4 |
4 |
5 ///\file |
5 ///\file |
6 ///\brief Declaration of GraphSkeleton. |
6 ///\brief Declaration of GraphSkeleton. |
7 |
7 |
8 #include <hugo/invalid.h> |
8 #include <hugo/invalid.h> |
|
9 #include <hugo/skeletons/maps.h> |
9 |
10 |
10 /// The namespace of HugoLib |
11 /// The namespace of HugoLib |
11 namespace hugo { |
12 namespace hugo { |
12 |
13 namespace skeleton { |
13 // @defgroup empty_graph The GraphSkeleton class |
14 |
14 // @{ |
15 // @defgroup empty_graph The GraphSkeleton class |
15 |
16 // @{ |
16 /// An empty graph class. |
17 |
17 |
18 /// An empty static graph class. |
18 /// This class provides all the common features of a graph structure, |
19 |
19 /// however completely without implementations and real data structures |
20 /// This class provides all the common features of a graph structure, |
20 /// behind the interface. |
21 /// however completely without implementations and real data structures |
21 /// All graph algorithms should compile with this class, but it will not |
22 /// behind the interface. |
22 /// run properly, of course. |
23 /// All graph algorithms should compile with this class, but it will not |
23 /// |
24 /// run properly, of course. |
24 /// It can be used for checking the interface compatibility, |
|
25 /// or it can serve as a skeleton of a new graph structure. |
|
26 /// |
|
27 /// Also, you will find here the full documentation of a certain graph |
|
28 /// feature, the documentation of a real graph imlementation |
|
29 /// like @ref ListGraph or |
|
30 /// @ref SmartGraph will just refer to this structure. |
|
31 class GraphSkeleton |
|
32 { |
|
33 public: |
|
34 /// Defalult constructor. |
|
35 GraphSkeleton() {} |
|
36 ///Copy consructor. |
|
37 |
|
38 ///\todo It is not clear, what we expect from a copy constructor. |
|
39 ///E.g. How to assign the nodes/edges to each other? What about maps? |
|
40 GraphSkeleton(const GraphSkeleton &G) {} |
|
41 |
|
42 /// The base type of the node iterators. |
|
43 |
|
44 /// This is the base type of each node iterators, |
|
45 /// thus each kind of node iterator will convert to this. |
|
46 class Node { |
|
47 public: |
|
48 /// @warning The default constructor sets the iterator |
|
49 /// to an undefined value. |
|
50 Node() {} //FIXME |
|
51 /// Invalid constructor \& conversion. |
|
52 |
|
53 /// This constructor initializes the iterator to be invalid. |
|
54 /// \sa Invalid for more details. |
|
55 |
|
56 Node(Invalid) {} |
|
57 //Node(const Node &) {} |
|
58 |
|
59 /// Two iterators are equal if and only if they point to the |
|
60 /// same object or both are invalid. |
|
61 bool operator==(Node) const { return true; } |
|
62 |
|
63 /// \sa \ref operator==(Node n) |
|
64 /// |
|
65 bool operator!=(Node) const { return true; } |
|
66 |
|
67 bool operator<(Node) const { return true; } |
|
68 }; |
|
69 |
|
70 /// This iterator goes through each node. |
|
71 |
|
72 /// This iterator goes through each node. |
|
73 /// Its usage is quite simple, for example you can count the number |
|
74 /// of nodes in graph \c G of type \c Graph like this: |
|
75 /// \code |
|
76 ///int count=0; |
|
77 ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
|
78 /// \endcode |
|
79 class NodeIt : public Node { |
|
80 public: |
|
81 /// @warning The default constructor sets the iterator |
|
82 /// to an undefined value. |
|
83 NodeIt() {} //FIXME |
|
84 /// Invalid constructor \& conversion. |
|
85 |
|
86 /// Initialize the iterator to be invalid |
|
87 /// \sa Invalid for more details. |
|
88 NodeIt(Invalid) {} |
|
89 /// Sets the iterator to the first node of \c G. |
|
90 NodeIt(const GraphSkeleton &) {} |
|
91 /// @warning The default constructor sets the iterator |
|
92 /// to an undefined value. |
|
93 NodeIt(const NodeIt &n) : Node(n) {} |
|
94 }; |
|
95 |
|
96 |
|
97 /// The base type of the edge iterators. |
|
98 class Edge { |
|
99 public: |
|
100 /// @warning The default constructor sets the iterator |
|
101 /// to an undefined value. |
|
102 Edge() {} //FIXME |
|
103 /// Initialize the iterator to be invalid |
|
104 Edge(Invalid) {} |
|
105 /// Two iterators are equal if and only if they point to the |
|
106 /// same object or both are invalid. |
|
107 bool operator==(Edge) const { return true; } |
|
108 bool operator!=(Edge) const { return true; } |
|
109 bool operator<(Edge) const { return true; } |
|
110 }; |
|
111 |
|
112 /// This iterator goes trough the outgoing edges of a node. |
|
113 |
|
114 /// This iterator goes trough the \e outgoing edges of a certain node |
|
115 /// of a graph. |
|
116 /// Its usage is quite simple, for example you can count the number |
|
117 /// of outgoing edges of a node \c n |
|
118 /// in graph \c G of type \c Graph as follows. |
|
119 /// \code |
|
120 ///int count=0; |
|
121 ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
|
122 /// \endcode |
|
123 |
|
124 class OutEdgeIt : public Edge { |
|
125 public: |
|
126 /// @warning The default constructor sets the iterator |
|
127 /// to an undefined value. |
|
128 OutEdgeIt() {} |
|
129 /// Initialize the iterator to be invalid |
|
130 OutEdgeIt(Invalid) {} |
|
131 /// This constructor sets the iterator to first outgoing edge. |
|
132 |
|
133 /// This constructor set the iterator to the first outgoing edge of |
|
134 /// node |
|
135 ///@param n the node |
|
136 ///@param G the graph |
|
137 OutEdgeIt(const GraphSkeleton &, Node) {} |
|
138 }; |
|
139 |
|
140 /// This iterator goes trough the incoming edges of a node. |
|
141 |
|
142 /// This iterator goes trough the \e incoming edges of a certain node |
|
143 /// of a graph. |
|
144 /// Its usage is quite simple, for example you can count the number |
|
145 /// of outgoing edges of a node \c n |
|
146 /// in graph \c G of type \c Graph as follows. |
|
147 /// \code |
|
148 ///int count=0; |
|
149 ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
|
150 /// \endcode |
|
151 |
|
152 class InEdgeIt : public Edge { |
|
153 public: |
|
154 /// @warning The default constructor sets the iterator |
|
155 /// to an undefined value. |
|
156 InEdgeIt() {} |
|
157 /// Initialize the iterator to be invalid |
|
158 InEdgeIt(Invalid) {} |
|
159 InEdgeIt(const GraphSkeleton &, Node) {} |
|
160 }; |
|
161 // class SymEdgeIt : public Edge {}; |
|
162 |
|
163 /// This iterator goes through each edge. |
|
164 |
|
165 /// This iterator goes through each edge of a graph. |
|
166 /// Its usage is quite simple, for example you can count the number |
|
167 /// of edges in a graph \c G of type \c Graph as follows: |
|
168 /// \code |
|
169 ///int count=0; |
|
170 ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
|
171 /// \endcode |
|
172 class EdgeIt : public Edge { |
|
173 public: |
|
174 /// @warning The default constructor sets the iterator |
|
175 /// to an undefined value. |
|
176 EdgeIt() {} |
|
177 /// Initialize the iterator to be invalid |
|
178 EdgeIt(Invalid) {} |
|
179 EdgeIt(const GraphSkeleton &) {} |
|
180 }; |
|
181 |
|
182 /// First node of the graph. |
|
183 |
|
184 /// \retval i the first node. |
|
185 /// \return the first node. |
|
186 /// |
25 /// |
187 NodeIt &first(NodeIt &i) const { return i;} |
26 /// It can be used for checking the interface compatibility, |
188 |
27 /// or it can serve as a skeleton of a new graph structure. |
189 /// The first incoming edge. |
28 /// |
190 InEdgeIt &first(InEdgeIt &i, Node) const { return i;} |
29 /// Also, you will find here the full documentation of a certain graph |
191 /// The first outgoing edge. |
30 /// feature, the documentation of a real graph imlementation |
192 OutEdgeIt &first(OutEdgeIt &i, Node) const { return i;} |
31 /// like @ref ListGraph or |
193 // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
32 /// @ref SmartGraph will just refer to this structure. |
194 /// The first edge of the Graph. |
33 class StaticGraphSkeleton |
195 EdgeIt &first(EdgeIt &i) const { return i;} |
|
196 |
|
197 // Node getNext(Node) const {} |
|
198 // InEdgeIt getNext(InEdgeIt) const {} |
|
199 // OutEdgeIt getNext(OutEdgeIt) const {} |
|
200 // //SymEdgeIt getNext(SymEdgeIt) const {} |
|
201 // EdgeIt getNext(EdgeIt) const {} |
|
202 |
|
203 /// Go to the next node. |
|
204 NodeIt &next(NodeIt &i) const { return i;} |
|
205 /// Go to the next incoming edge. |
|
206 InEdgeIt &next(InEdgeIt &i) const { return i;} |
|
207 /// Go to the next outgoing edge. |
|
208 OutEdgeIt &next(OutEdgeIt &i) const { return i;} |
|
209 //SymEdgeIt &next(SymEdgeIt &) const {} |
|
210 /// Go to the next edge. |
|
211 EdgeIt &next(EdgeIt &i) const { return i;} |
|
212 |
|
213 ///Gives back the head node of an edge. |
|
214 Node head(Edge) const { return INVALID; } |
|
215 ///Gives back the tail node of an edge. |
|
216 Node tail(Edge) const { return INVALID; } |
|
217 |
|
218 // Node aNode(InEdgeIt) const {} |
|
219 // Node aNode(OutEdgeIt) const {} |
|
220 // Node aNode(SymEdgeIt) const {} |
|
221 |
|
222 // Node bNode(InEdgeIt) const {} |
|
223 // Node bNode(OutEdgeIt) const {} |
|
224 // Node bNode(SymEdgeIt) const {} |
|
225 |
|
226 /// Checks if a node iterator is valid |
|
227 |
|
228 ///\todo Maybe, it would be better if iterator converted to |
|
229 ///bool directly, as Jacint prefers. |
|
230 bool valid(const Node&) const { return true;} |
|
231 /// Checks if an edge iterator is valid |
|
232 |
|
233 ///\todo Maybe, it would be better if iterator converted to |
|
234 ///bool directly, as Jacint prefers. |
|
235 bool valid(const Edge&) const { return true;} |
|
236 |
|
237 ///Gives back the \e id of a node. |
|
238 |
|
239 ///\warning Not all graph structures provide this feature. |
|
240 /// |
|
241 int id(const Node&) const { return 0;} |
|
242 ///Gives back the \e id of an edge. |
|
243 |
|
244 ///\warning Not all graph structures provide this feature. |
|
245 /// |
|
246 int id(const Edge&) const { return 0;} |
|
247 |
|
248 //void setInvalid(Node &) const {}; |
|
249 //void setInvalid(Edge &) const {}; |
|
250 |
|
251 ///Add a new node to the graph. |
|
252 |
|
253 /// \return the new node. |
|
254 /// |
|
255 Node addNode() { return INVALID;} |
|
256 ///Add a new edge to the graph. |
|
257 |
|
258 ///Add a new edge to the graph with tail node \c tail |
|
259 ///and head node \c head. |
|
260 ///\return the new edge. |
|
261 Edge addEdge(Node, Node) { return INVALID;} |
|
262 |
|
263 /// Resets the graph. |
|
264 |
|
265 /// This function deletes all edges and nodes of the graph. |
|
266 /// It also frees the memory allocated to store them. |
|
267 void clear() {} |
|
268 |
|
269 int nodeNum() const { return 0;} |
|
270 int edgeNum() const { return 0;} |
|
271 |
|
272 ///Read/write/reference map of the nodes to type \c T. |
|
273 |
|
274 ///Read/write/reference map of the nodes to type \c T. |
|
275 /// \sa MemoryMapSkeleton |
|
276 /// \todo We may need copy constructor |
|
277 /// \todo We may need conversion from other nodetype |
|
278 /// \todo We may need operator= |
|
279 /// \warning Making maps that can handle bool type (NodeMap<bool>) |
|
280 /// needs extra attention! |
|
281 |
|
282 template<class T> class NodeMap |
|
283 { |
34 { |
284 public: |
35 public: |
285 typedef T ValueType; |
36 /// Defalult constructor. |
286 typedef Node KeyType; |
37 StaticGraphSkeleton() {} |
287 |
38 ///Copy consructor. |
288 NodeMap(const GraphSkeleton &) {} |
39 |
289 NodeMap(const GraphSkeleton &, T) {} |
40 ///\todo It is not clear, what we expect from a copy constructor. |
290 |
41 ///E.g. How to assign the nodes/edges to each other? What about maps? |
291 template<typename TT> NodeMap(const NodeMap<TT> &) {} |
42 StaticGraphSkeleton(const StaticGraphSkeleton &G) {} |
292 |
43 |
293 /// Sets the value of a node. |
44 /// The base type of the node iterators. |
294 |
45 |
295 /// Sets the value associated with node \c i to the value \c t. |
46 /// This is the base type of each node iterators, |
|
47 /// thus each kind of node iterator will convert to this. |
|
48 class Node { |
|
49 public: |
|
50 /// @warning The default constructor sets the iterator |
|
51 /// to an undefined value. |
|
52 Node() {} //FIXME |
|
53 /// Invalid constructor \& conversion. |
|
54 |
|
55 /// This constructor initializes the iterator to be invalid. |
|
56 /// \sa Invalid for more details. |
|
57 |
|
58 Node(Invalid) {} |
|
59 //Node(const Node &) {} |
|
60 |
|
61 /// Two iterators are equal if and only if they point to the |
|
62 /// same object or both are invalid. |
|
63 bool operator==(Node) const { return true; } |
|
64 |
|
65 /// \sa \ref operator==(Node n) |
|
66 /// |
|
67 bool operator!=(Node) const { return true; } |
|
68 |
|
69 bool operator<(Node) const { return true; } |
|
70 }; |
|
71 |
|
72 /// This iterator goes through each node. |
|
73 |
|
74 /// This iterator goes through each node. |
|
75 /// Its usage is quite simple, for example you can count the number |
|
76 /// of nodes in graph \c G of type \c Graph like this: |
|
77 /// \code |
|
78 ///int count=0; |
|
79 ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++; |
|
80 /// \endcode |
|
81 class NodeIt : public Node { |
|
82 public: |
|
83 /// @warning The default constructor sets the iterator |
|
84 /// to an undefined value. |
|
85 NodeIt() {} //FIXME |
|
86 /// Invalid constructor \& conversion. |
|
87 |
|
88 /// Initialize the iterator to be invalid |
|
89 /// \sa Invalid for more details. |
|
90 NodeIt(Invalid) {} |
|
91 /// Sets the iterator to the first node of \c G. |
|
92 NodeIt(const StaticGraphSkeleton &) {} |
|
93 /// @warning The default constructor sets the iterator |
|
94 /// to an undefined value. |
|
95 NodeIt(const NodeIt &n) : Node(n) {} |
|
96 }; |
|
97 |
|
98 |
|
99 /// The base type of the edge iterators. |
|
100 class Edge { |
|
101 public: |
|
102 /// @warning The default constructor sets the iterator |
|
103 /// to an undefined value. |
|
104 Edge() {} //FIXME |
|
105 /// Initialize the iterator to be invalid |
|
106 Edge(Invalid) {} |
|
107 /// Two iterators are equal if and only if they point to the |
|
108 /// same object or both are invalid. |
|
109 bool operator==(Edge) const { return true; } |
|
110 bool operator!=(Edge) const { return true; } |
|
111 bool operator<(Edge) const { return true; } |
|
112 }; |
|
113 |
|
114 /// This iterator goes trough the outgoing edges of a node. |
|
115 |
|
116 /// This iterator goes trough the \e outgoing edges of a certain node |
|
117 /// of a graph. |
|
118 /// Its usage is quite simple, for example you can count the number |
|
119 /// of outgoing edges of a node \c n |
|
120 /// in graph \c G of type \c Graph as follows. |
|
121 /// \code |
|
122 ///int count=0; |
|
123 ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
|
124 /// \endcode |
|
125 |
|
126 class OutEdgeIt : public Edge { |
|
127 public: |
|
128 /// @warning The default constructor sets the iterator |
|
129 /// to an undefined value. |
|
130 OutEdgeIt() {} |
|
131 /// Initialize the iterator to be invalid |
|
132 OutEdgeIt(Invalid) {} |
|
133 /// This constructor sets the iterator to first outgoing edge. |
|
134 |
|
135 /// This constructor set the iterator to the first outgoing edge of |
|
136 /// node |
|
137 ///@param n the node |
|
138 ///@param G the graph |
|
139 OutEdgeIt(const StaticGraphSkeleton &, Node) {} |
|
140 }; |
|
141 |
|
142 /// This iterator goes trough the incoming edges of a node. |
|
143 |
|
144 /// This iterator goes trough the \e incoming edges of a certain node |
|
145 /// of a graph. |
|
146 /// Its usage is quite simple, for example you can count the number |
|
147 /// of outgoing edges of a node \c n |
|
148 /// in graph \c G of type \c Graph as follows. |
|
149 /// \code |
|
150 ///int count=0; |
|
151 ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++; |
|
152 /// \endcode |
|
153 |
|
154 class InEdgeIt : public Edge { |
|
155 public: |
|
156 /// @warning The default constructor sets the iterator |
|
157 /// to an undefined value. |
|
158 InEdgeIt() {} |
|
159 /// Initialize the iterator to be invalid |
|
160 InEdgeIt(Invalid) {} |
|
161 InEdgeIt(const StaticGraphSkeleton &, Node) {} |
|
162 }; |
|
163 // class SymEdgeIt : public Edge {}; |
|
164 |
|
165 /// This iterator goes through each edge. |
|
166 |
|
167 /// This iterator goes through each edge of a graph. |
|
168 /// Its usage is quite simple, for example you can count the number |
|
169 /// of edges in a graph \c G of type \c Graph as follows: |
|
170 /// \code |
|
171 ///int count=0; |
|
172 ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++; |
|
173 /// \endcode |
|
174 class EdgeIt : public Edge { |
|
175 public: |
|
176 /// @warning The default constructor sets the iterator |
|
177 /// to an undefined value. |
|
178 EdgeIt() {} |
|
179 /// Initialize the iterator to be invalid |
|
180 EdgeIt(Invalid) {} |
|
181 EdgeIt(const StaticGraphSkeleton &) {} |
|
182 }; |
|
183 |
|
184 /// First node of the graph. |
|
185 |
|
186 /// \retval i the first node. |
|
187 /// \return the first node. |
296 /// |
188 /// |
297 void set(Node, T) {} |
189 NodeIt &first(NodeIt &i) const { return i;} |
298 // Gets the value of a node. |
190 |
299 //T get(Node i) const {return *(T*)0;} //FIXME: Is it necessary? |
191 /// The first incoming edge. |
300 T &operator[](Node) {return *(T*)0;} |
192 InEdgeIt &first(InEdgeIt &i, Node) const { return i;} |
301 const T &operator[](Node) const {return *(T*)0;} |
193 /// The first outgoing edge. |
302 |
194 OutEdgeIt &first(OutEdgeIt &i, Node) const { return i;} |
303 /// Updates the map if the graph has been changed |
195 // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
304 |
196 /// The first edge of the Graph. |
305 /// \todo Do we need this? |
197 EdgeIt &first(EdgeIt &i) const { return i;} |
|
198 |
|
199 // Node getNext(Node) const {} |
|
200 // InEdgeIt getNext(InEdgeIt) const {} |
|
201 // OutEdgeIt getNext(OutEdgeIt) const {} |
|
202 // //SymEdgeIt getNext(SymEdgeIt) const {} |
|
203 // EdgeIt getNext(EdgeIt) const {} |
|
204 |
|
205 /// Go to the next node. |
|
206 NodeIt &next(NodeIt &i) const { return i;} |
|
207 /// Go to the next incoming edge. |
|
208 InEdgeIt &next(InEdgeIt &i) const { return i;} |
|
209 /// Go to the next outgoing edge. |
|
210 OutEdgeIt &next(OutEdgeIt &i) const { return i;} |
|
211 //SymEdgeIt &next(SymEdgeIt &) const {} |
|
212 /// Go to the next edge. |
|
213 EdgeIt &next(EdgeIt &i) const { return i;} |
|
214 |
|
215 ///Gives back the head node of an edge. |
|
216 Node head(Edge) const { return INVALID; } |
|
217 ///Gives back the tail node of an edge. |
|
218 Node tail(Edge) const { return INVALID; } |
|
219 |
|
220 // Node aNode(InEdgeIt) const {} |
|
221 // Node aNode(OutEdgeIt) const {} |
|
222 // Node aNode(SymEdgeIt) const {} |
|
223 |
|
224 // Node bNode(InEdgeIt) const {} |
|
225 // Node bNode(OutEdgeIt) const {} |
|
226 // Node bNode(SymEdgeIt) const {} |
|
227 |
|
228 /// Checks if a node iterator is valid |
|
229 |
|
230 ///\todo Maybe, it would be better if iterator converted to |
|
231 ///bool directly, as Jacint prefers. |
|
232 bool valid(const Node&) const { return true;} |
|
233 /// Checks if an edge iterator is valid |
|
234 |
|
235 ///\todo Maybe, it would be better if iterator converted to |
|
236 ///bool directly, as Jacint prefers. |
|
237 bool valid(const Edge&) const { return true;} |
|
238 |
|
239 ///Gives back the \e id of a node. |
|
240 |
|
241 ///\warning Not all graph structures provide this feature. |
306 /// |
242 /// |
307 void update() {} |
243 int id(const Node&) const { return 0;} |
308 void update(T a) {} //FIXME: Is it necessary |
244 ///Gives back the \e id of an edge. |
|
245 |
|
246 ///\warning Not all graph structures provide this feature. |
|
247 /// |
|
248 int id(const Edge&) const { return 0;} |
|
249 |
|
250 /// Resets the graph. |
|
251 |
|
252 /// This function deletes all edges and nodes of the graph. |
|
253 /// It also frees the memory allocated to store them. |
|
254 void clear() {} |
|
255 |
|
256 int nodeNum() const { return 0;} |
|
257 int edgeNum() const { return 0;} |
|
258 |
|
259 |
|
260 |
|
261 ///Reference map of the nodes to type \c T. |
|
262 |
|
263 ///Reference map of the nodes to type \c T. |
|
264 /// \sa ReferenceSkeleton |
|
265 /// \warning Making maps that can handle bool type (NodeMap<bool>) |
|
266 /// needs extra attention! |
|
267 |
|
268 template<class T> class NodeMap |
|
269 : public ReferenceMap< Node, T > |
|
270 { |
|
271 public: |
|
272 |
|
273 class ReferenceMap<Node,T>; |
|
274 |
|
275 NodeMap(const StaticGraphSkeleton &) {} |
|
276 NodeMap(const StaticGraphSkeleton &, T) {} |
|
277 |
|
278 ///Copy constructor |
|
279 template<typename TT> NodeMap(const NodeMap<TT> &) {} |
|
280 ///Assignment operator |
|
281 template<typename TT> NodeMap &operator=(const NodeMap<TT> &) |
|
282 {return *this;} |
|
283 }; |
|
284 |
|
285 ///Reference map of the edges to type \c T. |
|
286 |
|
287 ///Reference map of the edges to type \c T. |
|
288 /// \sa ReferenceSkeleton |
|
289 /// \warning Making maps that can handle bool type (EdgeMap<bool>) |
|
290 /// needs extra attention! |
|
291 template<class T> class EdgeMap |
|
292 : public ReferenceMap<Edge,T> |
|
293 { |
|
294 public: |
|
295 typedef T ValueType; |
|
296 typedef Edge KeyType; |
|
297 |
|
298 EdgeMap(const StaticGraphSkeleton &) {} |
|
299 EdgeMap(const StaticGraphSkeleton &, T ) {} |
|
300 |
|
301 ///Copy constructor |
|
302 template<typename TT> EdgeMap(const EdgeMap<TT> &) {} |
|
303 ///Assignment operator |
|
304 template<typename TT> EdgeMap &operator=(const EdgeMap<TT> &) |
|
305 {return *this;} |
|
306 }; |
309 }; |
307 }; |
310 |
308 |
311 ///Read/write/reference map of the edges to type \c T. |
309 |
312 |
310 |
313 ///Read/write/reference map of the edges to type \c T. |
311 /// An empty graph class. |
314 ///It behaves exactly in the same way as \ref NodeMap. |
312 |
315 /// \sa NodeMap |
313 /// This class provides everything that \c StaticGraphSkeleton |
316 /// \sa MemoryMapSkeleton |
314 /// with additional functionality which enables to build a |
317 /// \todo We may need copy constructor |
315 /// graph from scratch. |
318 /// \todo We may need conversion from other edgetype |
316 class GraphSkeleton : public StaticGraphSkeleton |
319 /// \todo We may need operator= |
|
320 template<class T> class EdgeMap |
|
321 { |
317 { |
322 public: |
318 public: |
323 typedef T ValueType; |
319 /// Defalult constructor. |
324 typedef Edge KeyType; |
320 GraphSkeleton() {} |
325 |
321 ///Copy consructor. |
326 EdgeMap(const GraphSkeleton &) {} |
322 |
327 EdgeMap(const GraphSkeleton &, T ) {} |
323 ///\todo It is not clear, what we expect from a copy constructor. |
328 |
324 ///E.g. How to assign the nodes/edges to each other? What about maps? |
329 ///\todo It can copy between different types. |
325 GraphSkeleton(const GraphSkeleton &G) {} |
|
326 |
|
327 ///Add a new node to the graph. |
|
328 |
|
329 /// \return the new node. |
330 /// |
330 /// |
331 template<typename TT> EdgeMap(const EdgeMap<TT> &) {} |
331 Node addNode() { return INVALID;} |
332 |
332 ///Add a new edge to the graph. |
333 void set(Edge, T) {} |
333 |
334 //T get(Edge) const {return *(T*)0;} |
334 ///Add a new edge to the graph with tail node \c tail |
335 T &operator[](Edge) {return *(T*)0;} |
335 ///and head node \c head. |
336 const T &operator[](Edge) const {return *(T*)0;} |
336 ///\return the new edge. |
337 |
337 Edge addEdge(Node, Node) { return INVALID;} |
338 void update() {} |
338 |
339 void update(T a) {} //FIXME: Is it necessary |
339 /// Resets the graph. |
|
340 |
|
341 /// This function deletes all edges and nodes of the graph. |
|
342 /// It also frees the memory allocated to store them. |
|
343 /// \todo It might belong to \c EraseableGraphSkeleton. |
|
344 void clear() {} |
340 }; |
345 }; |
341 }; |
346 |
342 |
347 /// An empty eraseable graph class. |
343 /// An empty eraseable graph class. |
348 |
344 |
349 /// This class is an extension of \c GraphSkeleton. It also makes it |
345 /// This class provides all the common features of an \e eraseable graph |
350 /// possible to erase edges or nodes. |
346 /// structure, |
351 class EraseableGraphSkeleton : public GraphSkeleton |
347 /// however completely without implementations and real data structures |
352 { |
348 /// behind the interface. |
353 public: |
349 /// All graph algorithms should compile with this class, but it will not |
354 /// Deletes a node. |
350 /// run properly, of course. |
355 void erase(Node n) {} |
351 /// |
356 /// Deletes an edge. |
352 /// \todo This blabla could be replaced by a sepatate description about |
357 void erase(Edge e) {} |
353 /// Skeletons. |
358 |
354 /// |
359 /// Defalult constructor. |
355 /// It can be used for checking the interface compatibility, |
360 EraseableGraphSkeleton() {} |
356 /// or it can serve as a skeleton of a new graph structure. |
361 ///Copy consructor. |
357 /// |
362 EraseableGraphSkeleton(const GraphSkeleton &G) {} |
358 /// Also, you will find here the full documentation of a certain graph |
363 }; |
359 /// feature, the documentation of a real graph imlementation |
364 |
360 /// like @ref ListGraph or |
365 // @} |
361 /// @ref SmartGraph will just refer to this structure. |
366 } //namespace skeleton |
362 class EraseableGraphSkeleton : public GraphSkeleton |
367 |
363 { |
|
364 public: |
|
365 /// Deletes a node. |
|
366 void erase(Node n) {} |
|
367 /// Deletes an edge. |
|
368 void erase(Edge e) {} |
|
369 |
|
370 /// Defalult constructor. |
|
371 EraseableGraphSkeleton() {} |
|
372 ///Copy consructor. |
|
373 EraseableGraphSkeleton(const GraphSkeleton &G) {} |
|
374 }; |
|
375 |
|
376 |
|
377 // @} |
|
378 |
|
379 } //namespace hugo |
368 } //namespace hugo |
380 |
369 |
381 |
370 |
382 |
371 |
383 // class EmptyBipGraph : public Graph Skeleton |
372 // class EmptyBipGraph : public Graph Skeleton |