|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2006 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #include<iostream> |
|
20 #include<lemon/lp_soplex.h> |
|
21 |
|
22 #include <soplex/soplex.h> |
|
23 |
|
24 |
|
25 ///\file |
|
26 ///\brief Implementation of the LEMON-SOPLEX lp solver interface. |
|
27 namespace lemon { |
|
28 |
|
29 LpSoplex::LpSoplex() : LpSolverBase() { |
|
30 soplex = new soplex::SoPlex; |
|
31 } |
|
32 |
|
33 LpSoplex::~LpSoplex() { |
|
34 delete soplex; |
|
35 } |
|
36 |
|
37 LpSolverBase &LpSoplex::_newLp() { |
|
38 LpSoplex* newlp = new LpSoplex(); |
|
39 return *newlp; |
|
40 } |
|
41 |
|
42 LpSolverBase &LpSoplex::_copyLp() { |
|
43 LpSoplex* newlp = new LpSoplex(); |
|
44 ((soplex::SPxLP&)*(newlp->soplex)) = *soplex; |
|
45 return *newlp; |
|
46 } |
|
47 |
|
48 int LpSoplex::_addCol() { |
|
49 soplex::LPCol col; |
|
50 soplex->addCol(col); |
|
51 |
|
52 colNames.push_back(std::string()); |
|
53 primal.push_back(0.0); |
|
54 |
|
55 return soplex->nCols() - 1; |
|
56 } |
|
57 |
|
58 int LpSoplex::_addRow() { |
|
59 soplex::LPRow row; |
|
60 soplex->addRow(row); |
|
61 |
|
62 dual.push_back(0.0); |
|
63 |
|
64 return soplex->nRows() - 1; |
|
65 } |
|
66 |
|
67 |
|
68 void LpSoplex::_eraseCol(int i) { |
|
69 soplex->removeCol(i); |
|
70 primal[i] = primal.back(); |
|
71 primal.pop_back(); |
|
72 } |
|
73 |
|
74 void LpSoplex::_eraseRow(int i) { |
|
75 soplex->removeRow(i); |
|
76 dual[i] = dual.back(); |
|
77 dual.pop_back(); |
|
78 } |
|
79 |
|
80 void LpSoplex::_getColName(int col, std::string &name) { |
|
81 name = colNames[col]; |
|
82 } |
|
83 |
|
84 void LpSoplex::_setColName(int col, const std::string &name) { |
|
85 colNames[col] = name; |
|
86 } |
|
87 |
|
88 |
|
89 void LpSoplex::_setRowCoeffs(int i, LpRowIterator b, LpRowIterator e) { |
|
90 for (int j = 0; j < soplex->nCols(); ++j) { |
|
91 soplex->changeElement(i, j, 0.0); |
|
92 } |
|
93 for(LpRowIterator it = b; it != e; ++it) { |
|
94 soplex->changeElement(i, it->first, it->second); |
|
95 } |
|
96 } |
|
97 |
|
98 void LpSoplex::_setColCoeffs(int j, LpColIterator b, LpColIterator e) { |
|
99 for (int i = 0; i < soplex->nRows(); ++i) { |
|
100 soplex->changeElement(i, j, 0.0); |
|
101 } |
|
102 for(LpColIterator it = b; it != e; ++it) { |
|
103 soplex->changeElement(it->first, j, it->second); |
|
104 } |
|
105 } |
|
106 |
|
107 void LpSoplex::_setCoeff(int row, int col, Value value) { |
|
108 soplex->changeElement(row, col, value); |
|
109 } |
|
110 |
|
111 void LpSoplex::_setColLowerBound(int i, Value value) { |
|
112 soplex->changeLower(i, value); |
|
113 } |
|
114 |
|
115 void LpSoplex::_setColUpperBound(int i, Value value) { |
|
116 soplex->changeUpper(i, value); |
|
117 } |
|
118 |
|
119 void LpSoplex::_setRowBounds(int i, Value lb, Value ub) { |
|
120 soplex->changeRange(i, lb, ub); |
|
121 } |
|
122 |
|
123 void LpSoplex::_setObjCoeff(int i, Value obj_coef) { |
|
124 soplex->changeObj(i, obj_coef); |
|
125 } |
|
126 |
|
127 void LpSoplex::_clearObj() { |
|
128 for (int i = 0; i < soplex->nCols(); ++i) { |
|
129 soplex->changeObj(i, 0.0); |
|
130 } |
|
131 } |
|
132 |
|
133 LpSoplex::SolveExitStatus LpSoplex::_solve() { |
|
134 soplex::SPxSolver::Status status = soplex->solve(); |
|
135 |
|
136 soplex::Vector pv(primal.size(), &primal[0]); |
|
137 soplex->getPrimal(pv); |
|
138 |
|
139 soplex::Vector dv(dual.size(), &dual[0]); |
|
140 soplex->getDual(dv); |
|
141 |
|
142 switch (status) { |
|
143 case soplex::SPxSolver::OPTIMAL: |
|
144 case soplex::SPxSolver::INFEASIBLE: |
|
145 case soplex::SPxSolver::UNBOUNDED: |
|
146 return SOLVED; |
|
147 default: |
|
148 return UNSOLVED; |
|
149 } |
|
150 } |
|
151 |
|
152 LpSoplex::Value LpSoplex::_getPrimal(int i) { |
|
153 return primal[i]; |
|
154 } |
|
155 |
|
156 LpSoplex::Value LpSoplex::_getDual(int i) { |
|
157 return dual[i]; |
|
158 } |
|
159 |
|
160 LpSoplex::Value LpSoplex::_getPrimalValue() { |
|
161 return soplex->objValue(); |
|
162 } |
|
163 |
|
164 bool LpSoplex::_isBasicCol(int i) { |
|
165 return soplex->getBasisColStatus(i) == soplex::SPxSolver::BASIC; |
|
166 } |
|
167 |
|
168 LpSoplex::SolutionStatus LpSoplex::_getPrimalStatus() { |
|
169 switch (soplex->status()) { |
|
170 case soplex::SPxSolver::OPTIMAL: |
|
171 return OPTIMAL; |
|
172 case soplex::SPxSolver::UNBOUNDED: |
|
173 return INFINITE; |
|
174 case soplex::SPxSolver::INFEASIBLE: |
|
175 return INFEASIBLE; |
|
176 default: |
|
177 return UNDEFINED; |
|
178 } |
|
179 } |
|
180 |
|
181 LpSoplex::SolutionStatus LpSoplex::_getDualStatus() { |
|
182 switch (0) { |
|
183 case 0: |
|
184 return UNDEFINED; |
|
185 return OPTIMAL; |
|
186 return INFEASIBLE; |
|
187 return UNDEFINED; |
|
188 } |
|
189 } |
|
190 |
|
191 LpSoplex::ProblemTypes LpSoplex::_getProblemType() { |
|
192 switch (0) { |
|
193 case 0: |
|
194 return PRIMAL_DUAL_FEASIBLE; |
|
195 return PRIMAL_FEASIBLE_DUAL_INFEASIBLE; |
|
196 return UNKNOWN; |
|
197 } |
|
198 } |
|
199 |
|
200 void LpSoplex::_setMax() { |
|
201 soplex->changeSense(soplex::SPxSolver::MAXIMIZE); |
|
202 } |
|
203 void LpSoplex::_setMin() { |
|
204 soplex->changeSense(soplex::SPxSolver::MINIMIZE); |
|
205 } |
|
206 |
|
207 } //namespace lemon |
|
208 |