lemon/bipartite_matching.h
changeset 2043 54f80cf6ac86
child 2051 08652c1763f6
equal deleted inserted replaced
-1:000000000000 0:973173b50a90
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2006
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_BIPARTITE_MATCHING
       
    20 #define LEMON_BIPARTITE_MATCHING
       
    21 
       
    22 #include <lemon/bpugraph_adaptor.h>
       
    23 #include <lemon/bfs.h>
       
    24 
       
    25 #include <iostream>
       
    26 
       
    27 ///\ingroup matching
       
    28 ///\file
       
    29 ///\brief Maximum matching algorithms in bipartite graphs.
       
    30 
       
    31 namespace lemon {
       
    32 
       
    33   /// \ingroup matching
       
    34   ///
       
    35   /// \brief Bipartite Max Cardinality Matching algorithm
       
    36   ///
       
    37   /// Bipartite Max Cardinality Matching algorithm. This class implements
       
    38   /// the Hopcroft-Karp algorithm wich has \f$ O(e\sqrt{n}) \f$ time
       
    39   /// complexity.
       
    40   template <typename BpUGraph>
       
    41   class MaxBipartiteMatching {
       
    42   protected:
       
    43 
       
    44     typedef BpUGraph Graph;
       
    45 
       
    46     typedef typename Graph::Node Node;
       
    47     typedef typename Graph::ANodeIt ANodeIt;
       
    48     typedef typename Graph::BNodeIt BNodeIt;
       
    49     typedef typename Graph::UEdge UEdge;
       
    50     typedef typename Graph::UEdgeIt UEdgeIt;
       
    51     typedef typename Graph::IncEdgeIt IncEdgeIt;
       
    52 
       
    53     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
       
    54     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
       
    55 
       
    56 
       
    57   public:
       
    58 
       
    59     /// \brief Constructor.
       
    60     ///
       
    61     /// Constructor of the algorithm. 
       
    62     MaxBipartiteMatching(const BpUGraph& _graph) 
       
    63       : anode_matching(_graph), bnode_matching(_graph), graph(&_graph) {}
       
    64 
       
    65     /// \name Execution control
       
    66     /// The simplest way to execute the algorithm is to use
       
    67     /// one of the member functions called \c run().
       
    68     /// \n
       
    69     /// If you need more control on the execution,
       
    70     /// first you must call \ref init() or one alternative for it.
       
    71     /// Finally \ref start() will perform the matching computation or
       
    72     /// with step-by-step execution you can augment the solution.
       
    73 
       
    74     /// @{
       
    75 
       
    76     /// \brief Initalize the data structures.
       
    77     ///
       
    78     /// It initalizes the data structures and creates an empty matching.
       
    79     void init() {
       
    80       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
    81         anode_matching[it] = INVALID;
       
    82       }
       
    83       for (BNodeIt it(*graph); it != INVALID; ++it) {
       
    84         bnode_matching[it] = INVALID;
       
    85       }
       
    86       matching_value = 0;
       
    87     }
       
    88 
       
    89     /// \brief Initalize the data structures.
       
    90     ///
       
    91     /// It initalizes the data structures and creates a greedy
       
    92     /// matching.  From this matching sometimes it is faster to get
       
    93     /// the matching than from the initial empty matching.
       
    94     void greedyInit() {
       
    95       matching_value = 0;
       
    96       for (BNodeIt it(*graph); it != INVALID; ++it) {
       
    97         bnode_matching[it] = INVALID;
       
    98       }
       
    99       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   100         anode_matching[it] = INVALID;
       
   101         for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
       
   102           if (bnode_matching[graph->bNode(jt)] == INVALID) {
       
   103             anode_matching[it] = jt;
       
   104             bnode_matching[graph->bNode(jt)] = jt;
       
   105             ++matching_value;
       
   106             break;
       
   107           }
       
   108         }
       
   109       }
       
   110     }
       
   111 
       
   112     /// \brief Initalize the data structures with an initial matching.
       
   113     ///
       
   114     /// It initalizes the data structures with an initial matching.
       
   115     template <typename MatchingMap>
       
   116     void matchingInit(const MatchingMap& matching) {
       
   117       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   118         anode_matching[it] = INVALID;
       
   119       }
       
   120       for (BNodeIt it(*graph); it != INVALID; ++it) {
       
   121         bnode_matching[it] = INVALID;
       
   122       }
       
   123       matching_value = 0;
       
   124       for (UEdgeIt it(*graph); it != INVALID; ++it) {
       
   125         if (matching[it]) {
       
   126           ++matching_value;
       
   127           anode_matching[graph->aNode(it)] = it;
       
   128           bnode_matching[graph->bNode(it)] = it;
       
   129         }
       
   130       }
       
   131     }
       
   132 
       
   133     /// \brief Initalize the data structures with an initial matching.
       
   134     ///
       
   135     /// It initalizes the data structures with an initial matching.
       
   136     /// \return %True when the given map contains really a matching.
       
   137     template <typename MatchingMap>
       
   138     void checkedMatchingInit(const MatchingMap& matching) {
       
   139       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   140         anode_matching[it] = INVALID;
       
   141       }
       
   142       for (BNodeIt it(*graph); it != INVALID; ++it) {
       
   143         bnode_matching[it] = INVALID;
       
   144       }
       
   145       matching_value = 0;
       
   146       for (UEdgeIt it(*graph); it != INVALID; ++it) {
       
   147         if (matching[it]) {
       
   148           ++matching_value;
       
   149           if (anode_matching[graph->aNode(it)] != INVALID) {
       
   150             return false;
       
   151           }
       
   152           anode_matching[graph->aNode(it)] = it;
       
   153           if (bnode_matching[graph->aNode(it)] != INVALID) {
       
   154             return false;
       
   155           }
       
   156           bnode_matching[graph->bNode(it)] = it;
       
   157         }
       
   158       }
       
   159       return false;
       
   160     }
       
   161 
       
   162     /// \brief An augmenting phase of the Hopcroft-Karp algorithm
       
   163     ///
       
   164     /// It runs an augmenting phase of the Hopcroft-Karp
       
   165     /// algorithm. The phase finds maximum count of edge disjoint
       
   166     /// augmenting paths and augments on these paths. The algorithm
       
   167     /// consists at most of \f$ O(\sqrt{n}) \f$ phase and one phase is
       
   168     /// \f$ O(e) \f$ long.
       
   169     bool augment() {
       
   170 
       
   171       typename Graph::template ANodeMap<bool> areached(*graph, false);
       
   172       typename Graph::template BNodeMap<bool> breached(*graph, false);
       
   173 
       
   174       typename Graph::template BNodeMap<UEdge> bpred(*graph, INVALID);
       
   175 
       
   176       std::vector<Node> queue, bqueue;
       
   177       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   178         if (anode_matching[it] == INVALID) {
       
   179           queue.push_back(it);
       
   180           areached[it] = true;
       
   181         }
       
   182       }
       
   183 
       
   184       bool success = false;
       
   185 
       
   186       while (!success && !queue.empty()) {
       
   187         std::vector<Node> newqueue;
       
   188         for (int i = 0; i < (int)queue.size(); ++i) {
       
   189           Node anode = queue[i];
       
   190           for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
       
   191             Node bnode = graph->bNode(jt);
       
   192             if (breached[bnode]) continue;
       
   193             breached[bnode] = true;
       
   194             bpred[bnode] = jt;
       
   195             if (bnode_matching[bnode] == INVALID) {
       
   196               bqueue.push_back(bnode);
       
   197               success = true;
       
   198             } else {           
       
   199               Node newanode = graph->aNode(bnode_matching[bnode]);
       
   200               if (!areached[newanode]) {
       
   201                 areached[newanode] = true;
       
   202                 newqueue.push_back(newanode);
       
   203               }
       
   204             }
       
   205           }
       
   206         }
       
   207         queue.swap(newqueue);
       
   208       }
       
   209 
       
   210       if (success) {
       
   211 
       
   212         typename Graph::template ANodeMap<bool> aused(*graph, false);
       
   213         
       
   214         for (int i = 0; i < (int)bqueue.size(); ++i) {
       
   215           Node bnode = bqueue[i];
       
   216 
       
   217           bool used = false;
       
   218 
       
   219           while (bnode != INVALID) {
       
   220             UEdge uedge = bpred[bnode];
       
   221             Node anode = graph->aNode(uedge);
       
   222             
       
   223             if (aused[anode]) {
       
   224               used = true;
       
   225               break;
       
   226             }
       
   227             
       
   228             bnode = anode_matching[anode] != INVALID ? 
       
   229               graph->bNode(anode_matching[anode]) : INVALID;
       
   230             
       
   231           }
       
   232           
       
   233           if (used) continue;
       
   234 
       
   235           bnode = bqueue[i];
       
   236           while (bnode != INVALID) {
       
   237             UEdge uedge = bpred[bnode];
       
   238             Node anode = graph->aNode(uedge);
       
   239             
       
   240             bnode_matching[bnode] = uedge;
       
   241 
       
   242             bnode = anode_matching[anode] != INVALID ? 
       
   243               graph->bNode(anode_matching[anode]) : INVALID;
       
   244             
       
   245             anode_matching[anode] = uedge;
       
   246 
       
   247             aused[anode] = true;
       
   248           }
       
   249           ++matching_value;
       
   250 
       
   251         }
       
   252       }
       
   253       return success;
       
   254     }
       
   255 
       
   256     /// \brief An augmenting phase of the Ford-Fulkerson algorithm
       
   257     ///
       
   258     /// It runs an augmenting phase of the Ford-Fulkerson
       
   259     /// algorithm. The phase finds only one augmenting path and 
       
   260     /// augments only on this paths. The algorithm consists at most 
       
   261     /// of \f$ O(n) \f$ simple phase and one phase is at most 
       
   262     /// \f$ O(e) \f$ long.
       
   263     bool simpleAugment() {
       
   264 
       
   265       typename Graph::template ANodeMap<bool> areached(*graph, false);
       
   266       typename Graph::template BNodeMap<bool> breached(*graph, false);
       
   267 
       
   268       typename Graph::template BNodeMap<UEdge> bpred(*graph, INVALID);
       
   269 
       
   270       std::vector<Node> queue;
       
   271       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   272         if (anode_matching[it] == INVALID) {
       
   273           queue.push_back(it);
       
   274           areached[it] = true;
       
   275         }
       
   276       }
       
   277 
       
   278       while (!queue.empty()) {
       
   279         std::vector<Node> newqueue;
       
   280         for (int i = 0; i < (int)queue.size(); ++i) {
       
   281           Node anode = queue[i];
       
   282           for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
       
   283             Node bnode = graph->bNode(jt);
       
   284             if (breached[bnode]) continue;
       
   285             breached[bnode] = true;
       
   286             bpred[bnode] = jt;
       
   287             if (bnode_matching[bnode] == INVALID) {
       
   288               while (bnode != INVALID) {
       
   289                 UEdge uedge = bpred[bnode];
       
   290                 anode = graph->aNode(uedge);
       
   291                 
       
   292                 bnode_matching[bnode] = uedge;
       
   293                 
       
   294                 bnode = anode_matching[anode] != INVALID ? 
       
   295                   graph->bNode(anode_matching[anode]) : INVALID;
       
   296                 
       
   297                 anode_matching[anode] = uedge;
       
   298                 
       
   299               }
       
   300               ++matching_value;
       
   301               return true;
       
   302             } else {           
       
   303               Node newanode = graph->aNode(bnode_matching[bnode]);
       
   304               if (!areached[newanode]) {
       
   305                 areached[newanode] = true;
       
   306                 newqueue.push_back(newanode);
       
   307               }
       
   308             }
       
   309           }
       
   310         }
       
   311         queue.swap(newqueue);
       
   312       }
       
   313       
       
   314       return false;
       
   315     }
       
   316 
       
   317     /// \brief Starts the algorithm.
       
   318     ///
       
   319     /// Starts the algorithm. It runs augmenting phases until the optimal
       
   320     /// solution reached.
       
   321     void start() {
       
   322       while (augment()) {}
       
   323     }
       
   324 
       
   325     /// \brief Runs the algorithm.
       
   326     ///
       
   327     /// It just initalize the algorithm and then start it.
       
   328     void run() {
       
   329       init();
       
   330       start();
       
   331     }
       
   332 
       
   333     /// @}
       
   334 
       
   335     /// \name Query Functions
       
   336     /// The result of the %Matching algorithm can be obtained using these
       
   337     /// functions.\n
       
   338     /// Before the use of these functions,
       
   339     /// either run() or start() must be called.
       
   340     
       
   341     ///@{
       
   342 
       
   343     /// \brief Returns an minimum covering of the nodes.
       
   344     ///
       
   345     /// The minimum covering set problem is the dual solution of the
       
   346     /// maximum bipartite matching. It provides an solution for this
       
   347     /// problem what is proof of the optimality of the matching.
       
   348     /// \return The size of the cover set.
       
   349     template <typename CoverMap>
       
   350     int coverSet(CoverMap& covering) {
       
   351 
       
   352       typename Graph::template ANodeMap<bool> areached(*graph, false);
       
   353       typename Graph::template BNodeMap<bool> breached(*graph, false);
       
   354       
       
   355       std::vector<Node> queue;
       
   356       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   357         if (anode_matching[it] == INVALID) {
       
   358           queue.push_back(it);
       
   359         }
       
   360       }
       
   361 
       
   362       while (!queue.empty()) {
       
   363         std::vector<Node> newqueue;
       
   364         for (int i = 0; i < (int)queue.size(); ++i) {
       
   365           Node anode = queue[i];
       
   366           for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
       
   367             Node bnode = graph->bNode(jt);
       
   368             if (breached[bnode]) continue;
       
   369             breached[bnode] = true;
       
   370             if (bnode_matching[bnode] != INVALID) {
       
   371               Node newanode = graph->aNode(bnode_matching[bnode]);
       
   372               if (!areached[newanode]) {
       
   373                 areached[newanode] = true;
       
   374                 newqueue.push_back(newanode);
       
   375               }
       
   376             }
       
   377           }
       
   378         }
       
   379         queue.swap(newqueue);
       
   380       }
       
   381 
       
   382       int size = 0;
       
   383       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   384         covering[it] = !areached[it] && anode_matching[it] != INVALID;
       
   385         if (!areached[it] && anode_matching[it] != INVALID) {
       
   386           ++size;
       
   387         }
       
   388       }
       
   389       for (BNodeIt it(*graph); it != INVALID; ++it) {
       
   390         covering[it] = breached[it];
       
   391         if (breached[it]) {
       
   392           ++size;
       
   393         }
       
   394       }
       
   395       return size;
       
   396     }
       
   397 
       
   398     /// \brief Set true all matching uedge in the map.
       
   399     /// 
       
   400     /// Set true all matching uedge in the map. It does not change the
       
   401     /// value mapped to the other uedges.
       
   402     /// \return The number of the matching edges.
       
   403     template <typename MatchingMap>
       
   404     int quickMatching(MatchingMap& matching) {
       
   405       for (ANodeIt it(*graph); it != INVALID; ++it) {
       
   406         if (anode_matching[it] != INVALID) {
       
   407           matching[anode_matching[it]] = true;
       
   408         }
       
   409       }
       
   410       return matching_value;
       
   411     }
       
   412 
       
   413     /// \brief Set true all matching uedge in the map and the others to false.
       
   414     /// 
       
   415     /// Set true all matching uedge in the map and the others to false.
       
   416     /// \return The number of the matching edges.
       
   417     template <typename MatchingMap>
       
   418     int matching(MatchingMap& matching) {
       
   419       for (UEdgeIt it(*graph); it != INVALID; ++it) {
       
   420         matching[it] = it == anode_matching[graph->aNode(it)];
       
   421       }
       
   422       return matching_value;
       
   423     }
       
   424 
       
   425 
       
   426     /// \brief Return true if the given uedge is in the matching.
       
   427     /// 
       
   428     /// It returns true if the given uedge is in the matching.
       
   429     bool matchingEdge(const UEdge& edge) {
       
   430       return anode_matching[graph->aNode(edge)] == edge;
       
   431     }
       
   432 
       
   433     /// \brief Returns the matching edge from the node.
       
   434     /// 
       
   435     /// Returns the matching edge from the node. If there is not such
       
   436     /// edge it gives back \c INVALID.
       
   437     UEdge matchingEdge(const Node& node) {
       
   438       if (graph->aNode(node)) {
       
   439         return anode_matching[node];
       
   440       } else {
       
   441         return bnode_matching[node];
       
   442       }
       
   443     }
       
   444 
       
   445     /// \brief Gives back the number of the matching edges.
       
   446     ///
       
   447     /// Gives back the number of the matching edges.
       
   448     int matchingValue() const {
       
   449       return matching_value;
       
   450     }
       
   451 
       
   452     /// @}
       
   453 
       
   454   private:
       
   455 
       
   456     ANodeMatchingMap anode_matching;
       
   457     BNodeMatchingMap bnode_matching;
       
   458     const Graph *graph;
       
   459 
       
   460     int matching_value;
       
   461   
       
   462   };
       
   463 
       
   464 }
       
   465 
       
   466 #endif