lemon/polynomial.h
changeset 2147 63d293ff1bef
child 2199 1229af45cc69
equal deleted inserted replaced
-1:000000000000 0:aeb3f8ffac6b
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2006
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_BEZIER_H
       
    20 #define LEMON_BEZIER_H
       
    21 
       
    22 ///\ingroup misc
       
    23 ///\file
       
    24 ///\brief A simple class implementing polynomials.
       
    25 ///
       
    26 ///\author Alpar Juttner
       
    27 
       
    28 #include<vector>
       
    29 
       
    30 namespace lemon {
       
    31 
       
    32   /// \addtogroup misc
       
    33   /// @{
       
    34 
       
    35   ///Simple polinomial class
       
    36 
       
    37   ///This class implements a polynomial where the coefficients are of
       
    38   ///type \c T.
       
    39   ///
       
    40   ///The coefficients are stored in an std::vector.
       
    41   template<class T>
       
    42   class Polynomial
       
    43   {
       
    44     std::vector<T> _coeff;
       
    45   public:
       
    46     ///Construct a polynomial of degree \c d.
       
    47     explicit Polynomial(int d=0) : _coeff(d+1) {}
       
    48     ///\e
       
    49     template<class U> Polynomial(const U &u) : _coeff(1,u) {}
       
    50     ///\e
       
    51     template<class U> Polynomial(const Polynomial<U> &u) : _coeff(u.deg()+1)
       
    52     {
       
    53       for(int i=0;i<(int)_coeff.size();i++) _coeff[i]=u[i];
       
    54     }
       
    55     ///Query the degree of the polynomial.
       
    56     
       
    57     ///Query the degree of the polynomial.
       
    58     ///\warning This number differs from real degree of the polinomial if
       
    59     ///the coefficient of highest degree is 0.
       
    60     int deg() const { return _coeff.size()-1; }
       
    61     ///Set the degree of the polynomial.
       
    62 
       
    63     ///Set the degree of the polynomial. In fact it resizes the
       
    64     ///coefficient vector.
       
    65     void deg(int d) { _coeff.resize(d+1);}
       
    66 
       
    67     ///Returns (as a reference) the coefficient of degree \c d.
       
    68     typename std::vector<T>::reference operator[](int d) { return _coeff[d]; }
       
    69     ///Returns (as a const reference) the coefficient of degree \c d.
       
    70     typename std::vector<T>::const_reference
       
    71     operator[](int d) const {return _coeff[d];}
       
    72     
       
    73     ///Substitute the value u into the polinomial.
       
    74 
       
    75     ///Substitute the value u into the polinomial.
       
    76     ///The calculation will be done using type \c R.
       
    77     ///The following examples shows the usage of the template parameter \c R.
       
    78     ///\code
       
    79     ///  Polynomial<xy<double> > line(1);
       
    80     ///  line[0]=xy<double>(12,25);
       
    81     ///  line[1]=xy<double>(2,7);
       
    82     ///  ...
       
    83     ///  xy<double> d = line.subst<xy<double> >(23.2);
       
    84     ///\endcode
       
    85     ///
       
    86     ///\code
       
    87     ///  Polynomial<double> p;
       
    88     ///  Polynomial<double> q;
       
    89     ///  ...
       
    90     ///  Polynomial<double> s = p.subst<Polynomial<double> >(q);
       
    91     ///\endcode
       
    92     template<class R,class U>
       
    93     R subst(const U &u) const
       
    94     {
       
    95       typename std::vector<T>::const_reverse_iterator i=_coeff.rbegin();
       
    96       R v=*i;
       
    97       for(++i;i!=_coeff.rend();++i) v=v*u+*i;
       
    98       return v;
       
    99     }
       
   100     ///Substitute the value u into the polinomial.
       
   101 
       
   102     ///Substitute the value u into the polinomial.
       
   103     ///The calculation will be done using type \c T
       
   104     ///(i.e. using the type of the coefficients.)
       
   105     template<class U>
       
   106     T operator()(const U &u) const 
       
   107     {
       
   108       return subst<T>(u);
       
   109     }
       
   110     
       
   111     ///Derivate the polynomial (in place)
       
   112     Polynomial &derivateMyself()
       
   113     {
       
   114       for(int i=1;i<(int)_coeff.size();i++) _coeff[i-1]=i*_coeff[i];
       
   115       _coeff.pop_back();
       
   116       return *this;
       
   117     }
       
   118     
       
   119     ///Return the derivate of the polynomial
       
   120     Polynomial derivate() const
       
   121     {
       
   122       Polynomial tmp(deg()-1);
       
   123       for(int i=1;i<(int)_coeff.size();i++) tmp[i-1]=i*_coeff[i];
       
   124       return tmp;
       
   125     }
       
   126 
       
   127     ///Integrate the polynomial (in place)
       
   128     Polynomial &integrateMyself()
       
   129     {
       
   130       _coeff.push_back(T());
       
   131       for(int i=_coeff.size()-1;i>=0;i--) _coeff[i]=_coeff[i-1]/i;
       
   132       _coeff[0]=0;
       
   133       return *this;
       
   134     }
       
   135     
       
   136     ///Return the integrate of the polynomial
       
   137     Polynomial integrate() const
       
   138     {
       
   139       Polynomial tmp(deg()+1);
       
   140       tmp[0]=0;
       
   141       for(int i=0;i<(int)_coeff.size();i++) tmp[i+1]=_coeff[i]/(i+1);
       
   142       return tmp;
       
   143     }
       
   144 
       
   145     ///\e
       
   146     template<class U>
       
   147     Polynomial &operator+=(const Polynomial<U> &p)
       
   148     {
       
   149       if(p.deg()>deg()) _coeff.resize(p.deg()+1);
       
   150       for(int i=0;i<=(int)std::min(deg(),p.deg());i++)
       
   151 	_coeff[i]+=p[i];
       
   152       return *this;
       
   153     }
       
   154     ///\e
       
   155     template<class U>
       
   156     Polynomial &operator-=(const Polynomial<U> &p)
       
   157     {
       
   158       if(p.deg()>deg()) _coeff.resize(p.deg()+1);
       
   159       for(int i=0;i<=std::min(deg(),p.deg());i++) _coeff[i]-=p[i];
       
   160       return *this;
       
   161     }
       
   162     ///\e
       
   163     template<class U>
       
   164     Polynomial &operator+=(const U &u)
       
   165     {
       
   166       _coeff[0]+=u;
       
   167       return *this;
       
   168     }
       
   169     ///\e
       
   170     template<class U>
       
   171     Polynomial &operator-=(const U &u)
       
   172     {
       
   173       _coeff[0]+=u;
       
   174       return *this;
       
   175     }
       
   176     ///\e
       
   177     template<class U>
       
   178     Polynomial &operator*=(const U &u)
       
   179     {
       
   180       for(typename std::vector<T>::iterator i=_coeff.begin();i!=_coeff.end();++i)
       
   181 	*i*=u;
       
   182       return *this;
       
   183     }
       
   184     ///\e
       
   185     template<class U>
       
   186     Polynomial &operator/=(const U &u)
       
   187     {
       
   188       for(typename std::vector<T>::iterator i=_coeff.begin();i!=_coeff.end();++i)
       
   189 	*i/=u;
       
   190       return *this;
       
   191     }
       
   192 
       
   193   };
       
   194   
       
   195   ///Equality comparison
       
   196 
       
   197   ///\relates Polynomial
       
   198   ///\warning Two polynomials are defined to be unequal if their degrees differ,
       
   199   ///even if the non-zero coefficients are the same.
       
   200   template<class U,class V>
       
   201   bool operator==(const Polynomial<U> &u,const Polynomial<V> &v)
       
   202   {
       
   203     if(u.deg()!=v.deg()) return false;
       
   204     for(int i=0;i<=u.deg();i++) if(u[i]!=v[i]) return false;
       
   205     return true;
       
   206   }
       
   207 
       
   208   ///Non-equality comparison
       
   209 
       
   210   ///\relates Polynomial
       
   211   ///\warning Two polynomials are defined to be unequal if their degrees differ,
       
   212   ///even if the non-zero coefficients are the same.
       
   213   template<class U,class V>
       
   214   bool operator!=(const Polynomial<U> &u,const Polynomial<V> &v)
       
   215   {
       
   216     return !(u==v);
       
   217   }
       
   218 
       
   219   ///\e
       
   220 
       
   221   ///\relates Polynomial
       
   222   ///
       
   223   template<class U,class V>
       
   224   Polynomial<U> operator+(const Polynomial<U> &u,const Polynomial<V> &v)
       
   225   {
       
   226     Polynomial<U> tmp=u;
       
   227     tmp+=v;
       
   228     return tmp;
       
   229   }
       
   230 
       
   231   ///\e
       
   232 
       
   233   ///\relates Polynomial
       
   234   ///
       
   235   template<class U,class V>
       
   236   Polynomial<U> operator-(const Polynomial<U> &u,const Polynomial<V> &v)
       
   237   {
       
   238     Polynomial<U> tmp=u;
       
   239     tmp-=v;
       
   240     return tmp;
       
   241   }
       
   242 
       
   243   ///\e
       
   244 
       
   245   ///\relates Polynomial
       
   246   ///
       
   247   template<class U,class V>
       
   248   Polynomial<U> operator*(const Polynomial<U> &u,const Polynomial<V> &v)
       
   249   {
       
   250     Polynomial<U> tmp(u.deg()+v.deg());
       
   251     for(int i=0;i<=v.deg();i++)
       
   252       for(int j=0;j<=u.deg();j++)
       
   253 	tmp[i+j]+=v[i]*u[j];
       
   254     return tmp;
       
   255   }
       
   256   ///\e
       
   257 
       
   258   ///\relates Polynomial
       
   259   ///
       
   260   template<class U,class V>
       
   261   Polynomial<U> operator+(const Polynomial<U> &u,const V &v)
       
   262   {
       
   263     Polynomial<U> tmp=u;
       
   264     tmp+=v;
       
   265     return tmp;
       
   266   }
       
   267   ///\e
       
   268 
       
   269   ///\relates Polynomial
       
   270   ///
       
   271   template<class U,class V>
       
   272   Polynomial<U> operator+(const V &v,const Polynomial<U> &u)
       
   273   {
       
   274     Polynomial<U> tmp=u;
       
   275     tmp+=v;
       
   276     return tmp;
       
   277   }
       
   278   ///\e
       
   279 
       
   280   ///\relates Polynomial
       
   281   ///
       
   282   template<class U,class V>
       
   283   Polynomial<U> operator-(const Polynomial<U> &u,const V &v)
       
   284   {
       
   285     Polynomial<U> tmp=u;
       
   286     tmp-=v;
       
   287     return tmp;
       
   288   }
       
   289   ///\e
       
   290 
       
   291   ///\relates Polynomial
       
   292   ///
       
   293   template<class U>
       
   294   Polynomial<U> operator-(const Polynomial<U> &u)
       
   295   {
       
   296     Polynomial<U> tmp(u.deg());
       
   297     for(int i=0;i<=u.deg();i++) tmp[i]=-u[i];
       
   298     return tmp;
       
   299   }
       
   300   ///\e
       
   301 
       
   302   ///\relates Polynomial
       
   303   ///
       
   304   template<class U,class V>
       
   305   Polynomial<U> operator-(const V &v,const Polynomial<U> &u)
       
   306   {
       
   307     Polynomial<U> tmp=-u;
       
   308     tmp+=v;
       
   309     return tmp;
       
   310   }
       
   311   ///\e
       
   312 
       
   313   ///\relates Polynomial
       
   314   ///
       
   315   template<class U,class V>
       
   316   Polynomial<U> operator*(const Polynomial<U> &u,const V &v)
       
   317   {
       
   318     Polynomial<U> tmp=u;
       
   319     tmp*=v;
       
   320     return tmp;
       
   321   }
       
   322   ///\e
       
   323 
       
   324   ///\relates Polynomial
       
   325   ///
       
   326   template<class U,class V>
       
   327   Polynomial<U> operator*(const V &v,const Polynomial<U> &u)
       
   328   {
       
   329     Polynomial<U> tmp=u;
       
   330     tmp*=v;
       
   331     return tmp;
       
   332   }
       
   333   ///\e
       
   334 
       
   335   ///\relates Polynomial
       
   336   ///
       
   337   template<class U,class V>
       
   338   Polynomial<U> operator/(const Polynomial<U> &u,const V &v)
       
   339   {
       
   340     Polynomial<U> tmp=u;
       
   341     tmp/=v;
       
   342     return tmp;
       
   343   }
       
   344     
       
   345   /// @}
       
   346 
       
   347 } //END OF NAMESPACE LEMON
       
   348 
       
   349 #endif // LEMON_POLYNOMIAL_H