src/work/jacint/preflow_push_hl.hh
changeset 80 629b9ca9184b
child 105 a3c73e9b9b2e
equal deleted inserted replaced
-1:000000000000 0:d79a8e71522f
       
     1 /*
       
     2 preflow_push_hl.hh
       
     3 by jacint. 
       
     4 Runs the highest label variant of the preflow push algorithm with 
       
     5 running time O(n^2\sqrt(m)). 
       
     6 
       
     7 Member functions:
       
     8 
       
     9 void run() : runs the algorithm
       
    10 
       
    11  The following functions should be used after run() was already run.
       
    12 
       
    13 T maxflow() : returns the value of a maximum flow
       
    14 
       
    15 T flowonedge(edge_iterator e) : for a fixed maximum flow x it returns x(e) 
       
    16 
       
    17 edge_property_vector<graph_type, T> allflow() : returns the fixed maximum flow x
       
    18 
       
    19 node_property_vector<graph_type, bool> mincut() : returns a 
       
    20      characteristic vector of a minimum cut. (An empty level 
       
    21      in the algorithm gives a minimum cut.)
       
    22 */
       
    23 
       
    24 #ifndef PREFLOW_PUSH_HL_HH
       
    25 #define PREFLOW_PUSH_HL_HH
       
    26 
       
    27 #include <algorithm>
       
    28 #include <vector>
       
    29 #include <stack>
       
    30 
       
    31 #include <marci_graph_traits.hh>
       
    32 #include <marci_property_vector.hh>
       
    33 #include <reverse_bfs.hh>
       
    34 
       
    35 namespace marci {
       
    36 
       
    37   template <typename graph_type, typename T>
       
    38   class preflow_push_hl {
       
    39     
       
    40     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
       
    41     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
       
    42     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
       
    43     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
       
    44     typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
       
    45     typedef typename graph_traits<graph_type>::each_edge_iterator each_edge_iterator;
       
    46     
       
    47 
       
    48     graph_type& G;
       
    49     node_iterator s;
       
    50     node_iterator t;
       
    51     edge_property_vector<graph_type, T> flow;
       
    52     edge_property_vector<graph_type, T>& capacity; 
       
    53     T value;
       
    54     node_property_vector<graph_type, bool> mincutvector;
       
    55 
       
    56    
       
    57   public:
       
    58 
       
    59     preflow_push_hl(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { }
       
    60 
       
    61 
       
    62 
       
    63 
       
    64     /*
       
    65       The run() function runs the highest label preflow-push, 
       
    66       running time: O(n^2\sqrt(m))
       
    67     */
       
    68     void run() {
       
    69  
       
    70       node_property_vector<graph_type, int> level(G);         //level of node
       
    71       node_property_vector<graph_type, T> excess(G);          //excess of node
       
    72             
       
    73       int n=number_of(G.first_node());                        //number of nodes 
       
    74       int b=n; 
       
    75       /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/
       
    76 
       
    77       std::vector<std::stack<node_iterator> > stack(2*n-1);    //Stack of the active nodes in level i.
       
    78 
       
    79 
       
    80 
       
    81 
       
    82       /*Reverse_bfs from t, to find the starting level.*/
       
    83 
       
    84       reverse_bfs<list_graph> bfs(G, t);
       
    85       bfs.run();
       
    86       for(each_node_iterator v=G.first_node(); v.valid(); ++v) {
       
    87 	level.put(v, bfs.dist(v)); 
       
    88 	//std::cout << "the level of " << v << " is " << bfs.dist(v);
       
    89       }
       
    90 
       
    91       /*The level of s is fixed to n*/ 
       
    92       level.put(s,n);
       
    93 
       
    94 
       
    95 
       
    96 
       
    97 
       
    98       /* Starting flow. It is everywhere 0 at the moment. */
       
    99      
       
   100       for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) 
       
   101 	{
       
   102 	  node_iterator w=G.head(i);
       
   103 	  flow.put(i, capacity.get(i)); 
       
   104 	  stack[bfs.dist(w)].push(w); 
       
   105 	  excess.put(w, capacity.get(i));
       
   106 	}
       
   107 
       
   108 
       
   109       /* 
       
   110 	 End of preprocessing 
       
   111       */
       
   112 
       
   113 
       
   114 
       
   115       /*
       
   116 	Push/relabel on the highest level active nodes.
       
   117       */
       
   118 	
       
   119       /*While there exists active node.*/
       
   120       while (b) { 
       
   121 
       
   122 	/*We decrease the bound if there is no active node of level b.*/
       
   123 	if (stack[b].empty()) {
       
   124 	  --b;
       
   125 	} else {
       
   126 
       
   127 	  node_iterator w=stack[b].top();    //w is the highest label active node.
       
   128 	  stack[b].pop();                    //We delete w from the stack.
       
   129 	
       
   130 	  int newlevel=2*n-2;                   //In newlevel we maintain the next level of w.
       
   131 	
       
   132 	  for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) {
       
   133 	    node_iterator v=G.head(e);
       
   134 	    /*e is the edge wv.*/
       
   135 
       
   136 	    if (flow.get(e)<capacity.get(e)) {              
       
   137 	      /*e is an edge of the residual graph */
       
   138 
       
   139 	      if(level.get(w)==level.get(v)+1) {      
       
   140 		/*Push is allowed now*/
       
   141 
       
   142 		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
       
   143 		  /*A nonsaturating push.*/
       
   144 		  
       
   145 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   146 		  /*v becomes active.*/
       
   147 		  
       
   148 		  flow.put(e, flow.get(e)+excess.get(w));
       
   149 		  excess.put(v, excess.get(v)+excess.get(w));
       
   150 		  excess.put(w,0);
       
   151 		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
       
   152 		  break; 
       
   153 		} else { 
       
   154 		  /*A saturating push.*/
       
   155 
       
   156 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   157 		  /*v becomes active.*/
       
   158 
       
   159 		  excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e));
       
   160 		  excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e));
       
   161 		  flow.put(e, capacity.get(e));
       
   162 		  //std::cout << w<<" " <<v<<" elore elen sat pump "   << std::endl;
       
   163 		  if (excess.get(w)==0) break;
       
   164 		  /*If w is not active any more, then we go on to the next node.*/
       
   165 		  
       
   166 		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
       
   167 	      } // if(level.get(w)==level.get(v)+1)
       
   168 	    
       
   169 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
       
   170 	    
       
   171 	    } //if (flow.get(e)<capacity.get(e))
       
   172 	 
       
   173 	  } //for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) 
       
   174 	  
       
   175 
       
   176 
       
   177 	  for(in_edge_iterator e=G.first_in_edge(w); e.valid(); ++e) {
       
   178 	    node_iterator v=G.tail(e);
       
   179 	    /*e is the edge vw.*/
       
   180 
       
   181 	    if (excess.get(w)==0) break;
       
   182 	    /*It may happen, that w became inactive in the first for cycle.*/		
       
   183 	    if(flow.get(e)>0) {             
       
   184 	      /*e is an edge of the residual graph */
       
   185 
       
   186 	      if(level.get(w)==level.get(v)+1) {  
       
   187 		/*Push is allowed now*/
       
   188 		
       
   189 		if (flow.get(e) > excess.get(w)) { 
       
   190 		  /*A nonsaturating push.*/
       
   191 		  
       
   192 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   193 		  /*v becomes active.*/
       
   194 
       
   195 		  flow.put(e, flow.get(e)-excess.get(w));
       
   196 		  excess.put(v, excess.get(v)+excess.get(w));
       
   197 		  excess.put(w,0);
       
   198 		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
       
   199 		  break; 
       
   200 		} else {                                               
       
   201 		  /*A saturating push.*/
       
   202 		  
       
   203 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
       
   204 		  /*v becomes active.*/
       
   205 		  
       
   206 		  excess.put(v, excess.get(v)+flow.get(e));
       
   207 		  excess.put(w, excess.get(w)-flow.get(e));
       
   208 		  flow.put(e,0);
       
   209 		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
       
   210 		  if (excess.get(w)==0) { break;}
       
   211 		} //if (flow.get(e) > excess.get(v)) 
       
   212 	      } //if(level.get(w)==level.get(v)+1)
       
   213 	      
       
   214 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
       
   215 	      
       
   216 
       
   217 	    } //if (flow.get(e)>0)
       
   218 
       
   219 	  } //for
       
   220 
       
   221 
       
   222 	  if (excess.get(w)>0) {
       
   223 	    level.put(w,++newlevel);
       
   224 	    stack[newlevel].push(w);
       
   225 	    b=newlevel;
       
   226 	    //std::cout << "The new level of " << w << " is "<< newlevel <<std::endl; 
       
   227 	  }
       
   228 
       
   229 
       
   230 	} //else
       
   231        
       
   232       } //while(b)
       
   233 
       
   234       value = excess.get(t);
       
   235       /*Max flow value.*/
       
   236 
       
   237 
       
   238 
       
   239 
       
   240     } //void run()
       
   241 
       
   242 
       
   243 
       
   244 
       
   245 
       
   246     /*
       
   247       Returns the maximum value of a flow.
       
   248      */
       
   249 
       
   250     T maxflow() {
       
   251       return value;
       
   252     }
       
   253 
       
   254 
       
   255 
       
   256     /*
       
   257       For the maximum flow x found by the algorithm, it returns the flow value on edge e, i.e. x(e). 
       
   258     */
       
   259 
       
   260     T flowonedge(edge_iterator e) {
       
   261       return flow.get(e);
       
   262     }
       
   263 
       
   264 
       
   265 
       
   266     /*
       
   267       Returns the maximum flow x found by the algorithm.
       
   268     */
       
   269 
       
   270     edge_property_vector<graph_type, T> allflow() {
       
   271       return flow;
       
   272     }
       
   273 
       
   274 
       
   275 
       
   276     /*
       
   277       Returns a minimum cut by using a reverse bfs from t in the residual graph.
       
   278     */
       
   279     
       
   280     node_property_vector<graph_type, bool> mincut() {
       
   281     
       
   282       std::queue<node_iterator> queue;
       
   283       
       
   284       mincutvector.put(t,false);      
       
   285       queue.push(t);
       
   286 
       
   287       while (!queue.empty()) {
       
   288         node_iterator w=queue.front();
       
   289 	queue.pop();
       
   290 
       
   291 	for(in_edge_iterator e=G.first_in_edge(w) ; e.valid(); ++e) {
       
   292 	  node_iterator v=G.tail(e);
       
   293 	  if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) {
       
   294 	    queue.push(v);
       
   295 	    mincutvector.put(v, false);
       
   296 	  }
       
   297 	} // for
       
   298 
       
   299 	for(out_edge_iterator e=G.first_out_edge(w) ; e.valid(); ++e) {
       
   300 	  node_iterator v=G.head(e);
       
   301 	  if (mincutvector.get(v) && flow.get(e) > 0 ) {
       
   302 	    queue.push(v);
       
   303 	    mincutvector.put(v, false);
       
   304 	  }
       
   305 	} // for
       
   306 
       
   307       }
       
   308 
       
   309       return mincutvector;
       
   310     
       
   311     }
       
   312 
       
   313 
       
   314   };
       
   315 }//namespace marci
       
   316 #endif 
       
   317 
       
   318 
       
   319 
       
   320