].prio, container[A[d]].prio) ) { |
|
266 fuse(active,A[d]); |
|
267 } else { |
|
268 fuse(A[d],active); |
|
269 active=A[d]; |
|
270 } |
|
271 A[d]=-1; |
|
272 ++d; |
|
273 } |
|
274 A[d]=active; |
|
275 } while ( !end ); |
|
276 |
|
277 |
|
278 while ( container[minimum].parent >=0 ) minimum=container[minimum].parent; |
|
279 int s=minimum; |
|
280 int m=minimum; |
|
281 do { |
|
282 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
|
283 s=container[s].right_neighbor; |
|
284 } while ( s != m ); |
|
285 } |
|
286 |
|
287 |
|
288 void makeroot (int c) { |
|
289 int s=c; |
|
290 do { |
|
291 container[s].parent=-1; |
|
292 s=container[s].right_neighbor; |
|
293 } while ( s != c ); |
|
294 } |
|
295 |
|
296 |
|
297 void cut (int a, int b) { |
|
298 /* |
|
299 *Replacing a from the children of b. |
|
300 */ |
|
301 --container[b].degree; |
|
302 |
|
303 if ( container[b].degree !=0 ) { |
|
304 int child=container[b].child; |
|
305 if ( child==a ) |
|
306 container[b].child=container[child].right_neighbor; |
|
307 unlace(a); |
|
308 } |
|
309 |
|
310 |
|
311 /*Lacing a to the roots.*/ |
|
312 int right=container[minimum].right_neighbor; |
|
313 container[minimum].right_neighbor=a; |
|
314 container[a].left_neighbor=minimum; |
|
315 container[a].right_neighbor=right; |
|
316 container[right].left_neighbor=a; |
|
317 |
|
318 container[a].parent=-1; |
|
319 container[a].marked=false; |
|
320 } |
|
321 |
|
322 |
|
323 void cascade (int a) |
|
324 { |
|
325 if ( container[a].parent!=-1 ) { |
|
326 int p=container[a].parent; |
|
327 |
|
328 if ( container[a].marked==false ) container[a].marked=true; |
|
329 else { |
|
330 cut(a,p); |
|
331 cascade(p); |
|
332 } |
|
333 } |
|
334 } |
|
335 |
|
336 |
|
337 void fuse (int a, int b) { |
|
338 unlace(b); |
|
339 |
|
340 /*Lacing b under a.*/ |
|
341 container[b].parent=a; |
|
342 |
|
343 if (container[a].degree==0) { |
|
344 container[b].left_neighbor=b; |
|
345 container[b].right_neighbor=b; |
|
346 container[a].child=b; |
|
347 } else { |
|
348 int child=container[a].child; |
|
349 int last_child=container[child].left_neighbor; |
|
350 container[child].left_neighbor=b; |
|
351 container[b].right_neighbor=child; |
|
352 container[last_child].right_neighbor=b; |
|
353 container[b].left_neighbor=last_child; |
|
354 } |
|
355 |
|
356 ++container[a].degree; |
|
357 |
|
358 container[b].marked=false; |
|
359 } |
|
360 |
|
361 |
|
362 /* |
|
363 *It is invoked only if a has siblings. |
|
364 */ |
|
365 void unlace (int a) { |
|
366 int leftn=container[a].left_neighbor; |
|
367 int rightn=container[a].right_neighbor; |
|
368 container[leftn].right_neighbor=rightn; |
|
369 container[rightn].left_neighbor=leftn; |
|
370 } |
|
371 |
|
372 |
|
373 class store { |
|
374 friend class FibHeap; |
|
375 |
|
376 Item name; |
|
377 int parent; |
|
378 int left_neighbor; |
|
379 int right_neighbor; |
|
380 int child; |
|
381 int degree; |
|
382 bool marked; |
|
383 bool in; |
|
384 PrioType prio; |
|
385 |
|
386 store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
387 }; |
|
388 |
|
389 }; |
|
390 |
|
391 } //namespace hugo |
|
392 #endif |