|
1 // -*- c++ -*- |
|
2 #ifndef HUGO_LEDA_GRAPH_WRAPPER_H |
|
3 #define HUGO_LEDA_GRAPH_WRAPPER_H |
|
4 |
|
5 #include <LEDA/graph.h> |
|
6 #include <LEDA/node_array.h> |
|
7 #include <LEDA/edge_array.h> |
|
8 #include <LEDA/node_map.h> |
|
9 #include <LEDA/edge_map.h> |
|
10 //#include <LEDA/graph_alg.h> |
|
11 //#include <LEDA/dimacs.h> |
|
12 |
|
13 //#if defined(LEDA_NAMESPACE) |
|
14 //using namespace leda; |
|
15 //#endif |
|
16 |
|
17 #include <invalid.h> |
|
18 |
|
19 /// The namespace of HugoLib |
|
20 namespace hugo { |
|
21 |
|
22 // @defgroup empty_graph The LedaGraphWrapper class |
|
23 // @{ |
|
24 |
|
25 /// An empty graph class. |
|
26 |
|
27 /// This class provides all the common features of a grapf structure, |
|
28 /// however completely without implementations or real data structures |
|
29 /// behind the interface. |
|
30 /// All graph algorithms should compile with this class, but it will not |
|
31 /// run properly, of course. |
|
32 /// |
|
33 /// It can be used for checking the interface compatibility, |
|
34 /// or it can serve as a skeleton of a new graph structure. |
|
35 /// |
|
36 /// Also, you will find here the full documentation of a certain graph |
|
37 /// feature, the documentation of a real graph imlementation |
|
38 /// like @ref ListGraph or |
|
39 /// @ref SmartGraph will just refer to this structure. |
|
40 template<typename Graph> |
|
41 class LedaGraphWrapper |
|
42 { |
|
43 Graph* _graph; |
|
44 public: |
|
45 |
|
46 //LedaGraphWrapper() { } |
|
47 LedaGraphWrapper(Graph& __graph) : _graph(&__graph) { } |
|
48 LedaGraphWrapper(const LedaGraphWrapper &G) : _graph(G._graph) { } |
|
49 |
|
50 template <typename T> class NodeMap; |
|
51 template <typename T> class EdgeMap; |
|
52 |
|
53 /// The base type of the node iterators. |
|
54 class Node { |
|
55 friend class LedaGraphWrapper; |
|
56 //friend class Edge; |
|
57 friend class EdgeIt; |
|
58 friend class InEdgeIt; |
|
59 friend class OutEdgeIt; |
|
60 protected: |
|
61 template <typename T> friend class NodeMap; |
|
62 leda_node _n; |
|
63 Node(leda_node __n) : _n(__n) { } |
|
64 public: |
|
65 /// @warning The default constructor sets the iterator |
|
66 /// to an undefined value. |
|
67 Node() {} //FIXME |
|
68 /// Initialize the iterator to be invalid |
|
69 Node(Invalid) : _n(0) { } |
|
70 //Node(const Node &) {} |
|
71 bool operator==(Node n) const { return _n==n._n; } //FIXME |
|
72 bool operator!=(Node n) const { return _n!=n._n; } //FIXME |
|
73 }; |
|
74 |
|
75 /// This iterator goes through each node. |
|
76 class NodeIt : public Node { |
|
77 public: |
|
78 /// @warning The default constructor sets the iterator |
|
79 /// to an undefined value. |
|
80 NodeIt() {} //FIXME |
|
81 /// Initialize the iterator to be invalid |
|
82 NodeIt(Invalid i) : Node(i) {} |
|
83 /// Sets the iterator to the first node of \c G. |
|
84 NodeIt(const LedaGraphWrapper &G) : Node(G._graph->first_node()) { } |
|
85 //NodeIt(const NodeIt &) {} //FIXME |
|
86 }; |
|
87 |
|
88 /// The base type of the edge iterators. |
|
89 class Edge { |
|
90 friend class LedaGraphWrapper; |
|
91 protected: |
|
92 template <typename T> friend class EdgeMap; |
|
93 leda_edge _e; |
|
94 Edge(leda_edge __e) : _e(__e) { } |
|
95 public: |
|
96 /// @warning The default constructor sets the iterator |
|
97 /// to an undefined value. |
|
98 Edge() {} //FIXME |
|
99 /// Initialize the iterator to be invalid |
|
100 Edge(Invalid) : _e(0) {} |
|
101 //Edge(const Edge &) {} |
|
102 bool operator==(Edge e) const { return _e==e._e; } //FIXME |
|
103 bool operator!=(Edge e) const { return _e!=e._e; } //FIXME |
|
104 }; |
|
105 |
|
106 /// This iterator goes trought the outgoing edges of a certain graph. |
|
107 |
|
108 class OutEdgeIt : public Edge { |
|
109 public: |
|
110 /// @warning The default constructor sets the iterator |
|
111 /// to an undefined value. |
|
112 OutEdgeIt() {} |
|
113 /// Initialize the iterator to be invalid |
|
114 OutEdgeIt(Invalid i) : Edge(i) {} |
|
115 /// This constructor sets the iterator to first outgoing edge. |
|
116 |
|
117 /// This constructor set the iterator to the first outgoing edge of |
|
118 /// node |
|
119 ///@param n the node |
|
120 ///@param G the graph |
|
121 OutEdgeIt(const LedaGraphWrapper & G, Node n) : Edge(G._graph->first_adj_edge(n._n)) { } |
|
122 }; |
|
123 |
|
124 class InEdgeIt : public Edge { |
|
125 public: |
|
126 /// @warning The default constructor sets the iterator |
|
127 /// to an undefined value. |
|
128 InEdgeIt() {} |
|
129 /// Initialize the iterator to be invalid |
|
130 InEdgeIt(Invalid i) : Edge(i) {} |
|
131 InEdgeIt(const LedaGraphWrapper & G, Node n) : Edge(G._graph->first_in_edge(n._n)) { } |
|
132 }; |
|
133 |
|
134 // class SymEdgeIt : public Edge {}; |
|
135 class EdgeIt : public Edge { |
|
136 public: |
|
137 /// @warning The default constructor sets the iterator |
|
138 /// to an undefined value. |
|
139 EdgeIt() {} |
|
140 /// Initialize the iterator to be invalid |
|
141 EdgeIt(Invalid i) : Edge(i) {} |
|
142 EdgeIt(const LedaGraphWrapper & G) : Edge(G._graph->first_edge()) { } |
|
143 }; |
|
144 |
|
145 /// First node of the graph. |
|
146 |
|
147 /// \post \c i and the return value will be the first node. |
|
148 /// |
|
149 NodeIt &first(NodeIt &i) const { i=NodeIt(*this); return i; } |
|
150 |
|
151 /// The first outgoing edge. |
|
152 InEdgeIt &first(InEdgeIt &i, Node n) const { |
|
153 i=InEdgeIt(*this, n); |
|
154 return i; |
|
155 } |
|
156 /// The first incoming edge. |
|
157 OutEdgeIt &first(OutEdgeIt &i, Node n) const { |
|
158 i=OutEdgeIt(*this, n); |
|
159 return i; |
|
160 } |
|
161 // SymEdgeIt &first(SymEdgeIt &, Node) const { return i;} |
|
162 /// The first edge of the Graph. |
|
163 EdgeIt &first(EdgeIt &i) const { |
|
164 i=EdgeIt(*this); |
|
165 return i; } |
|
166 |
|
167 // Node getNext(Node) const {} |
|
168 // InEdgeIt getNext(InEdgeIt) const {} |
|
169 // OutEdgeIt getNext(OutEdgeIt) const {} |
|
170 // //SymEdgeIt getNext(SymEdgeIt) const {} |
|
171 // EdgeIt getNext(EdgeIt) const {} |
|
172 |
|
173 /// Go to the next node. |
|
174 NodeIt &next(NodeIt &i) const { |
|
175 i._n=_graph->succ_node(i._n); |
|
176 return i; |
|
177 } |
|
178 /// Go to the next incoming edge. |
|
179 InEdgeIt &next(InEdgeIt &i) const { |
|
180 i._e=_graph->in_succ(i._e); |
|
181 return i; |
|
182 } |
|
183 /// Go to the next outgoing edge. |
|
184 OutEdgeIt &next(OutEdgeIt &i) const { |
|
185 i._e=_graph->adj_succ(i._e); |
|
186 return i; |
|
187 } |
|
188 //SymEdgeIt &next(SymEdgeIt &) const {} |
|
189 /// Go to the next edge. |
|
190 EdgeIt &next(EdgeIt &i) const { |
|
191 i._e=_graph->succ_edge(i._e); |
|
192 return i; |
|
193 } |
|
194 |
|
195 template< typename It > |
|
196 It first() const { |
|
197 It e; |
|
198 first(e); |
|
199 return e; |
|
200 } |
|
201 |
|
202 template< typename It > |
|
203 It first(Node v) const { |
|
204 It e; |
|
205 first(e, v); |
|
206 return e; |
|
207 } |
|
208 |
|
209 ///Gives back the head node of an edge. |
|
210 Node head(Edge e) const { |
|
211 return Node(_graph->target(e._e)); |
|
212 } |
|
213 ///Gives back the tail node of an edge. |
|
214 Node tail(Edge e) const { |
|
215 return Node(_graph->source(e._e)); |
|
216 } |
|
217 |
|
218 Node aNode(InEdgeIt e) const { return head(e); } |
|
219 Node aNode(OutEdgeIt e) const { return tail(e); } |
|
220 // Node aNode(SymEdgeIt) const {} |
|
221 |
|
222 Node bNode(InEdgeIt e) const { return tail(e); } |
|
223 Node bNode(OutEdgeIt e) const { return head(e); } |
|
224 // Node bNode(SymEdgeIt) const {} |
|
225 |
|
226 /// Checks if a node iterator is valid |
|
227 bool valid(Node n) const { return n._n; } |
|
228 /// Checks if an edge iterator is valid |
|
229 bool valid(Edge e) const { return e._e; } |
|
230 |
|
231 ///Gives back the \e id of a node. |
|
232 int id(Node n) const { return n._n->id(); } |
|
233 ///Gives back the \e id of an edge. |
|
234 int id(Edge e) const { return e._e->id(); } |
|
235 |
|
236 //void setInvalid(Node &) const {}; |
|
237 //void setInvalid(Edge &) const {}; |
|
238 |
|
239 Node addNode() const { return Node(_graph->new_node()); } |
|
240 Edge addEdge(Node tail, Node head) const { |
|
241 return Edge(_graph->new_edge(tail._n, head._n)); |
|
242 } |
|
243 |
|
244 void erase(Node n) const { _graph->del_node(n._n); } |
|
245 void erase(Edge e) const { _graph->del_edge(e._e); } |
|
246 |
|
247 void clear() const { _graph->clear(); } |
|
248 |
|
249 int nodeNum() const { return _graph->number_of_nodes(); } |
|
250 int edgeNum() const { return _graph->number_of_edges(); } |
|
251 |
|
252 ///Read/write map from the nodes to type \c T. |
|
253 template<typename T> class NodeMap |
|
254 { |
|
255 leda_node_map<T> leda_stuff; |
|
256 public: |
|
257 typedef T ValueType; |
|
258 typedef Node KeyType; |
|
259 |
|
260 NodeMap(const LedaGraphWrapper &G) : leda_stuff(*(G._graph)) {} |
|
261 NodeMap(const LedaGraphWrapper &G, T t) : leda_stuff(*(G._graph), t) {} |
|
262 |
|
263 void set(Node i, T t) { leda_stuff[i._n]=t; } |
|
264 T get(Node i) const { return leda_stuff[i._n]; } //FIXME: Is it necessary |
|
265 T &operator[](Node i) { return leda_stuff[i._n]; } |
|
266 const T &operator[](Node i) const { return leda_stuff[i._n]; } |
|
267 |
|
268 void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } |
|
269 //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G._graph)*/, a); } //FIXME: Is it necessary |
|
270 }; |
|
271 |
|
272 ///Read/write map from the edges to type \c T. |
|
273 template<typename T> class EdgeMap |
|
274 { |
|
275 leda_edge_map<T> leda_stuff; |
|
276 public: |
|
277 typedef T ValueType; |
|
278 typedef Edge KeyType; |
|
279 |
|
280 EdgeMap(const LedaGraphWrapper &G) : leda_stuff(*(G._graph)) {} |
|
281 EdgeMap(const LedaGraphWrapper &G, T t) : leda_stuff(*(G._graph), t) {} |
|
282 |
|
283 void set(Edge i, T t) { leda_stuff[i._e]=t; } |
|
284 T get(Edge i) const { return leda_stuff[i._e]; } //FIXME: Is it necessary |
|
285 T &operator[](Edge i) { return leda_stuff[i._e]; } |
|
286 const T &operator[](Edge i) const { return leda_stuff[i._e]; } |
|
287 |
|
288 void update() { /*leda_stuff.init(leda_stuff.get_graph());*/ } |
|
289 //void update(T a) { leda_stuff.init(leda_stuff.get_graph()/**(G._graph)*/, a); } //FIXME: Is it necessary |
|
290 }; |
|
291 |
|
292 }; |
|
293 |
|
294 // @} |
|
295 |
|
296 } //namespace hugo |
|
297 |
|
298 |
|
299 |
|
300 // class EmptyBipGraph : public EmptyGraph |
|
301 // { |
|
302 // class ANode {}; |
|
303 // class BNode {}; |
|
304 |
|
305 // ANode &next(ANode &) {} |
|
306 // BNode &next(BNode &) {} |
|
307 |
|
308 // ANode &getFirst(ANode &) const {} |
|
309 // BNode &getFirst(BNode &) const {} |
|
310 |
|
311 // enum NodeClass { A = 0, B = 1 }; |
|
312 // NodeClass getClass(Node n) {} |
|
313 |
|
314 // } |
|
315 |
|
316 #endif // HUGO_LEDA_GRAPH_WRAPPER_H |