src/work/jacint/max_save.h
changeset 674 7733d18de0e8
child 921 818510fa3d99
equal deleted inserted replaced
-1:000000000000 0:d1c58d91a8f7
       
     1 // -*- C++ -*-
       
     2 #ifndef HUGO_MAX_FLOW_H
       
     3 #define HUGO_MAX_FLOW_H
       
     4 
       
     5 ///\ingroup galgs
       
     6 ///\file
       
     7 ///\brief Maximum flow algorithm.
       
     8 
       
     9 #define H0 20
       
    10 #define H1 1
       
    11 
       
    12 #include <vector>
       
    13 #include <queue>
       
    14 #include <stack>
       
    15 
       
    16 #include <graph_wrapper.h>
       
    17 #include <bfs_iterator.h>
       
    18 #include <invalid.h>
       
    19 #include <maps.h>
       
    20 #include <for_each_macros.h>
       
    21 
       
    22 /// \file
       
    23 /// \brief Dimacs file format reader.
       
    24 
       
    25 namespace hugo {
       
    26 
       
    27   /// \addtogroup galgs
       
    28   /// @{
       
    29 
       
    30   ///Maximum flow algorithms class.
       
    31 
       
    32   ///This class provides various algorithms for finding a flow of
       
    33   ///maximum value in a directed graph. The \e source node, the \e
       
    34   ///target node, the \e capacity of the edges and the \e starting \e
       
    35   ///flow value of the edges can be passed to the algorithm by the
       
    36   ///constructor. It is possible to change these quantities using the
       
    37   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
       
    38   ///\ref resetFlow. Before any subsequent runs of any algorithm of
       
    39   ///the class \ref resetFlow should be called, otherwise it will
       
    40   ///start from a maximum flow.
       
    41 
       
    42   ///After running an algorithm of the class, the maximum value of a
       
    43   ///value can be obtained by calling \ref flowValue(). The minimum
       
    44   ///value cut can be written into a \c node map of \c bools by
       
    45   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
       
    46   ///the inclusionwise minimum and maximum of the minimum value
       
    47   ///cuts, resp.)
       
    48 
       
    49   ///\param Graph The undirected graph type the algorithm runs on.
       
    50   ///\param Num The number type of the capacities and the flow values.
       
    51   ///\param The type of the capacity map.
       
    52   ///\param The type of the flow map.
       
    53 
       
    54   ///\author Marton Makai, Jacint Szabo
       
    55   template <typename Graph, typename Num, 
       
    56 	    typename CapMap=typename Graph::template EdgeMap<Num>, 
       
    57             typename FlowMap=typename Graph::template EdgeMap<Num> >
       
    58   class MaxFlow {
       
    59     
       
    60     typedef typename Graph::Node Node;
       
    61     typedef typename Graph::NodeIt NodeIt;
       
    62     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    63     typedef typename Graph::InEdgeIt InEdgeIt;
       
    64 
       
    65     typedef typename std::vector<std::stack<Node> > VecStack;
       
    66     typedef typename Graph::template NodeMap<Node> NNMap;
       
    67     typedef typename std::vector<Node> VecNode;
       
    68     
       
    69     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
       
    70     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
       
    71     typedef typename ResGW::Edge ResGWEdge;
       
    72     //typedef typename ResGW::template NodeMap<bool> ReachedMap;  //fixme
       
    73     typedef typename Graph::template NodeMap<int> ReachedMap;
       
    74     
       
    75     const Graph* g;
       
    76     Node s;
       
    77     Node t;
       
    78     const CapMap* capacity;  
       
    79     FlowMap* flow;
       
    80     int n;          //the number of nodes of G
       
    81 
       
    82     //level works as a bool map in augmenting path algorithms and is
       
    83     //used by bfs for storing reached information.  In preflow, it
       
    84     //shows the levels of nodes. 
       
    85     ReachedMap level;
       
    86     
       
    87     //excess is needed only in preflow
       
    88     typename Graph::template NodeMap<Num> excess; 
       
    89 
       
    90 
       
    91     //fixme
       
    92     //   protected:
       
    93     //     MaxFlow() { }
       
    94     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
       
    95     // 	     FlowMap& _flow) 
       
    96     //       {
       
    97     // 	g=&_G; 
       
    98     // 	s=_s; 
       
    99     // 	t=_t; 
       
   100     // 	capacity=&_capacity;
       
   101     // 	flow=&_flow;
       
   102     // 	n=_G.nodeNum;
       
   103     // 	level.set (_G); //kellene vmi ilyesmi fv 
       
   104     // 	excess(_G,0); //itt is
       
   105     //       }
       
   106 
       
   107   public:
       
   108  
       
   109     ///Indicates the property of the starting flow. 
       
   110 
       
   111     ///Indicates the property of the starting flow. The meanings: 
       
   112     ///- \c ZERO_FLOW: constant zero flow
       
   113     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
       
   114     ///the sum of the out-flows in every node except the source and
       
   115     ///the target.
       
   116     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
       
   117     ///least the sum of the out-flows in every node except the source.
       
   118     enum flowEnum{
       
   119       ZERO_FLOW=0,
       
   120       GEN_FLOW=1,
       
   121       PRE_FLOW=2
       
   122     };
       
   123 
       
   124     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
       
   125 	    FlowMap& _flow) :
       
   126       g(&_G), s(_s), t(_t), capacity(&_capacity), 
       
   127       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
       
   128 
       
   129     ///Runs a maximum flow algorithm.
       
   130 
       
   131     ///Runs a preflow algorithm, which is the fastest maximum flow
       
   132     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
       
   133     ///\pre The starting flow must be a 
       
   134     /// - constant zero flow if \c fe is \c ZERO_FLOW,
       
   135     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
       
   136     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
       
   137     void run( flowEnum fe=ZERO_FLOW ) {
       
   138       preflow(fe);
       
   139     }
       
   140     
       
   141     ///Runs a preflow algorithm.
       
   142 
       
   143     ///Runs a preflow algorithm. The preflow algorithms provide the
       
   144     ///fastest way to compute a maximum flow in a directed graph.
       
   145     ///\pre The starting flow must be a 
       
   146     /// - constant zero flow if \c fe is \c ZERO_FLOW,
       
   147     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
       
   148     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
       
   149     void preflow(flowEnum fe) {
       
   150       preflowPhase1(fe);
       
   151       preflowPhase2();
       
   152     }
       
   153     // Heuristics: 
       
   154     //   2 phase
       
   155     //   gap
       
   156     //   list 'level_list' on the nodes on level i implemented by hand
       
   157     //   stack 'active' on the active nodes on level i
       
   158     //   runs heuristic 'highest label' for H1*n relabels
       
   159     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
   160     //   Parameters H0 and H1 are initialized to 20 and 1.
       
   161 
       
   162     ///Runs the first phase of the preflow algorithm.
       
   163     
       
   164     ///The preflow algorithm consists of two phases, this method runs the
       
   165     ///first phase. After the first phase the maximum flow value and a
       
   166     ///minimum value cut can already be computed, though a maximum flow
       
   167     ///is net yet obtained. So after calling this method \ref flowValue
       
   168     ///and \ref actMinCut gives proper results. 
       
   169     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
       
   170     ///give minimum value cuts unless calling \ref preflowPhase2.
       
   171     ///\pre The starting flow must be a 
       
   172     /// - constant zero flow if \c fe is \c ZERO_FLOW,
       
   173     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
       
   174     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
       
   175     void preflowPhase1( flowEnum fe );
       
   176 
       
   177     ///Runs the second phase of the preflow algorithm.
       
   178     
       
   179     ///The preflow algorithm consists of two phases, this method runs
       
   180     ///the second phase. After calling \ref preflowPhase1 and then
       
   181     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
       
   182     ///\ref minMinCut and \ref maxMinCut give proper results.
       
   183     ///\pre \ref preflowPhase1 must be called before.
       
   184     void preflowPhase2();
       
   185 
       
   186     /// Starting from a flow, this method searches for an augmenting path 
       
   187     /// according to the Edmonds-Karp algorithm 
       
   188     /// and augments the flow on if any. 
       
   189     /// The return value shows if the augmentation was successful.
       
   190     bool augmentOnShortestPath();
       
   191 
       
   192     /// Starting from a flow, this method searches for an augmenting blockin 
       
   193     /// flow according to Dinits' algorithm and augments the flow on if any. 
       
   194     /// The blocking flow is computed in a physically constructed 
       
   195     /// residual graph of type \c Mutablegraph.
       
   196     /// The return value show sif the augmentation was succesful.
       
   197     template<typename MutableGraph> bool augmentOnBlockingFlow();
       
   198 
       
   199     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the 
       
   200     /// residual graph is not constructed physically.
       
   201     /// The return value shows if the augmentation was succesful.
       
   202     bool augmentOnBlockingFlow2();
       
   203 
       
   204     /// Returns the actual flow value.
       
   205     /// More precisely, it returns the negative excess of s, thus 
       
   206     /// this works also for preflows.
       
   207     ///Can be called already after \ref preflowPhase1.
       
   208 
       
   209     Num flowValue() { 
       
   210       Num a=0;
       
   211       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
       
   212       FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
       
   213       return a;
       
   214       //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan
       
   215     }
       
   216 
       
   217     ///Returns a minimum value cut after calling \ref preflowPhase1.
       
   218 
       
   219     ///After the first phase of the preflow algorithm the maximum flow
       
   220     ///value and a minimum value cut can already be computed. This
       
   221     ///method can be called after running \ref preflowPhase1 for
       
   222     ///obtaining a minimum value cut.
       
   223     ///\warning: Gives proper result only right after calling \ref
       
   224     ///preflowPhase1.
       
   225     ///\todo We have to make some status variable which shows the actual state 
       
   226     /// of the class. This enables us to determine which methods are valid 
       
   227     /// for MinCut computation
       
   228     template<typename _CutMap>
       
   229     void actMinCut(_CutMap& M) {
       
   230       NodeIt v;
       
   231       for(g->first(v); g->valid(v); g->next(v)) {
       
   232 	if ( level[v] < n ) {
       
   233 	  M.set(v,false);
       
   234 	} else {
       
   235 	  M.set(v,true);
       
   236 	}
       
   237       }
       
   238     }
       
   239     
       
   240     ///Returns the inclusionwise minimum of the minimum value cuts.
       
   241 
       
   242     ///Sets \c M to the characteristic vector of the minimum value cut
       
   243     ///which is inclusionwise minimum. It is computed by processing
       
   244     ///a bfs from the source node \c s in the residual graph.
       
   245     ///\pre M should be a node map of bools initialized to false.
       
   246     ///\pre \c flow must be a maximum flow.
       
   247     template<typename _CutMap>
       
   248     void minMinCut(_CutMap& M) {
       
   249     
       
   250       std::queue<Node> queue;
       
   251       
       
   252       M.set(s,true);      
       
   253       queue.push(s);
       
   254 
       
   255       while (!queue.empty()) {
       
   256         Node w=queue.front();
       
   257 	queue.pop();
       
   258 
       
   259 	OutEdgeIt e;
       
   260 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
       
   261 	  Node v=g->head(e);
       
   262 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   263 	    queue.push(v);
       
   264 	    M.set(v, true);
       
   265 	  }
       
   266 	} 
       
   267 
       
   268 	InEdgeIt f;
       
   269 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
       
   270 	  Node v=g->tail(f);
       
   271 	  if (!M[v] && (*flow)[f] > 0 ) {
       
   272 	    queue.push(v);
       
   273 	    M.set(v, true);
       
   274 	  }
       
   275 	} 
       
   276       }
       
   277     }
       
   278 
       
   279 
       
   280     ///Returns the inclusionwise maximum of the minimum value cuts.
       
   281 
       
   282     ///Sets \c M to the characteristic vector of the minimum value cut
       
   283     ///which is inclusionwise maximum. It is computed by processing a
       
   284     ///backward bfs from the target node \c t in the residual graph.
       
   285     ///\pre M should be a node map of bools initialized to false.
       
   286     ///\pre \c flow must be a maximum flow.
       
   287     template<typename _CutMap>
       
   288     void maxMinCut(_CutMap& M) {
       
   289 
       
   290       NodeIt v;
       
   291       for(g->first(v) ; g->valid(v); g->next(v)) {
       
   292 	M.set(v, true);
       
   293       }
       
   294 
       
   295       std::queue<Node> queue;
       
   296       
       
   297       M.set(t,false);        
       
   298       queue.push(t);
       
   299 
       
   300       while (!queue.empty()) {
       
   301         Node w=queue.front();
       
   302 	queue.pop();
       
   303 
       
   304 
       
   305 	InEdgeIt e;
       
   306 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
       
   307 	  Node v=g->tail(e);
       
   308 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   309 	    queue.push(v);
       
   310 	    M.set(v, false);
       
   311 	  }
       
   312 	}
       
   313 	
       
   314 	OutEdgeIt f;
       
   315 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
       
   316 	  Node v=g->head(f);
       
   317 	  if (M[v] && (*flow)[f] > 0 ) {
       
   318 	    queue.push(v);
       
   319 	    M.set(v, false);
       
   320 	  }
       
   321 	}
       
   322       }
       
   323     }
       
   324 
       
   325 
       
   326     ///Returns a minimum value cut.
       
   327 
       
   328     ///Sets \c M to the characteristic vector of a minimum value cut.
       
   329     ///\pre M should be a node map of bools initialized to false.
       
   330     ///\pre \c flow must be a maximum flow.
       
   331     template<typename CutMap>
       
   332     void minCut(CutMap& M) { minMinCut(M); }
       
   333 
       
   334     ///Resets the source node to \c _s.
       
   335 
       
   336     ///Resets the source node to \c _s.
       
   337     ///
       
   338     void resetSource(Node _s) { s=_s; }
       
   339 
       
   340 
       
   341     ///Resets the target node to \c _t.
       
   342 
       
   343     ///Resets the target node to \c _t.
       
   344     ///
       
   345     void resetTarget(Node _t) { t=_t; }
       
   346    
       
   347     /// Resets the edge map of the capacities to _cap.
       
   348 
       
   349     /// Resets the edge map of the capacities to _cap.
       
   350     ///
       
   351     void resetCap(const CapMap& _cap) { capacity=&_cap; }
       
   352     
       
   353     /// Resets the edge map of the flows to _flow.
       
   354 
       
   355     /// Resets the edge map of the flows to _flow.
       
   356     ///
       
   357     void resetFlow(FlowMap& _flow) { flow=&_flow; }
       
   358 
       
   359 
       
   360   private:
       
   361 
       
   362     int push(Node w, VecStack& active) {
       
   363       
       
   364       int lev=level[w];
       
   365       Num exc=excess[w];
       
   366       int newlevel=n;       //bound on the next level of w
       
   367 	  
       
   368       OutEdgeIt e;
       
   369       for(g->first(e,w); g->valid(e); g->next(e)) {
       
   370 	    
       
   371 	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
       
   372 	Node v=g->head(e);            
       
   373 	    
       
   374 	if( lev > level[v] ) { //Push is allowed now
       
   375 	  
       
   376 	  if ( excess[v]<=0 && v!=t && v!=s ) {
       
   377 	    int lev_v=level[v];
       
   378 	    active[lev_v].push(v);
       
   379 	  }
       
   380 	  
       
   381 	  Num cap=(*capacity)[e];
       
   382 	  Num flo=(*flow)[e];
       
   383 	  Num remcap=cap-flo;
       
   384 	  
       
   385 	  if ( remcap >= exc ) { //A nonsaturating push.
       
   386 	    
       
   387 	    flow->set(e, flo+exc);
       
   388 	    excess.set(v, excess[v]+exc);
       
   389 	    exc=0;
       
   390 	    break; 
       
   391 	    
       
   392 	  } else { //A saturating push.
       
   393 	    flow->set(e, cap);
       
   394 	    excess.set(v, excess[v]+remcap);
       
   395 	    exc-=remcap;
       
   396 	  }
       
   397 	} else if ( newlevel > level[v] ) newlevel = level[v];
       
   398       } //for out edges wv 
       
   399       
       
   400       if ( exc > 0 ) {	
       
   401 	InEdgeIt e;
       
   402 	for(g->first(e,w); g->valid(e); g->next(e)) {
       
   403 	  
       
   404 	  if( (*flow)[e] <= 0 ) continue; 
       
   405 	  Node v=g->tail(e); 
       
   406 	  
       
   407 	  if( lev > level[v] ) { //Push is allowed now
       
   408 	    
       
   409 	    if ( excess[v]<=0 && v!=t && v!=s ) {
       
   410 	      int lev_v=level[v];
       
   411 	      active[lev_v].push(v);
       
   412 	    }
       
   413 	    
       
   414 	    Num flo=(*flow)[e];
       
   415 	    
       
   416 	    if ( flo >= exc ) { //A nonsaturating push.
       
   417 	      
       
   418 	      flow->set(e, flo-exc);
       
   419 	      excess.set(v, excess[v]+exc);
       
   420 	      exc=0;
       
   421 	      break; 
       
   422 	    } else {  //A saturating push.
       
   423 	      
       
   424 	      excess.set(v, excess[v]+flo);
       
   425 	      exc-=flo;
       
   426 	      flow->set(e,0);
       
   427 	    }  
       
   428 	  } else if ( newlevel > level[v] ) newlevel = level[v];
       
   429 	} //for in edges vw
       
   430 	
       
   431       } // if w still has excess after the out edge for cycle
       
   432       
       
   433       excess.set(w, exc);
       
   434       
       
   435       return newlevel;
       
   436     }
       
   437 
       
   438 
       
   439     void preflowPreproc ( flowEnum fe, VecStack& active, 
       
   440 			  VecNode& level_list, NNMap& left, NNMap& right ) {
       
   441 
       
   442 			    std::queue<Node> bfs_queue;
       
   443       
       
   444 			    switch ( fe ) {
       
   445 			    case ZERO_FLOW: 
       
   446 			      {
       
   447 				//Reverse_bfs from t, to find the starting level.
       
   448 				level.set(t,0);
       
   449 				bfs_queue.push(t);
       
   450 	
       
   451 				while (!bfs_queue.empty()) {
       
   452 	    
       
   453 				  Node v=bfs_queue.front();	
       
   454 				  bfs_queue.pop();
       
   455 				  int l=level[v]+1;
       
   456 	    
       
   457 				  InEdgeIt e;
       
   458 				  for(g->first(e,v); g->valid(e); g->next(e)) {
       
   459 				    Node w=g->tail(e);
       
   460 				    if ( level[w] == n && w != s ) {
       
   461 				      bfs_queue.push(w);
       
   462 				      Node first=level_list[l];
       
   463 				      if ( g->valid(first) ) left.set(first,w);
       
   464 				      right.set(w,first);
       
   465 				      level_list[l]=w;
       
   466 				      level.set(w, l);
       
   467 				    }
       
   468 				  }
       
   469 				}
       
   470 	  
       
   471 				//the starting flow
       
   472 				OutEdgeIt e;
       
   473 				for(g->first(e,s); g->valid(e); g->next(e)) 
       
   474 				  {
       
   475 				    Num c=(*capacity)[e];
       
   476 				    if ( c <= 0 ) continue;
       
   477 				    Node w=g->head(e);
       
   478 				    if ( level[w] < n ) {	  
       
   479 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
       
   480 				      flow->set(e, c); 
       
   481 				      excess.set(w, excess[w]+c);
       
   482 				    }
       
   483 				  }
       
   484 				break;
       
   485 			      }
       
   486 	
       
   487 			    case GEN_FLOW:
       
   488 			    case PRE_FLOW:
       
   489 			      {
       
   490 				//Reverse_bfs from t in the residual graph, 
       
   491 				//to find the starting level.
       
   492 				level.set(t,0);
       
   493 				bfs_queue.push(t);
       
   494 	  
       
   495 				while (!bfs_queue.empty()) {
       
   496 	    
       
   497 				  Node v=bfs_queue.front();	
       
   498 				  bfs_queue.pop();
       
   499 				  int l=level[v]+1;
       
   500 	    
       
   501 				  InEdgeIt e;
       
   502 				  for(g->first(e,v); g->valid(e); g->next(e)) {
       
   503 				    if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   504 				    Node w=g->tail(e);
       
   505 				    if ( level[w] == n && w != s ) {
       
   506 				      bfs_queue.push(w);
       
   507 				      Node first=level_list[l];
       
   508 				      if ( g->valid(first) ) left.set(first,w);
       
   509 				      right.set(w,first);
       
   510 				      level_list[l]=w;
       
   511 				      level.set(w, l);
       
   512 				    }
       
   513 				  }
       
   514 	    
       
   515 				  OutEdgeIt f;
       
   516 				  for(g->first(f,v); g->valid(f); g->next(f)) {
       
   517 				    if ( 0 >= (*flow)[f] ) continue;
       
   518 				    Node w=g->head(f);
       
   519 				    if ( level[w] == n && w != s ) {
       
   520 				      bfs_queue.push(w);
       
   521 				      Node first=level_list[l];
       
   522 				      if ( g->valid(first) ) left.set(first,w);
       
   523 				      right.set(w,first);
       
   524 				      level_list[l]=w;
       
   525 				      level.set(w, l);
       
   526 				    }
       
   527 				  }
       
   528 				}
       
   529 	  
       
   530 	  
       
   531 				//the starting flow
       
   532 				OutEdgeIt e;
       
   533 				for(g->first(e,s); g->valid(e); g->next(e)) 
       
   534 				  {
       
   535 				    Num rem=(*capacity)[e]-(*flow)[e];
       
   536 				    if ( rem <= 0 ) continue;
       
   537 				    Node w=g->head(e);
       
   538 				    if ( level[w] < n ) {	  
       
   539 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
       
   540 				      flow->set(e, (*capacity)[e]); 
       
   541 				      excess.set(w, excess[w]+rem);
       
   542 				    }
       
   543 				  }
       
   544 	  
       
   545 				InEdgeIt f;
       
   546 				for(g->first(f,s); g->valid(f); g->next(f)) 
       
   547 				  {
       
   548 				    if ( (*flow)[f] <= 0 ) continue;
       
   549 				    Node w=g->tail(f);
       
   550 				    if ( level[w] < n ) {	  
       
   551 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
       
   552 				      excess.set(w, excess[w]+(*flow)[f]);
       
   553 				      flow->set(f, 0); 
       
   554 				    }
       
   555 				  }  
       
   556 				break;
       
   557 			      } //case PRE_FLOW
       
   558 			    }
       
   559 			  } //preflowPreproc
       
   560 
       
   561 
       
   562 
       
   563     void relabel(Node w, int newlevel, VecStack& active,  
       
   564 		 VecNode& level_list, NNMap& left, 
       
   565 		 NNMap& right, int& b, int& k, bool what_heur ) 
       
   566     {
       
   567 
       
   568       Num lev=level[w];	
       
   569       
       
   570       Node right_n=right[w];
       
   571       Node left_n=left[w];
       
   572       
       
   573       //unlacing starts
       
   574       if ( g->valid(right_n) ) {
       
   575 	if ( g->valid(left_n) ) {
       
   576 	  right.set(left_n, right_n);
       
   577 	  left.set(right_n, left_n);
       
   578 	} else {
       
   579 	  level_list[lev]=right_n;   
       
   580 	  left.set(right_n, INVALID);
       
   581 	} 
       
   582       } else {
       
   583 	if ( g->valid(left_n) ) {
       
   584 	  right.set(left_n, INVALID);
       
   585 	} else { 
       
   586 	  level_list[lev]=INVALID;   
       
   587 	} 
       
   588       } 
       
   589       //unlacing ends
       
   590 		
       
   591       if ( !g->valid(level_list[lev]) ) {
       
   592 	      
       
   593 	//gapping starts
       
   594 	for (int i=lev; i!=k ; ) {
       
   595 	  Node v=level_list[++i];
       
   596 	  while ( g->valid(v) ) {
       
   597 	    level.set(v,n);
       
   598 	    v=right[v];
       
   599 	  }
       
   600 	  level_list[i]=INVALID;
       
   601 	  if ( !what_heur ) {
       
   602 	    while ( !active[i].empty() ) {
       
   603 	      active[i].pop();    //FIXME: ezt szebben kene
       
   604 	    }
       
   605 	  }	     
       
   606 	}
       
   607 	
       
   608 	level.set(w,n);
       
   609 	b=lev-1;
       
   610 	k=b;
       
   611 	//gapping ends
       
   612 	
       
   613       } else {
       
   614 	
       
   615 	if ( newlevel == n ) level.set(w,n); 
       
   616 	else {
       
   617 	  level.set(w,++newlevel);
       
   618 	  active[newlevel].push(w);
       
   619 	  if ( what_heur ) b=newlevel;
       
   620 	  if ( k < newlevel ) ++k;      //now k=newlevel
       
   621 	  Node first=level_list[newlevel];
       
   622 	  if ( g->valid(first) ) left.set(first,w);
       
   623 	  right.set(w,first);
       
   624 	  left.set(w,INVALID);
       
   625 	  level_list[newlevel]=w;
       
   626 	}
       
   627       }
       
   628       
       
   629     } //relabel
       
   630 
       
   631 
       
   632     template<typename MapGraphWrapper> 
       
   633     class DistanceMap {
       
   634     protected:
       
   635       const MapGraphWrapper* g;
       
   636       typename MapGraphWrapper::template NodeMap<int> dist; 
       
   637     public:
       
   638       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
       
   639       void set(const typename MapGraphWrapper::Node& n, int a) { 
       
   640 	dist.set(n, a); 
       
   641       }
       
   642       int operator[](const typename MapGraphWrapper::Node& n) 
       
   643       { return dist[n]; }
       
   644       //       int get(const typename MapGraphWrapper::Node& n) const { 
       
   645       // 	return dist[n]; }
       
   646       //       bool get(const typename MapGraphWrapper::Edge& e) const { 
       
   647       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
       
   648       bool operator[](const typename MapGraphWrapper::Edge& e) const { 
       
   649 	return (dist[g->tail(e)]<dist[g->head(e)]); 
       
   650       }
       
   651     };
       
   652     
       
   653   };
       
   654 
       
   655 
       
   656   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   657   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1( flowEnum fe ) 
       
   658   {
       
   659       
       
   660     int heur0=(int)(H0*n);  //time while running 'bound decrease' 
       
   661     int heur1=(int)(H1*n);  //time while running 'highest label'
       
   662     int heur=heur1;         //starting time interval (#of relabels)
       
   663     int numrelabel=0;
       
   664      
       
   665     bool what_heur=1;       
       
   666     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
       
   667 
       
   668     bool end=false;     
       
   669     //Needed for 'bound decrease', true means no active nodes are above bound b.
       
   670 
       
   671     int k=n-2;  //bound on the highest level under n containing a node
       
   672     int b=k;    //bound on the highest level under n of an active node
       
   673       
       
   674     VecStack active(n);
       
   675       
       
   676     NNMap left(*g, INVALID);
       
   677     NNMap right(*g, INVALID);
       
   678     VecNode level_list(n,INVALID);
       
   679     //List of the nodes in level i<n, set to n.
       
   680 
       
   681     NodeIt v;
       
   682     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
       
   683     //setting each node to level n
       
   684       
       
   685     switch ( fe ) {
       
   686     case PRE_FLOW:
       
   687       {
       
   688 	//counting the excess
       
   689 	NodeIt v;
       
   690 	for(g->first(v); g->valid(v); g->next(v)) {
       
   691 	  Num exc=0;
       
   692 	  
       
   693 	  InEdgeIt e;
       
   694 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
       
   695 	  OutEdgeIt f;
       
   696 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
       
   697 	    
       
   698 	  excess.set(v,exc);	  
       
   699 	    
       
   700 	  //putting the active nodes into the stack
       
   701 	  int lev=level[v];
       
   702 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
       
   703 	}
       
   704 	break;
       
   705       }
       
   706     case GEN_FLOW:
       
   707       {
       
   708 	//Counting the excess of t
       
   709 	Num exc=0;
       
   710 	  
       
   711 	InEdgeIt e;
       
   712 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
       
   713 	OutEdgeIt f;
       
   714 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
       
   715 	  
       
   716 	excess.set(t,exc);	
       
   717 	  
       
   718 	break;
       
   719       }
       
   720     default:
       
   721       break;
       
   722     }
       
   723       
       
   724     preflowPreproc( fe, active, level_list, left, right );
       
   725     //End of preprocessing 
       
   726       
       
   727       
       
   728     //Push/relabel on the highest level active nodes.
       
   729     while ( true ) {
       
   730       if ( b == 0 ) {
       
   731 	if ( !what_heur && !end && k > 0 ) {
       
   732 	  b=k;
       
   733 	  end=true;
       
   734 	} else break;
       
   735       }
       
   736 	
       
   737       if ( active[b].empty() ) --b; 
       
   738       else {
       
   739 	end=false;  
       
   740 	Node w=active[b].top();
       
   741 	active[b].pop();
       
   742 	int newlevel=push(w,active);
       
   743 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
       
   744 				     left, right, b, k, what_heur);
       
   745 	  
       
   746 	++numrelabel; 
       
   747 	if ( numrelabel >= heur ) {
       
   748 	  numrelabel=0;
       
   749 	  if ( what_heur ) {
       
   750 	    what_heur=0;
       
   751 	    heur=heur0;
       
   752 	    end=false;
       
   753 	  } else {
       
   754 	    what_heur=1;
       
   755 	    heur=heur1;
       
   756 	    b=k; 
       
   757 	  }
       
   758 	}
       
   759       } 
       
   760     } 
       
   761   }
       
   762 
       
   763 
       
   764 
       
   765   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   766   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2() 
       
   767   {
       
   768       
       
   769     int k=n-2;  //bound on the highest level under n containing a node
       
   770     int b=k;    //bound on the highest level under n of an active node
       
   771       
       
   772     VecStack active(n);
       
   773     level.set(s,0);
       
   774     std::queue<Node> bfs_queue;
       
   775     bfs_queue.push(s);
       
   776 	    
       
   777     while (!bfs_queue.empty()) {
       
   778 	
       
   779       Node v=bfs_queue.front();	
       
   780       bfs_queue.pop();
       
   781       int l=level[v]+1;
       
   782 	      
       
   783       InEdgeIt e;
       
   784       for(g->first(e,v); g->valid(e); g->next(e)) {
       
   785 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   786 	Node u=g->tail(e);
       
   787 	if ( level[u] >= n ) { 
       
   788 	  bfs_queue.push(u);
       
   789 	  level.set(u, l);
       
   790 	  if ( excess[u] > 0 ) active[l].push(u);
       
   791 	}
       
   792       }
       
   793 	
       
   794       OutEdgeIt f;
       
   795       for(g->first(f,v); g->valid(f); g->next(f)) {
       
   796 	if ( 0 >= (*flow)[f] ) continue;
       
   797 	Node u=g->head(f);
       
   798 	if ( level[u] >= n ) { 
       
   799 	  bfs_queue.push(u);
       
   800 	  level.set(u, l);
       
   801 	  if ( excess[u] > 0 ) active[l].push(u);
       
   802 	}
       
   803       }
       
   804     }
       
   805     b=n-2;
       
   806 
       
   807     while ( true ) {
       
   808 	
       
   809       if ( b == 0 ) break;
       
   810 
       
   811       if ( active[b].empty() ) --b; 
       
   812       else {
       
   813 	Node w=active[b].top();
       
   814 	active[b].pop();
       
   815 	int newlevel=push(w,active);	  
       
   816 
       
   817 	//relabel
       
   818 	if ( excess[w] > 0 ) {
       
   819 	  level.set(w,++newlevel);
       
   820 	  active[newlevel].push(w);
       
   821 	  b=newlevel;
       
   822 	}
       
   823       }  // if stack[b] is nonempty
       
   824     } // while(true)
       
   825   }
       
   826 
       
   827 
       
   828 
       
   829   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   830   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
       
   831   {
       
   832     ResGW res_graph(*g, *capacity, *flow);
       
   833     bool _augment=false;
       
   834       
       
   835     //ReachedMap level(res_graph);
       
   836     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
   837     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
       
   838     bfs.pushAndSetReached(s);
       
   839 	
       
   840     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
       
   841     pred.set(s, INVALID);
       
   842       
       
   843     typename ResGW::template NodeMap<Num> free(res_graph);
       
   844 	
       
   845     //searching for augmenting path
       
   846     while ( !bfs.finished() ) { 
       
   847       ResGWOutEdgeIt e=bfs;
       
   848       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
       
   849 	Node v=res_graph.tail(e);
       
   850 	Node w=res_graph.head(e);
       
   851 	pred.set(w, e);
       
   852 	if (res_graph.valid(pred[v])) {
       
   853 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
       
   854 	} else {
       
   855 	  free.set(w, res_graph.resCap(e)); 
       
   856 	}
       
   857 	if (res_graph.head(e)==t) { _augment=true; break; }
       
   858       }
       
   859 	
       
   860       ++bfs;
       
   861     } //end of searching augmenting path
       
   862 
       
   863     if (_augment) {
       
   864       Node n=t;
       
   865       Num augment_value=free[t];
       
   866       while (res_graph.valid(pred[n])) { 
       
   867 	ResGWEdge e=pred[n];
       
   868 	res_graph.augment(e, augment_value); 
       
   869 	n=res_graph.tail(e);
       
   870       }
       
   871     }
       
   872 
       
   873     return _augment;
       
   874   }
       
   875 
       
   876 
       
   877 
       
   878 
       
   879 
       
   880 
       
   881 
       
   882 
       
   883 
       
   884   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   885   template<typename MutableGraph> 
       
   886   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
       
   887   {      
       
   888     typedef MutableGraph MG;
       
   889     bool _augment=false;
       
   890 
       
   891     ResGW res_graph(*g, *capacity, *flow);
       
   892 
       
   893     //bfs for distances on the residual graph
       
   894     //ReachedMap level(res_graph);
       
   895     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
   896     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
       
   897     bfs.pushAndSetReached(s);
       
   898     typename ResGW::template NodeMap<int> 
       
   899       dist(res_graph); //filled up with 0's
       
   900 
       
   901     //F will contain the physical copy of the residual graph
       
   902     //with the set of edges which are on shortest paths
       
   903     MG F;
       
   904     typename ResGW::template NodeMap<typename MG::Node> 
       
   905       res_graph_to_F(res_graph);
       
   906     {
       
   907       typename ResGW::NodeIt n;
       
   908       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
       
   909 	res_graph_to_F.set(n, F.addNode());
       
   910       }
       
   911     }
       
   912 
       
   913     typename MG::Node sF=res_graph_to_F[s];
       
   914     typename MG::Node tF=res_graph_to_F[t];
       
   915     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
       
   916     typename MG::template EdgeMap<Num> residual_capacity(F);
       
   917 
       
   918     while ( !bfs.finished() ) { 
       
   919       ResGWOutEdgeIt e=bfs;
       
   920       if (res_graph.valid(e)) {
       
   921 	if (bfs.isBNodeNewlyReached()) {
       
   922 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
       
   923 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
       
   924 	  original_edge.update();
       
   925 	  original_edge.set(f, e);
       
   926 	  residual_capacity.update();
       
   927 	  residual_capacity.set(f, res_graph.resCap(e));
       
   928 	} else {
       
   929 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
       
   930 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
       
   931 	    original_edge.update();
       
   932 	    original_edge.set(f, e);
       
   933 	    residual_capacity.update();
       
   934 	    residual_capacity.set(f, res_graph.resCap(e));
       
   935 	  }
       
   936 	}
       
   937       }
       
   938       ++bfs;
       
   939     } //computing distances from s in the residual graph
       
   940 
       
   941     bool __augment=true;
       
   942 
       
   943     while (__augment) {
       
   944       __augment=false;
       
   945       //computing blocking flow with dfs
       
   946       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
       
   947       typename MG::template NodeMap<typename MG::Edge> pred(F);
       
   948       pred.set(sF, INVALID);
       
   949       //invalid iterators for sources
       
   950 
       
   951       typename MG::template NodeMap<Num> free(F);
       
   952 
       
   953       dfs.pushAndSetReached(sF);      
       
   954       while (!dfs.finished()) {
       
   955 	++dfs;
       
   956 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
       
   957 	  if (dfs.isBNodeNewlyReached()) {
       
   958 	    typename MG::Node v=F.aNode(dfs);
       
   959 	    typename MG::Node w=F.bNode(dfs);
       
   960 	    pred.set(w, dfs);
       
   961 	    if (F.valid(pred[v])) {
       
   962 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
       
   963 	    } else {
       
   964 	      free.set(w, residual_capacity[dfs]); 
       
   965 	    }
       
   966 	    if (w==tF) { 
       
   967 	      __augment=true; 
       
   968 	      _augment=true;
       
   969 	      break; 
       
   970 	    }
       
   971 	      
       
   972 	  } else {
       
   973 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
       
   974 	  }
       
   975 	} 
       
   976       }
       
   977 
       
   978       if (__augment) {
       
   979 	typename MG::Node n=tF;
       
   980 	Num augment_value=free[tF];
       
   981 	while (F.valid(pred[n])) { 
       
   982 	  typename MG::Edge e=pred[n];
       
   983 	  res_graph.augment(original_edge[e], augment_value); 
       
   984 	  n=F.tail(e);
       
   985 	  if (residual_capacity[e]==augment_value) 
       
   986 	    F.erase(e); 
       
   987 	  else 
       
   988 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
       
   989 	}
       
   990       }
       
   991 	
       
   992     }
       
   993             
       
   994     return _augment;
       
   995   }
       
   996 
       
   997 
       
   998 
       
   999 
       
  1000 
       
  1001 
       
  1002   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
  1003   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
       
  1004   {
       
  1005     bool _augment=false;
       
  1006 
       
  1007     ResGW res_graph(*g, *capacity, *flow);
       
  1008       
       
  1009     //ReachedMap level(res_graph);
       
  1010     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
  1011     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
       
  1012 
       
  1013     bfs.pushAndSetReached(s);
       
  1014     DistanceMap<ResGW> dist(res_graph);
       
  1015     while ( !bfs.finished() ) { 
       
  1016       ResGWOutEdgeIt e=bfs;
       
  1017       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
       
  1018 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
       
  1019       }
       
  1020       ++bfs;
       
  1021     } //computing distances from s in the residual graph
       
  1022 
       
  1023       //Subgraph containing the edges on some shortest paths
       
  1024     ConstMap<typename ResGW::Node, bool> true_map(true);
       
  1025     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
       
  1026       DistanceMap<ResGW> > FilterResGW;
       
  1027     FilterResGW filter_res_graph(res_graph, true_map, dist);
       
  1028 
       
  1029     //Subgraph, which is able to delete edges which are already 
       
  1030     //met by the dfs
       
  1031     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
       
  1032       first_out_edges(filter_res_graph);
       
  1033     typename FilterResGW::NodeIt v;
       
  1034     for(filter_res_graph.first(v); filter_res_graph.valid(v); 
       
  1035 	filter_res_graph.next(v)) 
       
  1036       {
       
  1037  	typename FilterResGW::OutEdgeIt e;
       
  1038  	filter_res_graph.first(e, v);
       
  1039  	first_out_edges.set(v, e);
       
  1040       }
       
  1041     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
       
  1042       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
       
  1043     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
       
  1044 
       
  1045     bool __augment=true;
       
  1046 
       
  1047     while (__augment) {
       
  1048 
       
  1049       __augment=false;
       
  1050       //computing blocking flow with dfs
       
  1051       DfsIterator< ErasingResGW, 
       
  1052 	typename ErasingResGW::template NodeMap<bool> > 
       
  1053 	dfs(erasing_res_graph);
       
  1054       typename ErasingResGW::
       
  1055 	template NodeMap<typename ErasingResGW::OutEdgeIt> 
       
  1056 	pred(erasing_res_graph); 
       
  1057       pred.set(s, INVALID);
       
  1058       //invalid iterators for sources
       
  1059 
       
  1060       typename ErasingResGW::template NodeMap<Num> 
       
  1061 	free1(erasing_res_graph);
       
  1062 
       
  1063       dfs.pushAndSetReached(
       
  1064 			    typename ErasingResGW::Node(
       
  1065 							typename FilterResGW::Node(
       
  1066 										   typename ResGW::Node(s)
       
  1067 										   )
       
  1068 							)
       
  1069 			    );
       
  1070       while (!dfs.finished()) {
       
  1071 	++dfs;
       
  1072 	if (erasing_res_graph.valid(
       
  1073 				    typename ErasingResGW::OutEdgeIt(dfs))) 
       
  1074  	  { 
       
  1075   	    if (dfs.isBNodeNewlyReached()) {
       
  1076 	  
       
  1077  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
       
  1078  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
       
  1079 
       
  1080  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
       
  1081  	      if (erasing_res_graph.valid(pred[v])) {
       
  1082  		free1.set(w, std::min(free1[v], res_graph.resCap(
       
  1083 								 typename ErasingResGW::OutEdgeIt(dfs))));
       
  1084  	      } else {
       
  1085  		free1.set(w, res_graph.resCap(
       
  1086 					      typename ErasingResGW::OutEdgeIt(dfs))); 
       
  1087  	      }
       
  1088 	      
       
  1089  	      if (w==t) { 
       
  1090  		__augment=true; 
       
  1091  		_augment=true;
       
  1092  		break; 
       
  1093  	      }
       
  1094  	    } else {
       
  1095  	      erasing_res_graph.erase(dfs);
       
  1096 	    }
       
  1097 	  }
       
  1098       }	
       
  1099 
       
  1100       if (__augment) {
       
  1101 	typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
       
  1102 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
       
  1103 	// 	  typename ResGW::Node b;
       
  1104 	// 	  Num j=a[b];
       
  1105 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
       
  1106 	// 	  typename FilterResGW::Node b1;
       
  1107 	// 	  Num j1=a1[b1];
       
  1108 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
       
  1109 	// 	  typename ErasingResGW::Node b2;
       
  1110 	// 	  Num j2=a2[b2];
       
  1111 	Num augment_value=free1[n];
       
  1112 	while (erasing_res_graph.valid(pred[n])) { 
       
  1113 	  typename ErasingResGW::OutEdgeIt e=pred[n];
       
  1114 	  res_graph.augment(e, augment_value);
       
  1115 	  n=erasing_res_graph.tail(e);
       
  1116 	  if (res_graph.resCap(e)==0)
       
  1117 	    erasing_res_graph.erase(e);
       
  1118 	}
       
  1119       }
       
  1120       
       
  1121     } //while (__augment) 
       
  1122             
       
  1123     return _augment;
       
  1124   }
       
  1125 
       
  1126 
       
  1127 
       
  1128   /// @}
       
  1129   
       
  1130 } //END OF NAMESPACE HUGO
       
  1131 
       
  1132 #endif //HUGO_MAX_FLOW_H
       
  1133 
       
  1134 
       
  1135 
       
  1136