src/work/jacint/preflowproba.h
changeset 370 5eceadf9316c
child 372 e6a156fc186d
equal deleted inserted replaced
-1:000000000000 0:c2cdbe4bbb86
       
     1 // -*- C++ -*-
       
     2 
       
     3 //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?
       
     4 //constzero jo igy?
       
     5 
       
     6 //majd marci megmondja betegyem-e bfs-t meg resgraphot
       
     7 
       
     8 /*
       
     9 Heuristics: 
       
    10  2 phase
       
    11  gap
       
    12  list 'level_list' on the nodes on level i implemented by hand
       
    13  stack 'active' on the active nodes on level i implemented by hand
       
    14  runs heuristic 'highest label' for H1*n relabels
       
    15  runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
    16  
       
    17 Parameters H0 and H1 are initialized to 20 and 10.
       
    18 
       
    19 Constructors:
       
    20 
       
    21 Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
       
    22      FlowMap is not constant zero, and should be true if it is
       
    23 
       
    24 Members:
       
    25 
       
    26 void run()
       
    27 
       
    28 T flowValue() : returns the value of a maximum flow
       
    29 
       
    30 void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
       
    31      minimum min cut. M should be a map of bools initialized to false.
       
    32 
       
    33 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
       
    34      maximum min cut. M should be a map of bools initialized to false.
       
    35 
       
    36 void minCut(CutMap& M) : sets M to the characteristic vector of 
       
    37      a min cut. M should be a map of bools initialized to false.
       
    38 
       
    39 FIXME reset
       
    40 
       
    41 */
       
    42 
       
    43 #ifndef HUGO_PREFLOW_H
       
    44 #define HUGO_PREFLOW_H
       
    45 
       
    46 #define H0 20
       
    47 #define H1 1
       
    48 
       
    49 #include <vector>
       
    50 #include <queue>
       
    51 #include<graph_wrapper.h>
       
    52 
       
    53 namespace hugo {
       
    54 
       
    55   template <typename Graph, typename T, 
       
    56 	    typename CapMap=typename Graph::EdgeMap<T>, 
       
    57             typename FlowMap=typename Graph::EdgeMap<T> >
       
    58   class Preflow {
       
    59     
       
    60     typedef typename Graph::Node Node;
       
    61     typedef typename Graph::Edge Edge;
       
    62     typedef typename Graph::NodeIt NodeIt;
       
    63     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    64     typedef typename Graph::InEdgeIt InEdgeIt;
       
    65     
       
    66     const Graph& G;
       
    67     Node s;
       
    68     Node t;
       
    69     const CapMap& capacity;  
       
    70     FlowMap& flow;
       
    71     T value;
       
    72     bool constzero;
       
    73 
       
    74     typedef ResGraphWrapper<const Graph, T, CapMap, FlowMap> ResGW;
       
    75     typedef typename ResGW::OutEdgeIt ResOutEdgeIt;
       
    76     typedef typename ResGW::InEdgeIt ResInEdgeIt;
       
    77     typedef typename ResGW::Edge ResEdge;
       
    78  
       
    79   public:
       
    80     Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
       
    81 	    FlowMap& _flow, bool _constzero ) :
       
    82       G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero) {}
       
    83     
       
    84     
       
    85     void run() {
       
    86 
       
    87       ResGW res_graph(G, capacity, flow);
       
    88 
       
    89       value=0;                //for the subsequent runs
       
    90 
       
    91       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
       
    92       int n=G.nodeNum(); 
       
    93       int heur0=(int)(H0*n);  //time while running 'bound decrease' 
       
    94       int heur1=(int)(H1*n);  //time while running 'highest label'
       
    95       int heur=heur1;         //starting time interval (#of relabels)
       
    96       bool what_heur=1;       
       
    97       /*
       
    98 	what_heur is 0 in case 'bound decrease' 
       
    99 	and 1 in case 'highest label'
       
   100       */
       
   101       bool end=false;     
       
   102       /*
       
   103 	Needed for 'bound decrease', 'true'
       
   104 	means no active nodes are above bound b.
       
   105       */
       
   106       int relabel=0;
       
   107       int k=n-2;  //bound on the highest level under n containing a node
       
   108       int b=k;    //bound on the highest level under n of an active node
       
   109       
       
   110       typename Graph::NodeMap<int> level(G,n);      
       
   111       typename Graph::NodeMap<T> excess(G); 
       
   112 
       
   113       std::vector<Node> active(n-1,INVALID);
       
   114       typename Graph::NodeMap<Node> next(G,INVALID);
       
   115       //Stack of the active nodes in level i < n.
       
   116       //We use it in both phases.
       
   117 
       
   118       typename Graph::NodeMap<Node> left(G,INVALID);
       
   119       typename Graph::NodeMap<Node> right(G,INVALID);
       
   120       std::vector<Node> level_list(n,INVALID);
       
   121       /*
       
   122 	List of the nodes in level i<n.
       
   123       */
       
   124 
       
   125 
       
   126       if ( constzero ) {
       
   127      
       
   128 	/*Reverse_bfs from t, to find the starting level.*/
       
   129 	level.set(t,0);
       
   130 	std::queue<Node> bfs_queue;
       
   131 	bfs_queue.push(t);
       
   132 	
       
   133 	while (!bfs_queue.empty()) {
       
   134 	  
       
   135 	  Node v=bfs_queue.front();	
       
   136 	  bfs_queue.pop();
       
   137 	  int l=level[v]+1;
       
   138 	  
       
   139 	  InEdgeIt e;
       
   140 	  for(G.first(e,v); G.valid(e); G.next(e)) {
       
   141 	    Node w=G.tail(e);
       
   142 	    if ( level[w] == n && w != s ) {
       
   143 	      bfs_queue.push(w);
       
   144 	      Node first=level_list[l];
       
   145 	      if ( G.valid(first) ) left.set(first,w);
       
   146 	      right.set(w,first);
       
   147 	      level_list[l]=w;
       
   148 	      level.set(w, l);
       
   149 	    }
       
   150 	  }
       
   151 	}
       
   152 
       
   153 	//the starting flow
       
   154 	OutEdgeIt e;
       
   155 	for(G.first(e,s); G.valid(e); G.next(e)) 
       
   156 	{
       
   157 	  T c=capacity[e];
       
   158 	  if ( c == 0 ) continue;
       
   159 	  Node w=G.head(e);
       
   160 	  if ( level[w] < n ) {	  
       
   161 	    if ( excess[w] == 0 && w!=t ) {
       
   162 	      next.set(w,active[level[w]]);
       
   163 	      active[level[w]]=w;
       
   164 	    }
       
   165 	    flow.set(e, c); 
       
   166 	    excess.set(w, excess[w]+c);
       
   167 	  }
       
   168 	}
       
   169       }
       
   170       else 
       
   171       {
       
   172 	
       
   173 	/*
       
   174 	  Reverse_bfs from t in the residual graph, 
       
   175 	  to find the starting level.
       
   176 	*/
       
   177 	level.set(t,0);
       
   178 	std::queue<Node> bfs_queue;
       
   179 	bfs_queue.push(t);
       
   180 	
       
   181 	while (!bfs_queue.empty()) {
       
   182 	  
       
   183 	  Node v=bfs_queue.front();	
       
   184 	  bfs_queue.pop();
       
   185 	  int l=level[v]+1;
       
   186 	  
       
   187 	  InEdgeIt e;
       
   188 	  for(G.first(e,v); G.valid(e); G.next(e)) {
       
   189 	    if ( capacity[e] == flow[e] ) continue;
       
   190 	    Node w=G.tail(e);
       
   191 	    if ( level[w] == n && w != s ) {
       
   192 	      bfs_queue.push(w);
       
   193 	      Node first=level_list[l];
       
   194 	      if ( G.valid(first) ) left.set(first,w);
       
   195 	      right.set(w,first);
       
   196 	      level_list[l]=w;
       
   197 	      level.set(w, l);
       
   198 	    }
       
   199 	  }
       
   200 	    
       
   201 	  OutEdgeIt f;
       
   202 	  for(G.first(f,v); G.valid(f); G.next(f)) {
       
   203 	    if ( 0 == flow[f] ) continue;
       
   204 	    Node w=G.head(f);
       
   205 	    if ( level[w] == n && w != s ) {
       
   206 	      bfs_queue.push(w);
       
   207 	      Node first=level_list[l];
       
   208 	      if ( G.valid(first) ) left.set(first,w);
       
   209 	      right.set(w,first);
       
   210 	      level_list[l]=w;
       
   211 	      level.set(w, l);
       
   212 	    }
       
   213 	    }
       
   214 	}
       
   215       
       
   216 	
       
   217 	/*
       
   218 	  Counting the excess
       
   219 	*/
       
   220 	NodeIt v;
       
   221 	for(G.first(v); G.valid(v); G.next(v)) {
       
   222 	  T exc=0;
       
   223 
       
   224 	  InEdgeIt e;
       
   225 	  for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
       
   226 	  OutEdgeIt f;
       
   227 	  for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[e];
       
   228 
       
   229 	  excess.set(v,exc);	  
       
   230 
       
   231 	  //putting the active nodes into the stack
       
   232 	  int lev=level[v];
       
   233 	  if ( exc > 0 && lev < n ) {
       
   234 	    next.set(v,active[lev]);
       
   235 	    active[lev]=v;
       
   236 	  }
       
   237 	}
       
   238 
       
   239 
       
   240 	//the starting flow
       
   241 	OutEdgeIt e;
       
   242 	for(G.first(e,s); G.valid(e); G.next(e)) 
       
   243 	{
       
   244 	  T rem=capacity[e]-flow[e];
       
   245 	  if ( rem == 0 ) continue;
       
   246 	  Node w=G.head(e);
       
   247 	  if ( level[w] < n ) {	  
       
   248 	    if ( excess[w] == 0 && w!=t ) {
       
   249 	      next.set(w,active[level[w]]);
       
   250 	      active[level[w]]=w;
       
   251 	    }
       
   252 	    flow.set(e, capacity[e]); 
       
   253 	    excess.set(w, excess[w]+rem);
       
   254 	  }
       
   255 	}
       
   256 	
       
   257 	InEdgeIt f;
       
   258 	for(G.first(f,s); G.valid(f); G.next(f)) 
       
   259 	{
       
   260 	  if ( flow[f] == 0 ) continue;
       
   261 	  Node w=G.head(f);
       
   262 	  if ( level[w] < n ) {	  
       
   263 	    if ( excess[w] == 0 && w!=t ) {
       
   264 	      next.set(w,active[level[w]]);
       
   265 	      active[level[w]]=w;
       
   266 	    }
       
   267 	    excess.set(w, excess[w]+flow[f]);
       
   268 	    flow.set(f, 0); 
       
   269 	  }
       
   270 	}
       
   271       }
       
   272 
       
   273 
       
   274 
       
   275 
       
   276       /* 
       
   277 	 End of preprocessing 
       
   278       */
       
   279 
       
   280 
       
   281 
       
   282       /*
       
   283 	Push/relabel on the highest level active nodes.
       
   284       */	
       
   285       while ( true ) {
       
   286 	
       
   287 	if ( b == 0 ) {
       
   288 	  if ( phase ) break;
       
   289 	  
       
   290 	  if ( !what_heur && !end && k > 0 ) {
       
   291 	    b=k;
       
   292 	    end=true;
       
   293 	  } else {
       
   294 	    phase=1;
       
   295 	    level.set(s,0);
       
   296 	    std::queue<Node> bfs_queue;
       
   297 	    bfs_queue.push(s);
       
   298 	    
       
   299 	    while (!bfs_queue.empty()) {
       
   300 	      
       
   301 	      Node v=bfs_queue.front();	
       
   302 	      bfs_queue.pop();
       
   303 	      int l=level[v]+1;
       
   304 	      
       
   305 	      ResInEdgeIt e;
       
   306 	      for(res_graph.first(e,s); res_graph.valid(e); 
       
   307 		  res_graph.next(e)) {
       
   308 		Node u=res_graph.tail(e);
       
   309 		if ( level[u] >= n ) { 
       
   310 		  bfs_queue.push(u);
       
   311 		  level.set(u, l);
       
   312 		  if ( excess[u] > 0 ) {
       
   313 		    next.set(u,active[l]);
       
   314 		    active[l]=u;
       
   315 		  }
       
   316 		}
       
   317 	      }
       
   318 	      /*	      InEdgeIt e;
       
   319 	      for(G.first(e,v); G.valid(e); G.next(e)) {
       
   320 		if ( capacity[e] == flow[e] ) continue;
       
   321 		Node u=G.tail(e);
       
   322 		if ( level[u] >= n ) { 
       
   323 		  bfs_queue.push(u);
       
   324 		  level.set(u, l);
       
   325 		  if ( excess[u] > 0 ) {
       
   326 		    next.set(u,active[l]);
       
   327 		    active[l]=u;
       
   328 		  }
       
   329 		}
       
   330 	      }
       
   331 	    
       
   332 	      OutEdgeIt f;
       
   333 	      for(G.first(f,v); G.valid(f); G.next(f)) {
       
   334 		if ( 0 == flow[f] ) continue;
       
   335 		Node u=G.head(f);
       
   336 		if ( level[u] >= n ) { 
       
   337 		  bfs_queue.push(u);
       
   338 		  level.set(u, l);
       
   339 		  if ( excess[u] > 0 ) {
       
   340 		    next.set(u,active[l]);
       
   341 		    active[l]=u;
       
   342 		  }
       
   343 		}
       
   344 		}*/
       
   345 	    }
       
   346 	    b=n-2;
       
   347 	    }
       
   348 	    
       
   349 	}
       
   350 	  
       
   351 	  
       
   352 	if ( !G.valid(active[b]) ) --b; 
       
   353 	else {
       
   354 	  end=false;  
       
   355 
       
   356 	  Node w=active[b];
       
   357 	  active[b]=next[w];
       
   358 	  int lev=level[w];
       
   359 	  T exc=excess[w];
       
   360 	  int newlevel=n;       //bound on the next level of w
       
   361 	  
       
   362 	  OutEdgeIt e;
       
   363 	  for(G.first(e,w); G.valid(e); G.next(e)) {
       
   364 	    
       
   365 	    if ( flow[e] == capacity[e] ) continue; 
       
   366 	    Node v=G.head(e);            
       
   367 	    //e=wv	    
       
   368 	    
       
   369 	    if( lev > level[v] ) {      
       
   370 	      /*Push is allowed now*/
       
   371 	      
       
   372 	      if ( excess[v]==0 && v!=t && v!=s ) {
       
   373 		int lev_v=level[v];
       
   374 		next.set(v,active[lev_v]);
       
   375 		active[lev_v]=v;
       
   376 	      }
       
   377 	      
       
   378 	      T cap=capacity[e];
       
   379 	      T flo=flow[e];
       
   380 	      T remcap=cap-flo;
       
   381 	      
       
   382 	      if ( remcap >= exc ) {       
       
   383 		/*A nonsaturating push.*/
       
   384 		
       
   385 		flow.set(e, flo+exc);
       
   386 		excess.set(v, excess[v]+exc);
       
   387 		exc=0;
       
   388 		break; 
       
   389 		
       
   390 	      } else { 
       
   391 		/*A saturating push.*/
       
   392 		
       
   393 		flow.set(e, cap);
       
   394 		excess.set(v, excess[v]+remcap);
       
   395 		exc-=remcap;
       
   396 	      }
       
   397 	    } else if ( newlevel > level[v] ){
       
   398 	      newlevel = level[v];
       
   399 	    }	    
       
   400 	    
       
   401 	  } //for out edges wv 
       
   402 	
       
   403 	
       
   404 	if ( exc > 0 ) {	
       
   405 	  InEdgeIt e;
       
   406 	  for(G.first(e,w); G.valid(e); G.next(e)) {
       
   407 	    
       
   408 	    if( flow[e] == 0 ) continue; 
       
   409 	    Node v=G.tail(e);  
       
   410 	    //e=vw
       
   411 	    
       
   412 	    if( lev > level[v] ) {  
       
   413 	      /*Push is allowed now*/
       
   414 	      
       
   415 	      if ( excess[v]==0 && v!=t && v!=s ) {
       
   416 		int lev_v=level[v];
       
   417 		next.set(v,active[lev_v]);
       
   418 		active[lev_v]=v;
       
   419 	      }
       
   420 	      
       
   421 	      T flo=flow[e];
       
   422 	      
       
   423 	      if ( flo >= exc ) { 
       
   424 		/*A nonsaturating push.*/
       
   425 		
       
   426 		flow.set(e, flo-exc);
       
   427 		excess.set(v, excess[v]+exc);
       
   428 		exc=0;
       
   429 		break; 
       
   430 	      } else {                                               
       
   431 		/*A saturating push.*/
       
   432 		
       
   433 		excess.set(v, excess[v]+flo);
       
   434 		exc-=flo;
       
   435 		flow.set(e,0);
       
   436 	      }  
       
   437 	    } else if ( newlevel > level[v] ) {
       
   438 	      newlevel = level[v];
       
   439 	    }	    
       
   440 	  } //for in edges vw
       
   441 	  
       
   442 	} // if w still has excess after the out edge for cycle
       
   443 	
       
   444 	excess.set(w, exc);
       
   445 	 
       
   446 	/*
       
   447 	  Relabel
       
   448 	*/
       
   449 	
       
   450 
       
   451 	if ( exc > 0 ) {
       
   452 	  //now 'lev' is the old level of w
       
   453 	
       
   454 	  if ( phase ) {
       
   455 	    level.set(w,++newlevel);
       
   456 	    next.set(w,active[newlevel]);
       
   457 	    active[newlevel]=w;
       
   458 	    b=newlevel;
       
   459 	  } else {
       
   460 	    //unlacing starts
       
   461 	    Node right_n=right[w];
       
   462 	    Node left_n=left[w];
       
   463 
       
   464 	    if ( G.valid(right_n) ) {
       
   465 	      if ( G.valid(left_n) ) {
       
   466 		right.set(left_n, right_n);
       
   467 		left.set(right_n, left_n);
       
   468 	      } else {
       
   469 		level_list[lev]=right_n;   
       
   470 		left.set(right_n, INVALID);
       
   471 	      } 
       
   472 	    } else {
       
   473 	      if ( G.valid(left_n) ) {
       
   474 		right.set(left_n, INVALID);
       
   475 	      } else { 
       
   476 		level_list[lev]=INVALID;   
       
   477 	      } 
       
   478 	    } 
       
   479 	    //unlacing ends
       
   480 		
       
   481 	    if ( !G.valid(level_list[lev]) ) {
       
   482 	      
       
   483 	       //gapping starts
       
   484 	      for (int i=lev; i!=k ; ) {
       
   485 		Node v=level_list[++i];
       
   486 		while ( G.valid(v) ) {
       
   487 		  level.set(v,n);
       
   488 		  v=right[v];
       
   489 		}
       
   490 		level_list[i]=INVALID;
       
   491 		if ( !what_heur ) active[i]=INVALID;
       
   492 	      }	     
       
   493 
       
   494 	      level.set(w,n);
       
   495 	      b=lev-1;
       
   496 	      k=b;
       
   497 	      //gapping ends
       
   498 	    
       
   499 	    } else {
       
   500 	      
       
   501 	      if ( newlevel == n ) level.set(w,n); 
       
   502 	      else {
       
   503 		level.set(w,++newlevel);
       
   504 		next.set(w,active[newlevel]);
       
   505 		active[newlevel]=w;
       
   506 		if ( what_heur ) b=newlevel;
       
   507 		if ( k < newlevel ) ++k;      //now k=newlevel
       
   508 		Node first=level_list[newlevel];
       
   509 		if ( G.valid(first) ) left.set(first,w);
       
   510 		right.set(w,first);
       
   511 		left.set(w,INVALID);
       
   512 		level_list[newlevel]=w;
       
   513 	      }
       
   514 	    }
       
   515 
       
   516 
       
   517 	    ++relabel; 
       
   518 	    if ( relabel >= heur ) {
       
   519 	      relabel=0;
       
   520 	      if ( what_heur ) {
       
   521 		what_heur=0;
       
   522 		heur=heur0;
       
   523 		end=false;
       
   524 	      } else {
       
   525 		what_heur=1;
       
   526 		heur=heur1;
       
   527 		b=k; 
       
   528 	      }
       
   529 	    }
       
   530 	  } //phase 0
       
   531 	  
       
   532 	  
       
   533 	} // if ( exc > 0 )
       
   534 	  
       
   535 	
       
   536 	}  // if stack[b] is nonempty
       
   537 	
       
   538       } // while(true)
       
   539 
       
   540 
       
   541       value = excess[t];
       
   542       /*Max flow value.*/
       
   543      
       
   544     } //void run()
       
   545 
       
   546 
       
   547 
       
   548 
       
   549 
       
   550     /*
       
   551       Returns the maximum value of a flow.
       
   552      */
       
   553 
       
   554     T flowValue() {
       
   555       return value;
       
   556     }
       
   557 
       
   558 
       
   559     FlowMap Flow() {
       
   560       return flow;
       
   561       }
       
   562 
       
   563 
       
   564     
       
   565     void Flow(FlowMap& _flow ) {
       
   566       NodeIt v;
       
   567       for(G.first(v) ; G.valid(v); G.next(v))
       
   568 	_flow.set(v,flow[v]);
       
   569     }
       
   570 
       
   571 
       
   572 
       
   573     /*
       
   574       Returns the minimum min cut, by a bfs from s in the residual graph.
       
   575     */
       
   576    
       
   577     template<typename _CutMap>
       
   578     void minMinCut(_CutMap& M) {
       
   579     
       
   580       std::queue<Node> queue;
       
   581       
       
   582       M.set(s,true);      
       
   583       queue.push(s);
       
   584 
       
   585       while (!queue.empty()) {
       
   586         Node w=queue.front();
       
   587 	queue.pop();
       
   588 
       
   589 	OutEdgeIt e;
       
   590 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
       
   591 	  Node v=G.head(e);
       
   592 	  if (!M[v] && flow[e] < capacity[e] ) {
       
   593 	    queue.push(v);
       
   594 	    M.set(v, true);
       
   595 	  }
       
   596 	} 
       
   597 
       
   598 	InEdgeIt f;
       
   599 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
       
   600 	  Node v=G.tail(f);
       
   601 	  if (!M[v] && flow[f] > 0 ) {
       
   602 	    queue.push(v);
       
   603 	    M.set(v, true);
       
   604 	  }
       
   605 	} 
       
   606       }
       
   607     }
       
   608 
       
   609 
       
   610   
       
   611     /*
       
   612       Returns the maximum min cut, by a reverse bfs 
       
   613       from t in the residual graph.
       
   614     */
       
   615     
       
   616     template<typename _CutMap>
       
   617     void maxMinCut(_CutMap& M) {
       
   618     
       
   619       std::queue<Node> queue;
       
   620       
       
   621       M.set(t,true);        
       
   622       queue.push(t);
       
   623 
       
   624       while (!queue.empty()) {
       
   625         Node w=queue.front();
       
   626 	queue.pop();
       
   627 
       
   628 
       
   629 	InEdgeIt e;
       
   630 	for(G.first(e,w) ; G.valid(e); G.next(e)) {
       
   631 	  Node v=G.tail(e);
       
   632 	  if (!M[v] && flow[e] < capacity[e] ) {
       
   633 	    queue.push(v);
       
   634 	    M.set(v, true);
       
   635 	  }
       
   636 	}
       
   637 	
       
   638 	OutEdgeIt f;
       
   639 	for(G.first(f,w) ; G.valid(f); G.next(f)) {
       
   640 	  Node v=G.head(f);
       
   641 	  if (!M[v] && flow[f] > 0 ) {
       
   642 	    queue.push(v);
       
   643 	    M.set(v, true);
       
   644 	  }
       
   645 	}
       
   646       }
       
   647 
       
   648       NodeIt v;
       
   649       for(G.first(v) ; G.valid(v); G.next(v)) {
       
   650 	M.set(v, !M[v]);
       
   651       }
       
   652 
       
   653     }
       
   654 
       
   655 
       
   656 
       
   657     template<typename CutMap>
       
   658     void minCut(CutMap& M) {
       
   659       minMinCut(M);
       
   660     }
       
   661 
       
   662     
       
   663     void reset_target (Node _t) {t=_t;}
       
   664     void reset_source (Node _s) {s=_s;}
       
   665    
       
   666     template<typename _CapMap>   
       
   667     void reset_cap (_CapMap _cap) {capacity=_cap;}
       
   668 
       
   669     template<typename _FlowMap>   
       
   670     void reset_cap (_FlowMap _flow, bool _constzero) {
       
   671       flow=_flow;
       
   672       constzero=_constzero;
       
   673     }
       
   674 
       
   675 
       
   676 
       
   677   };
       
   678 
       
   679 } //namespace hugo
       
   680 
       
   681 #endif //PREFLOW_H
       
   682 
       
   683 
       
   684 
       
   685