|
1 // -*- c++ -*- |
|
2 #ifndef HUGO_EDMONDS_KARP_H |
|
3 #define HUGO_EDMONDS_KARP_H |
|
4 |
|
5 #include <algorithm> |
|
6 #include <list> |
|
7 #include <iterator> |
|
8 |
|
9 #include <bfs_iterator.h> |
|
10 #include <invalid.h> |
|
11 #include <graph_wrapper.h> |
|
12 #include <maps.h> |
|
13 #include <for_each_macros.h> |
|
14 |
|
15 namespace hugo { |
|
16 |
|
17 template <typename Graph, typename Num, |
|
18 typename CapMap, typename FlowMap> |
|
19 class MaxFlow { |
|
20 protected: |
|
21 typedef typename Graph::Node Node; |
|
22 typedef typename Graph::Edge Edge; |
|
23 typedef typename Graph::EdgeIt EdgeIt; |
|
24 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
25 typedef typename Graph::InEdgeIt InEdgeIt; |
|
26 const Graph* g; |
|
27 Node s; |
|
28 Node t; |
|
29 const CapMap* capacity; |
|
30 FlowMap* flow; |
|
31 typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; |
|
32 typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
|
33 typedef typename ResGW::Edge ResGWEdge; |
|
34 //typedef typename ResGW::template NodeMap<bool> ReachedMap; |
|
35 typedef typename Graph::template NodeMap<bool> ReachedMap; |
|
36 ReachedMap level; |
|
37 //reached is called level because of compatibility with preflow |
|
38 public: |
|
39 |
|
40 MaxFlow(const Graph& _g, Node _s, Node _t, const CapMap& _capacity, |
|
41 FlowMap& _flow) : |
|
42 g(&_g), s(_s), t(_t), capacity(&_capacity), flow(&_flow), level(_g) { } |
|
43 |
|
44 bool augmentOnShortestPath() { |
|
45 ResGW res_graph(*g, *capacity, *flow); |
|
46 bool _augment=false; |
|
47 |
|
48 //ReachedMap level(res_graph); |
|
49 FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|
50 BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|
51 bfs.pushAndSetReached(s); |
|
52 |
|
53 typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); |
|
54 pred.set(s, INVALID); |
|
55 |
|
56 typename ResGW::template NodeMap<Num> free(res_graph); |
|
57 |
|
58 //searching for augmenting path |
|
59 while ( !bfs.finished() ) { |
|
60 ResGWOutEdgeIt e=bfs; |
|
61 if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
62 Node v=res_graph.tail(e); |
|
63 Node w=res_graph.head(e); |
|
64 pred.set(w, e); |
|
65 if (res_graph.valid(pred[v])) { |
|
66 free.set(w, std::min(free[v], res_graph.resCap(e))); |
|
67 } else { |
|
68 free.set(w, res_graph.resCap(e)); |
|
69 } |
|
70 if (res_graph.head(e)==t) { _augment=true; break; } |
|
71 } |
|
72 |
|
73 ++bfs; |
|
74 } //end of searching augmenting path |
|
75 |
|
76 if (_augment) { |
|
77 Node n=t; |
|
78 Num augment_value=free[t]; |
|
79 while (res_graph.valid(pred[n])) { |
|
80 ResGWEdge e=pred[n]; |
|
81 res_graph.augment(e, augment_value); |
|
82 n=res_graph.tail(e); |
|
83 } |
|
84 } |
|
85 |
|
86 return _augment; |
|
87 } |
|
88 |
|
89 template<typename MapGraphWrapper> |
|
90 class DistanceMap { |
|
91 protected: |
|
92 const MapGraphWrapper* g; |
|
93 typename MapGraphWrapper::template NodeMap<int> dist; |
|
94 public: |
|
95 DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } |
|
96 void set(const typename MapGraphWrapper::Node& n, int a) { |
|
97 dist.set(n, a); |
|
98 } |
|
99 int operator[](const typename MapGraphWrapper::Node& n) |
|
100 { return dist[n]; } |
|
101 // int get(const typename MapGraphWrapper::Node& n) const { |
|
102 // return dist[n]; } |
|
103 // bool get(const typename MapGraphWrapper::Edge& e) const { |
|
104 // return (dist.get(g->tail(e))<dist.get(g->head(e))); } |
|
105 bool operator[](const typename MapGraphWrapper::Edge& e) const { |
|
106 return (dist[g->tail(e)]<dist[g->head(e)]); |
|
107 } |
|
108 }; |
|
109 |
|
110 template<typename MutableGraph> bool augmentOnBlockingFlow() { |
|
111 typedef MutableGraph MG; |
|
112 bool _augment=false; |
|
113 |
|
114 ResGW res_graph(*g, *capacity, *flow); |
|
115 |
|
116 //ReachedMap level(res_graph); |
|
117 FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|
118 BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|
119 |
|
120 bfs.pushAndSetReached(s); |
|
121 //typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's |
|
122 DistanceMap<ResGW> dist(res_graph); |
|
123 while ( !bfs.finished() ) { |
|
124 ResGWOutEdgeIt e=bfs; |
|
125 if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
126 dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
|
127 } |
|
128 ++bfs; |
|
129 } //computing distances from s in the residual graph |
|
130 |
|
131 MG F; |
|
132 ConstMap<typename ResGW::Node, bool> true_map(true); |
|
133 typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, |
|
134 DistanceMap<ResGW> > FilterResGW; |
|
135 FilterResGW filter_res_graph(res_graph, true_map, dist); |
|
136 typename ResGW::template NodeMap<typename MG::Node> |
|
137 res_graph_to_F(res_graph); |
|
138 { |
|
139 typename ResGW::NodeIt n; |
|
140 for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { |
|
141 res_graph_to_F.set(n, F.addNode()); |
|
142 } |
|
143 } |
|
144 |
|
145 typename MG::Node sF=res_graph_to_F[s]; |
|
146 typename MG::Node tF=res_graph_to_F[t]; |
|
147 typename MG::template EdgeMap<ResGWEdge> original_edge(F); |
|
148 typename MG::template EdgeMap<Num> residual_capacity(F); |
|
149 |
|
150 //Making F to the graph containing the edges of the residual graph |
|
151 //which are in some shortest paths |
|
152 { |
|
153 typename FilterResGW::EdgeIt e; |
|
154 for(filter_res_graph.first(e); filter_res_graph.valid(e); filter_res_graph.next(e)) { |
|
155 //if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) { |
|
156 typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); |
|
157 original_edge.update(); |
|
158 original_edge.set(f, e); |
|
159 residual_capacity.update(); |
|
160 residual_capacity.set(f, res_graph.resCap(e)); |
|
161 //} |
|
162 } |
|
163 } |
|
164 |
|
165 bool __augment=true; |
|
166 |
|
167 while (__augment) { |
|
168 __augment=false; |
|
169 //computing blocking flow with dfs |
|
170 |
|
171 DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); |
|
172 typename MG::template NodeMap<typename MG::Edge> pred(F); |
|
173 pred.set(sF, INVALID); |
|
174 //invalid iterators for sources |
|
175 |
|
176 typename MG::template NodeMap<Num> free(F); |
|
177 |
|
178 dfs.pushAndSetReached(sF); |
|
179 while (!dfs.finished()) { |
|
180 ++dfs; |
|
181 if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { |
|
182 if (dfs.isBNodeNewlyReached()) { |
|
183 typename MG::Node v=F.aNode(dfs); |
|
184 typename MG::Node w=F.bNode(dfs); |
|
185 pred.set(w, dfs); |
|
186 if (F.valid(pred[v])) { |
|
187 free.set(w, std::min(free[v], residual_capacity[dfs])); |
|
188 } else { |
|
189 free.set(w, residual_capacity[dfs]); |
|
190 } |
|
191 if (w==tF) { |
|
192 __augment=true; |
|
193 _augment=true; |
|
194 break; |
|
195 } |
|
196 |
|
197 } else { |
|
198 F.erase(/*typename MG::OutEdgeIt*/(dfs)); |
|
199 } |
|
200 } |
|
201 } |
|
202 |
|
203 if (__augment) { |
|
204 typename MG::Node n=tF; |
|
205 Num augment_value=free[tF]; |
|
206 while (F.valid(pred[n])) { |
|
207 typename MG::Edge e=pred[n]; |
|
208 res_graph.augment(original_edge[e], augment_value); |
|
209 n=F.tail(e); |
|
210 if (residual_capacity[e]==augment_value) |
|
211 F.erase(e); |
|
212 else |
|
213 residual_capacity.set(e, residual_capacity[e]-augment_value); |
|
214 } |
|
215 } |
|
216 |
|
217 } |
|
218 |
|
219 return _augment; |
|
220 } |
|
221 |
|
222 template<typename MutableGraph> bool augmentOnBlockingFlow1() { |
|
223 typedef MutableGraph MG; |
|
224 bool _augment=false; |
|
225 |
|
226 ResGW res_graph(*g, *capacity, *flow); |
|
227 |
|
228 //bfs for distances on the residual graph |
|
229 //ReachedMap level(res_graph); |
|
230 FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|
231 BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|
232 bfs.pushAndSetReached(s); |
|
233 typename ResGW::template NodeMap<int> |
|
234 dist(res_graph); //filled up with 0's |
|
235 |
|
236 //F will contain the physical copy of the residual graph |
|
237 //with the set of edges which are on shortest paths |
|
238 MG F; |
|
239 typename ResGW::template NodeMap<typename MG::Node> |
|
240 res_graph_to_F(res_graph); |
|
241 { |
|
242 typename ResGW::NodeIt n; |
|
243 for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { |
|
244 res_graph_to_F.set(n, F.addNode()); |
|
245 } |
|
246 } |
|
247 |
|
248 typename MG::Node sF=res_graph_to_F[s]; |
|
249 typename MG::Node tF=res_graph_to_F[t]; |
|
250 typename MG::template EdgeMap<ResGWEdge> original_edge(F); |
|
251 typename MG::template EdgeMap<Num> residual_capacity(F); |
|
252 |
|
253 while ( !bfs.finished() ) { |
|
254 ResGWOutEdgeIt e=bfs; |
|
255 if (res_graph.valid(e)) { |
|
256 if (bfs.isBNodeNewlyReached()) { |
|
257 dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
|
258 typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); |
|
259 original_edge.update(); |
|
260 original_edge.set(f, e); |
|
261 residual_capacity.update(); |
|
262 residual_capacity.set(f, res_graph.resCap(e)); |
|
263 } else { |
|
264 if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { |
|
265 typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]); |
|
266 original_edge.update(); |
|
267 original_edge.set(f, e); |
|
268 residual_capacity.update(); |
|
269 residual_capacity.set(f, res_graph.resCap(e)); |
|
270 } |
|
271 } |
|
272 } |
|
273 ++bfs; |
|
274 } //computing distances from s in the residual graph |
|
275 |
|
276 bool __augment=true; |
|
277 |
|
278 while (__augment) { |
|
279 __augment=false; |
|
280 //computing blocking flow with dfs |
|
281 DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F); |
|
282 typename MG::template NodeMap<typename MG::Edge> pred(F); |
|
283 pred.set(sF, INVALID); |
|
284 //invalid iterators for sources |
|
285 |
|
286 typename MG::template NodeMap<Num> free(F); |
|
287 |
|
288 dfs.pushAndSetReached(sF); |
|
289 while (!dfs.finished()) { |
|
290 ++dfs; |
|
291 if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { |
|
292 if (dfs.isBNodeNewlyReached()) { |
|
293 typename MG::Node v=F.aNode(dfs); |
|
294 typename MG::Node w=F.bNode(dfs); |
|
295 pred.set(w, dfs); |
|
296 if (F.valid(pred[v])) { |
|
297 free.set(w, std::min(free[v], residual_capacity[dfs])); |
|
298 } else { |
|
299 free.set(w, residual_capacity[dfs]); |
|
300 } |
|
301 if (w==tF) { |
|
302 __augment=true; |
|
303 _augment=true; |
|
304 break; |
|
305 } |
|
306 |
|
307 } else { |
|
308 F.erase(/*typename MG::OutEdgeIt*/(dfs)); |
|
309 } |
|
310 } |
|
311 } |
|
312 |
|
313 if (__augment) { |
|
314 typename MG::Node n=tF; |
|
315 Num augment_value=free[tF]; |
|
316 while (F.valid(pred[n])) { |
|
317 typename MG::Edge e=pred[n]; |
|
318 res_graph.augment(original_edge[e], augment_value); |
|
319 n=F.tail(e); |
|
320 if (residual_capacity[e]==augment_value) |
|
321 F.erase(e); |
|
322 else |
|
323 residual_capacity.set(e, residual_capacity[e]-augment_value); |
|
324 } |
|
325 } |
|
326 |
|
327 } |
|
328 |
|
329 return _augment; |
|
330 } |
|
331 |
|
332 bool augmentOnBlockingFlow2() { |
|
333 bool _augment=false; |
|
334 |
|
335 ResGW res_graph(*g, *capacity, *flow); |
|
336 |
|
337 //ReachedMap level(res_graph); |
|
338 FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); |
|
339 BfsIterator<ResGW, ReachedMap> bfs(res_graph, level); |
|
340 |
|
341 bfs.pushAndSetReached(s); |
|
342 DistanceMap<ResGW> dist(res_graph); |
|
343 while ( !bfs.finished() ) { |
|
344 ResGWOutEdgeIt e=bfs; |
|
345 if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
346 dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1); |
|
347 } |
|
348 ++bfs; |
|
349 } //computing distances from s in the residual graph |
|
350 |
|
351 //Subgraph containing the edges on some shortest paths |
|
352 ConstMap<typename ResGW::Node, bool> true_map(true); |
|
353 typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, |
|
354 DistanceMap<ResGW> > FilterResGW; |
|
355 FilterResGW filter_res_graph(res_graph, true_map, dist); |
|
356 |
|
357 //Subgraph, which is able to delete edges which are already |
|
358 //met by the dfs |
|
359 typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> |
|
360 first_out_edges(filter_res_graph); |
|
361 typename FilterResGW::NodeIt v; |
|
362 for(filter_res_graph.first(v); filter_res_graph.valid(v); |
|
363 filter_res_graph.next(v)) |
|
364 { |
|
365 typename FilterResGW::OutEdgeIt e; |
|
366 filter_res_graph.first(e, v); |
|
367 first_out_edges.set(v, e); |
|
368 } |
|
369 typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: |
|
370 template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW; |
|
371 ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); |
|
372 |
|
373 bool __augment=true; |
|
374 |
|
375 while (__augment) { |
|
376 |
|
377 __augment=false; |
|
378 //computing blocking flow with dfs |
|
379 DfsIterator< ErasingResGW, |
|
380 typename ErasingResGW::template NodeMap<bool> > |
|
381 dfs(erasing_res_graph); |
|
382 typename ErasingResGW:: |
|
383 template NodeMap<typename ErasingResGW::OutEdgeIt> |
|
384 pred(erasing_res_graph); |
|
385 pred.set(s, INVALID); |
|
386 //invalid iterators for sources |
|
387 |
|
388 typename ErasingResGW::template NodeMap<Num> |
|
389 free1(erasing_res_graph); |
|
390 |
|
391 dfs.pushAndSetReached( |
|
392 typename ErasingResGW::Node( |
|
393 typename FilterResGW::Node( |
|
394 typename ResGW::Node(s) |
|
395 ) |
|
396 ) |
|
397 ); |
|
398 while (!dfs.finished()) { |
|
399 ++dfs; |
|
400 if (erasing_res_graph.valid( |
|
401 typename ErasingResGW::OutEdgeIt(dfs))) |
|
402 { |
|
403 if (dfs.isBNodeNewlyReached()) { |
|
404 |
|
405 typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); |
|
406 typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); |
|
407 |
|
408 pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); |
|
409 if (erasing_res_graph.valid(pred[v])) { |
|
410 free1.set(w, std::min(free1[v], res_graph.resCap( |
|
411 typename ErasingResGW::OutEdgeIt(dfs)))); |
|
412 } else { |
|
413 free1.set(w, res_graph.resCap( |
|
414 typename ErasingResGW::OutEdgeIt(dfs))); |
|
415 } |
|
416 |
|
417 if (w==t) { |
|
418 __augment=true; |
|
419 _augment=true; |
|
420 break; |
|
421 } |
|
422 } else { |
|
423 erasing_res_graph.erase(dfs); |
|
424 } |
|
425 } |
|
426 } |
|
427 |
|
428 if (__augment) { |
|
429 typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); |
|
430 // typename ResGW::NodeMap<Num> a(res_graph); |
|
431 // typename ResGW::Node b; |
|
432 // Num j=a[b]; |
|
433 // typename FilterResGW::NodeMap<Num> a1(filter_res_graph); |
|
434 // typename FilterResGW::Node b1; |
|
435 // Num j1=a1[b1]; |
|
436 // typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph); |
|
437 // typename ErasingResGW::Node b2; |
|
438 // Num j2=a2[b2]; |
|
439 Num augment_value=free1[n]; |
|
440 while (erasing_res_graph.valid(pred[n])) { |
|
441 typename ErasingResGW::OutEdgeIt e=pred[n]; |
|
442 res_graph.augment(e, augment_value); |
|
443 n=erasing_res_graph.tail(e); |
|
444 if (res_graph.resCap(e)==0) |
|
445 erasing_res_graph.erase(e); |
|
446 } |
|
447 } |
|
448 |
|
449 } //while (__augment) |
|
450 |
|
451 return _augment; |
|
452 } |
|
453 |
|
454 void run() { |
|
455 //int num_of_augmentations=0; |
|
456 while (augmentOnShortestPath()) { |
|
457 //while (augmentOnBlockingFlow<MutableGraph>()) { |
|
458 //std::cout << ++num_of_augmentations << " "; |
|
459 //std::cout<<std::endl; |
|
460 } |
|
461 } |
|
462 |
|
463 template<typename MutableGraph> void run() { |
|
464 //int num_of_augmentations=0; |
|
465 //while (augmentOnShortestPath()) { |
|
466 while (augmentOnBlockingFlow<MutableGraph>()) { |
|
467 //std::cout << ++num_of_augmentations << " "; |
|
468 //std::cout<<std::endl; |
|
469 } |
|
470 } |
|
471 |
|
472 Num flowValue() { |
|
473 Num a=0; |
|
474 OutEdgeIt e; |
|
475 for(g->first(e, s); g->valid(e); g->next(e)) { |
|
476 a+=(*flow)[e]; |
|
477 } |
|
478 return a; |
|
479 } |
|
480 |
|
481 }; |
|
482 |
|
483 |
|
484 // template <typename Graph, typename Num, typename FlowMap, typename CapMap> |
|
485 // class MaxMatching { |
|
486 // public: |
|
487 // typedef typename Graph::Node Node; |
|
488 // typedef typename Graph::NodeIt NodeIt; |
|
489 // typedef typename Graph::Edge Edge; |
|
490 // typedef typename Graph::EdgeIt EdgeIt; |
|
491 // typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
492 // typedef typename Graph::InEdgeIt InEdgeIt; |
|
493 |
|
494 // typedef typename Graph::NodeMap<bool> SMap; |
|
495 // typedef typename Graph::NodeMap<bool> TMap; |
|
496 // private: |
|
497 // const Graph* G; |
|
498 // SMap* S; |
|
499 // TMap* T; |
|
500 // //Node s; |
|
501 // //Node t; |
|
502 // FlowMap* flow; |
|
503 // const CapMap* capacity; |
|
504 // typedef ResGraphWrapper<Graph, Num, FlowMap, CapMap > AugGraph; |
|
505 // typedef typename AugGraph::OutEdgeIt AugOutEdgeIt; |
|
506 // typedef typename AugGraph::Edge AugEdge; |
|
507 // typename Graph::NodeMap<int> used; //0 |
|
508 |
|
509 // public: |
|
510 // MaxMatching(const Graph& _G, SMap& _S, TMap& _T, FlowMap& _flow, const CapMap& _capacity) : |
|
511 // G(&_G), S(&_S), T(&_T), flow(&_flow), capacity(&_capacity), used(_G) { } |
|
512 // bool augmentOnShortestPath() { |
|
513 // AugGraph res_graph(*G, *flow, *capacity); |
|
514 // bool _augment=false; |
|
515 |
|
516 // typedef typename AugGraph::NodeMap<bool> ReachedMap; |
|
517 // BfsIterator< AugGraph, /*AugOutEdgeIt,*/ ReachedMap > bfs(res_graph); |
|
518 // typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
519 // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
520 // if ((S->get(s)) && (used.get(s)<1) ) { |
|
521 // //Num u=0; |
|
522 // //for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
523 // //u+=flow->get(e); |
|
524 // //if (u<1) { |
|
525 // bfs.pushAndSetReached(s); |
|
526 // pred.set(s, AugEdge(INVALID)); |
|
527 // //} |
|
528 // } |
|
529 // } |
|
530 |
|
531 // typename AugGraph::NodeMap<Num> free(res_graph); |
|
532 |
|
533 // Node n; |
|
534 // //searching for augmenting path |
|
535 // while ( !bfs.finished() ) { |
|
536 // AugOutEdgeIt e=bfs; |
|
537 // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
538 // Node v=res_graph.tail(e); |
|
539 // Node w=res_graph.head(e); |
|
540 // pred.set(w, e); |
|
541 // if (res_graph.valid(pred.get(v))) { |
|
542 // free.set(w, std::min(free.get(v), res_graph.free(e))); |
|
543 // } else { |
|
544 // free.set(w, res_graph.free(e)); |
|
545 // } |
|
546 // n=res_graph.head(e); |
|
547 // if (T->get(n) && (used.get(n)<1) ) { |
|
548 // //Num u=0; |
|
549 // //for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f)) |
|
550 // //u+=flow->get(f); |
|
551 // //if (u<1) { |
|
552 // _augment=true; |
|
553 // break; |
|
554 // //} |
|
555 // } |
|
556 // } |
|
557 |
|
558 // ++bfs; |
|
559 // } //end of searching augmenting path |
|
560 |
|
561 // if (_augment) { |
|
562 // //Node n=t; |
|
563 // used.set(n, 1); //mind2 vegen jav |
|
564 // Num augment_value=free.get(n); |
|
565 // while (res_graph.valid(pred.get(n))) { |
|
566 // AugEdge e=pred.get(n); |
|
567 // res_graph.augment(e, augment_value); |
|
568 // n=res_graph.tail(e); |
|
569 // } |
|
570 // used.set(n, 1); //mind2 vegen jav |
|
571 // } |
|
572 |
|
573 // return _augment; |
|
574 // } |
|
575 |
|
576 // // template<typename MutableGraph> bool augmentOnBlockingFlow() { |
|
577 // // bool _augment=false; |
|
578 |
|
579 // // AugGraph res_graph(*G, *flow, *capacity); |
|
580 |
|
581 // // typedef typename AugGraph::NodeMap<bool> ReachedMap; |
|
582 // // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph); |
|
583 |
|
584 |
|
585 |
|
586 |
|
587 |
|
588 // // //typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
589 // // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
590 // // if (S->get(s)) { |
|
591 // // Num u=0; |
|
592 // // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
593 // // u+=flow->get(e); |
|
594 // // if (u<1) { |
|
595 // // bfs.pushAndSetReached(s); |
|
596 // // //pred.set(s, AugEdge(INVALID)); |
|
597 // // } |
|
598 // // } |
|
599 // // } |
|
600 |
|
601 |
|
602 |
|
603 |
|
604 // // //bfs.pushAndSetReached(s); |
|
605 // // typename AugGraph::NodeMap<int> dist(res_graph); //filled up with 0's |
|
606 // // while ( !bfs.finished() ) { |
|
607 // // AugOutEdgeIt e=bfs; |
|
608 // // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
609 // // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
610 // // } |
|
611 |
|
612 // // ++bfs; |
|
613 // // } //computing distances from s in the residual graph |
|
614 |
|
615 // // MutableGraph F; |
|
616 // // typename AugGraph::NodeMap<typename MutableGraph::Node> |
|
617 // // res_graph_to_F(res_graph); |
|
618 // // for(typename AugGraph::NodeIt n=res_graph.template first<typename AugGraph::NodeIt>(); res_graph.valid(n); res_graph.next(n)) { |
|
619 // // res_graph_to_F.set(n, F.addNode()); |
|
620 // // } |
|
621 |
|
622 // // typename MutableGraph::Node sF=res_graph_to_F.get(s); |
|
623 // // typename MutableGraph::Node tF=res_graph_to_F.get(t); |
|
624 |
|
625 // // typename MutableGraph::EdgeMap<AugEdge> original_edge(F); |
|
626 // // typename MutableGraph::EdgeMap<Num> residual_capacity(F); |
|
627 |
|
628 // // //Making F to the graph containing the edges of the residual graph |
|
629 // // //which are in some shortest paths |
|
630 // // for(typename AugGraph::EdgeIt e=res_graph.template first<typename AugGraph::EdgeIt>(); res_graph.valid(e); res_graph.next(e)) { |
|
631 // // if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) { |
|
632 // // typename MutableGraph::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e))); |
|
633 // // original_edge.update(); |
|
634 // // original_edge.set(f, e); |
|
635 // // residual_capacity.update(); |
|
636 // // residual_capacity.set(f, res_graph.free(e)); |
|
637 // // } |
|
638 // // } |
|
639 |
|
640 // // bool __augment=true; |
|
641 |
|
642 // // while (__augment) { |
|
643 // // __augment=false; |
|
644 // // //computing blocking flow with dfs |
|
645 // // typedef typename MutableGraph::NodeMap<bool> BlockingReachedMap; |
|
646 // // DfsIterator4< MutableGraph, typename MutableGraph::OutEdgeIt, BlockingReachedMap > dfs(F); |
|
647 // // typename MutableGraph::NodeMap<typename MutableGraph::Edge> pred(F); |
|
648 // // pred.set(sF, typename MutableGraph::Edge(INVALID)); |
|
649 // // //invalid iterators for sources |
|
650 |
|
651 // // typename MutableGraph::NodeMap<Num> free(F); |
|
652 |
|
653 // // dfs.pushAndSetReached(sF); |
|
654 // // while (!dfs.finished()) { |
|
655 // // ++dfs; |
|
656 // // if (F.valid(typename MutableGraph::OutEdgeIt(dfs))) { |
|
657 // // if (dfs.isBNodeNewlyReached()) { |
|
658 // // typename MutableGraph::Node v=F.aNode(dfs); |
|
659 // // typename MutableGraph::Node w=F.bNode(dfs); |
|
660 // // pred.set(w, dfs); |
|
661 // // if (F.valid(pred.get(v))) { |
|
662 // // free.set(w, std::min(free.get(v), residual_capacity.get(dfs))); |
|
663 // // } else { |
|
664 // // free.set(w, residual_capacity.get(dfs)); |
|
665 // // } |
|
666 // // if (w==tF) { |
|
667 // // __augment=true; |
|
668 // // _augment=true; |
|
669 // // break; |
|
670 // // } |
|
671 |
|
672 // // } else { |
|
673 // // F.erase(typename MutableGraph::OutEdgeIt(dfs)); |
|
674 // // } |
|
675 // // } |
|
676 // // } |
|
677 |
|
678 // // if (__augment) { |
|
679 // // typename MutableGraph::Node n=tF; |
|
680 // // Num augment_value=free.get(tF); |
|
681 // // while (F.valid(pred.get(n))) { |
|
682 // // typename MutableGraph::Edge e=pred.get(n); |
|
683 // // res_graph.augment(original_edge.get(e), augment_value); |
|
684 // // n=F.tail(e); |
|
685 // // if (residual_capacity.get(e)==augment_value) |
|
686 // // F.erase(e); |
|
687 // // else |
|
688 // // residual_capacity.set(e, residual_capacity.get(e)-augment_value); |
|
689 // // } |
|
690 // // } |
|
691 |
|
692 // // } |
|
693 |
|
694 // // return _augment; |
|
695 // // } |
|
696 // bool augmentOnBlockingFlow2() { |
|
697 // bool _augment=false; |
|
698 |
|
699 // //typedef ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap> EAugGraph; |
|
700 // typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap> > EAugGraph; |
|
701 // typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt; |
|
702 // typedef typename EAugGraph::Edge EAugEdge; |
|
703 |
|
704 // EAugGraph res_graph(*G, *flow, *capacity); |
|
705 |
|
706 // //typedef typename EAugGraph::NodeMap<bool> ReachedMap; |
|
707 // BfsIterator< |
|
708 // ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap>, |
|
709 // /*typename ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap>::OutEdgeIt,*/ |
|
710 // ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap>::NodeMap<bool> > bfs(res_graph); |
|
711 |
|
712 |
|
713 // //typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
714 // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
715 // if (S->get(s)) { |
|
716 // Num u=0; |
|
717 // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
718 // u+=flow->get(e); |
|
719 // if (u<1) { |
|
720 // bfs.pushAndSetReached(s); |
|
721 // //pred.set(s, AugEdge(INVALID)); |
|
722 // } |
|
723 // } |
|
724 // } |
|
725 |
|
726 |
|
727 // //bfs.pushAndSetReached(s); |
|
728 |
|
729 // typename ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap>:: |
|
730 // NodeMap<int>& dist=res_graph.dist; |
|
731 |
|
732 // while ( !bfs.finished() ) { |
|
733 // typename ErasingResGraphWrapper<Graph, Num, FlowMap, CapMap>::OutEdgeIt e=bfs; |
|
734 // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
735 // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
736 // } |
|
737 // ++bfs; |
|
738 // } //computing distances from s in the residual graph |
|
739 |
|
740 // bool __augment=true; |
|
741 |
|
742 // while (__augment) { |
|
743 |
|
744 // __augment=false; |
|
745 // //computing blocking flow with dfs |
|
746 // typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap; |
|
747 // DfsIterator< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > |
|
748 // dfs(res_graph); |
|
749 // typename EAugGraph::NodeMap<EAugEdge> pred(res_graph, INVALID); |
|
750 // //pred.set(s, EAugEdge(INVALID)); |
|
751 // //invalid iterators for sources |
|
752 |
|
753 // typename EAugGraph::NodeMap<Num> free(res_graph); |
|
754 |
|
755 |
|
756 // //typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
757 // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
758 // if (S->get(s)) { |
|
759 // Num u=0; |
|
760 // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
761 // u+=flow->get(e); |
|
762 // if (u<1) { |
|
763 // dfs.pushAndSetReached(s); |
|
764 // //pred.set(s, AugEdge(INVALID)); |
|
765 // } |
|
766 // } |
|
767 // } |
|
768 |
|
769 |
|
770 |
|
771 // //dfs.pushAndSetReached(s); |
|
772 // typename EAugGraph::Node n; |
|
773 // while (!dfs.finished()) { |
|
774 // ++dfs; |
|
775 // if (res_graph.valid(EAugOutEdgeIt(dfs))) { |
|
776 // if (dfs.isBNodeNewlyReached()) { |
|
777 |
|
778 // typename EAugGraph::Node v=res_graph.aNode(dfs); |
|
779 // typename EAugGraph::Node w=res_graph.bNode(dfs); |
|
780 |
|
781 // pred.set(w, EAugOutEdgeIt(dfs)); |
|
782 // if (res_graph.valid(pred.get(v))) { |
|
783 // free.set(w, std::min(free.get(v), res_graph.free(dfs))); |
|
784 // } else { |
|
785 // free.set(w, res_graph.free(dfs)); |
|
786 // } |
|
787 |
|
788 // n=w; |
|
789 // if (T->get(w)) { |
|
790 // Num u=0; |
|
791 // for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f)) |
|
792 // u+=flow->get(f); |
|
793 // if (u<1) { |
|
794 // __augment=true; |
|
795 // _augment=true; |
|
796 // break; |
|
797 // } |
|
798 // } |
|
799 // } else { |
|
800 // res_graph.erase(dfs); |
|
801 // } |
|
802 // } |
|
803 |
|
804 // } |
|
805 |
|
806 // if (__augment) { |
|
807 // // typename EAugGraph::Node n=t; |
|
808 // Num augment_value=free.get(n); |
|
809 // while (res_graph.valid(pred.get(n))) { |
|
810 // EAugEdge e=pred.get(n); |
|
811 // res_graph.augment(e, augment_value); |
|
812 // n=res_graph.tail(e); |
|
813 // if (res_graph.free(e)==0) |
|
814 // res_graph.erase(e); |
|
815 // } |
|
816 // } |
|
817 |
|
818 // } |
|
819 |
|
820 // return _augment; |
|
821 // } |
|
822 // void run() { |
|
823 // //int num_of_augmentations=0; |
|
824 // while (augmentOnShortestPath()) { |
|
825 // //while (augmentOnBlockingFlow<MutableGraph>()) { |
|
826 // //std::cout << ++num_of_augmentations << " "; |
|
827 // //std::cout<<std::endl; |
|
828 // } |
|
829 // } |
|
830 // // template<typename MutableGraph> void run() { |
|
831 // // //int num_of_augmentations=0; |
|
832 // // //while (augmentOnShortestPath()) { |
|
833 // // while (augmentOnBlockingFlow<MutableGraph>()) { |
|
834 // // //std::cout << ++num_of_augmentations << " "; |
|
835 // // //std::cout<<std::endl; |
|
836 // // } |
|
837 // // } |
|
838 // Num flowValue() { |
|
839 // Num a=0; |
|
840 // EdgeIt e; |
|
841 // for(G->/*getF*/first(e); G->valid(e); G->next(e)) { |
|
842 // a+=flow->get(e); |
|
843 // } |
|
844 // return a; |
|
845 // } |
|
846 // }; |
|
847 |
|
848 |
|
849 |
|
850 |
|
851 |
|
852 |
|
853 // // template <typename Graph, typename Num, typename FlowMap, typename CapMap> |
|
854 // // class MaxFlow2 { |
|
855 // // public: |
|
856 // // typedef typename Graph::Node Node; |
|
857 // // typedef typename Graph::Edge Edge; |
|
858 // // typedef typename Graph::EdgeIt EdgeIt; |
|
859 // // typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
860 // // typedef typename Graph::InEdgeIt InEdgeIt; |
|
861 // // private: |
|
862 // // const Graph& G; |
|
863 // // std::list<Node>& S; |
|
864 // // std::list<Node>& T; |
|
865 // // FlowMap& flow; |
|
866 // // const CapMap& capacity; |
|
867 // // typedef ResGraphWrapper<Graph, Num, FlowMap, CapMap > AugGraph; |
|
868 // // typedef typename AugGraph::OutEdgeIt AugOutEdgeIt; |
|
869 // // typedef typename AugGraph::Edge AugEdge; |
|
870 // // typename Graph::NodeMap<bool> SMap; |
|
871 // // typename Graph::NodeMap<bool> TMap; |
|
872 // // public: |
|
873 // // MaxFlow2(const Graph& _G, std::list<Node>& _S, std::list<Node>& _T, FlowMap& _flow, const CapMap& _capacity) : G(_G), S(_S), T(_T), flow(_flow), capacity(_capacity), SMap(_G), TMap(_G) { |
|
874 // // for(typename std::list<Node>::const_iterator i=S.begin(); |
|
875 // // i!=S.end(); ++i) { |
|
876 // // SMap.set(*i, true); |
|
877 // // } |
|
878 // // for (typename std::list<Node>::const_iterator i=T.begin(); |
|
879 // // i!=T.end(); ++i) { |
|
880 // // TMap.set(*i, true); |
|
881 // // } |
|
882 // // } |
|
883 // // bool augment() { |
|
884 // // AugGraph res_graph(G, flow, capacity); |
|
885 // // bool _augment=false; |
|
886 // // Node reached_t_node; |
|
887 |
|
888 // // typedef typename AugGraph::NodeMap<bool> ReachedMap; |
|
889 // // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph); |
|
890 // // for(typename std::list<Node>::const_iterator i=S.begin(); |
|
891 // // i!=S.end(); ++i) { |
|
892 // // bfs.pushAndSetReached(*i); |
|
893 // // } |
|
894 // // //bfs.pushAndSetReached(s); |
|
895 |
|
896 // // typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
897 // // //filled up with invalid iterators |
|
898 |
|
899 // // typename AugGraph::NodeMap<Num> free(res_graph); |
|
900 |
|
901 // // //searching for augmenting path |
|
902 // // while ( !bfs.finished() ) { |
|
903 // // AugOutEdgeIt e=/*AugOutEdgeIt*/(bfs); |
|
904 // // if (e.valid() && bfs.isBNodeNewlyReached()) { |
|
905 // // Node v=res_graph.tail(e); |
|
906 // // Node w=res_graph.head(e); |
|
907 // // pred.set(w, e); |
|
908 // // if (pred.get(v).valid()) { |
|
909 // // free.set(w, std::min(free.get(v), e.free())); |
|
910 // // } else { |
|
911 // // free.set(w, e.free()); |
|
912 // // } |
|
913 // // if (TMap.get(res_graph.head(e))) { |
|
914 // // _augment=true; |
|
915 // // reached_t_node=res_graph.head(e); |
|
916 // // break; |
|
917 // // } |
|
918 // // } |
|
919 |
|
920 // // ++bfs; |
|
921 // // } //end of searching augmenting path |
|
922 |
|
923 // // if (_augment) { |
|
924 // // Node n=reached_t_node; |
|
925 // // Num augment_value=free.get(reached_t_node); |
|
926 // // while (pred.get(n).valid()) { |
|
927 // // AugEdge e=pred.get(n); |
|
928 // // e.augment(augment_value); |
|
929 // // n=res_graph.tail(e); |
|
930 // // } |
|
931 // // } |
|
932 |
|
933 // // return _augment; |
|
934 // // } |
|
935 // // void run() { |
|
936 // // while (augment()) { } |
|
937 // // } |
|
938 // // Num flowValue() { |
|
939 // // Num a=0; |
|
940 // // for(typename std::list<Node>::const_iterator i=S.begin(); |
|
941 // // i!=S.end(); ++i) { |
|
942 // // for(OutEdgeIt e=G.template first<OutEdgeIt>(*i); e.valid(); ++e) { |
|
943 // // a+=flow.get(e); |
|
944 // // } |
|
945 // // for(InEdgeIt e=G.template first<InEdgeIt>(*i); e.valid(); ++e) { |
|
946 // // a-=flow.get(e); |
|
947 // // } |
|
948 // // } |
|
949 // // return a; |
|
950 // // } |
|
951 // // }; |
|
952 |
|
953 |
|
954 } // namespace hugo |
|
955 |
|
956 #endif //HUGO_EDMONDS_KARP_H |