src/lemon/bezier.h
changeset 1080 568ce2be7fe0
child 1084 320a0f083ca1
equal deleted inserted replaced
-1:000000000000 0:bca77cb4a557
       
     1 /* -*- C++ -*-
       
     2  * src/lemon/bezier.h - Part of LEMON, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 
       
    17 #ifndef LEMON_BEZIER_H
       
    18 #define LEMON_BEZIER_H
       
    19 
       
    20 ///\ingroup misc
       
    21 ///\file
       
    22 ///\brief Classes to compute with Bezier curves.
       
    23 ///
       
    24 ///Up to now this file is internally used by \ref graph_to_eps.h
       
    25 ///
       
    26 ///\author Alpar Juttner
       
    27 
       
    28 #include<lemon/xy.h>
       
    29 
       
    30 namespace lemon {
       
    31 
       
    32 class BezierBase {
       
    33 public:
       
    34   typedef xy<double> xy;
       
    35 protected:
       
    36   static xy conv(xy x,xy y,double t) {return (1-t)*x+t*y;}
       
    37 };
       
    38 
       
    39 class Bezier1 : public BezierBase
       
    40 {
       
    41 public:
       
    42   xy p1,p2;
       
    43 
       
    44   Bezier1() {}
       
    45   Bezier1(xy _p1, xy _p2) :p1(_p1), p2(_p2) {}
       
    46   
       
    47   xy operator()(double t) const
       
    48   {
       
    49     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
       
    50     return conv(p1,p2,t);
       
    51   }
       
    52   Bezier1 before(double t) const
       
    53   {
       
    54     return Bezier1(p1,conv(p1,p2,t));
       
    55   }
       
    56   
       
    57   Bezier1 after(double t) const
       
    58   {
       
    59     return Bezier1(conv(p1,p2,t),p2);
       
    60   }
       
    61   Bezier1 operator()(double a,double b) { return before(b).after(a/b); }  
       
    62 };
       
    63 
       
    64 class Bezier2 : public BezierBase
       
    65 {
       
    66 public:
       
    67   xy p1,p2,p3;
       
    68 
       
    69   Bezier2() {}
       
    70   Bezier2(xy _p1, xy _p2, xy _p3) :p1(_p1), p2(_p2), p3(_p3) {}
       
    71   Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
       
    72   xy operator()(double t) const
       
    73   {
       
    74     //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
       
    75     return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
       
    76   }
       
    77   Bezier2 before(double t) const
       
    78   {
       
    79     xy q(conv(p1,p2,t));
       
    80     xy r(conv(p2,p3,t));
       
    81     return Bezier2(p1,q,conv(q,r,t));
       
    82   }
       
    83   
       
    84   Bezier2 after(double t) const
       
    85   {
       
    86     xy q(conv(p1,p2,t));
       
    87     xy r(conv(p2,p3,t));
       
    88     return Bezier2(conv(q,r,t),r,p3);
       
    89   }
       
    90   Bezier2 operator()(double a,double b) { return before(b).after(a/b); }
       
    91   
       
    92 };
       
    93 
       
    94 class Bezier3 : public BezierBase
       
    95 {
       
    96 public:
       
    97   xy p1,p2,p3,p4;
       
    98 
       
    99   Bezier3() {}
       
   100   Bezier3(xy _p1, xy _p2, xy _p3, xy _p4) :p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
       
   101   Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), 
       
   102 			      p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
       
   103   Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
       
   104 			      p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
       
   105   
       
   106   xy operator()(double t) const 
       
   107     {
       
   108       //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
       
   109       return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
       
   110 	(3*t*t*(1-t))*p3+(t*t*t)*p4;
       
   111     }
       
   112   Bezier3 before(double t) const
       
   113     {
       
   114       xy p(conv(p1,p2,t));
       
   115       xy q(conv(p2,p3,t));
       
   116       xy r(conv(p3,p4,t));
       
   117       xy a(conv(p,q,t));
       
   118       xy b(conv(q,r,t));
       
   119       xy c(conv(a,b,t));
       
   120       return Bezier3(p1,p,a,c);
       
   121     }
       
   122   
       
   123   Bezier3 after(double t) const
       
   124     {
       
   125       xy p(conv(p1,p2,t));
       
   126       xy q(conv(p2,p3,t));
       
   127       xy r(conv(p3,p4,t));
       
   128       xy a(conv(p,q,t));
       
   129       xy b(conv(q,r,t));
       
   130       xy c(conv(a,b,t));
       
   131       return Bezier3(c,b,r,p4);
       
   132     }
       
   133   Bezier3 operator()(double a,double b) { return before(b).after(a/b); }
       
   134   
       
   135 };
       
   136 
       
   137 } //END OF NAMESPACE LEMON
       
   138 
       
   139 #endif // LEMON_BEZIER_H