lemon/bp_matching.h
changeset 2462 7a096a6bf53a
parent 2353 c43f8802c90a
equal deleted inserted replaced
1:c37c92c5700b -1:000000000000
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2007
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_BP_MATCHING
       
    20 #define LEMON_BP_MATCHING
       
    21 
       
    22 #include <lemon/graph_utils.h>
       
    23 #include <lemon/iterable_maps.h>
       
    24 #include <iostream>
       
    25 #include <queue>
       
    26 #include <lemon/counter.h>
       
    27 #include <lemon/elevator.h>
       
    28 
       
    29 ///\ingroup matching
       
    30 ///\file
       
    31 ///\brief Push-prelabel maximum matching algorithms in bipartite graphs.
       
    32 ///
       
    33 ///\todo This file slightly conflicts with \ref lemon/bipartite_matching.h
       
    34 ///\todo (Re)move the XYZ_TYPEDEFS macros
       
    35 namespace lemon {
       
    36 
       
    37 #define BIPARTITE_TYPEDEFS(Graph)		\
       
    38   GRAPH_TYPEDEFS(Graph)				\
       
    39     typedef Graph::ANodeIt ANodeIt;	\
       
    40     typedef Graph::BNodeIt BNodeIt;
       
    41 
       
    42 #define UNDIRBIPARTITE_TYPEDEFS(Graph)		\
       
    43   UNDIRGRAPH_TYPEDEFS(Graph)			\
       
    44     typedef Graph::ANodeIt ANodeIt;	\
       
    45     typedef Graph::BNodeIt BNodeIt;
       
    46 
       
    47   template<class Graph,
       
    48 	   class MT=typename Graph::template ANodeMap<typename Graph::UEdge> >
       
    49   class BpMatching {
       
    50     typedef typename Graph::Node Node;
       
    51     typedef typename Graph::ANodeIt ANodeIt;
       
    52     typedef typename Graph::BNodeIt BNodeIt;
       
    53     typedef typename Graph::UEdge UEdge;
       
    54     typedef typename Graph::IncEdgeIt IncEdgeIt;
       
    55     
       
    56     const Graph &_g;
       
    57     int _node_num;
       
    58     MT &_matching;
       
    59     Elevator<Graph,typename Graph::BNode> _levels;
       
    60     typename Graph::template BNodeMap<int> _cov;
       
    61 
       
    62   public:
       
    63     BpMatching(const Graph &g, MT &matching) :
       
    64       _g(g),
       
    65       _node_num(countBNodes(g)),
       
    66       _matching(matching),
       
    67       _levels(g,_node_num),
       
    68       _cov(g,0)
       
    69     {
       
    70     }
       
    71     
       
    72   private:
       
    73     void init() 
       
    74     {
       
    75 //     for(BNodeIt n(g);n!=INVALID;++n) cov[n]=0;
       
    76       for(ANodeIt n(_g);n!=INVALID;++n)
       
    77 	if((_matching[n]=IncEdgeIt(_g,n))!=INVALID)
       
    78 	  ++_cov[_g.oppositeNode(n,_matching[n])];
       
    79 
       
    80       std::queue<Node> q;
       
    81       _levels.initStart();
       
    82       for(BNodeIt n(_g);n!=INVALID;++n)
       
    83 	if(_cov[n]>1) {
       
    84 	  _levels.initAddItem(n);
       
    85 	  q.push(n);
       
    86 	}
       
    87       int hlev=0;
       
    88       while(!q.empty()) {
       
    89 	Node n=q.front();
       
    90 	q.pop();
       
    91 	int nlev=_levels[n]+1;
       
    92 	for(IncEdgeIt e(_g,n);e!=INVALID;++e) {
       
    93 	  Node m=_g.runningNode(e);
       
    94 	  if(e==_matching[m]) {
       
    95 	    for(IncEdgeIt f(_g,m);f!=INVALID;++f) {
       
    96 	      Node r=_g.runningNode(f);
       
    97 	      if(_levels[r]>nlev) {
       
    98 		for(;nlev>hlev;hlev++)
       
    99 		  _levels.initNewLevel();
       
   100 		_levels.initAddItem(r);
       
   101 		q.push(r);
       
   102 	      }
       
   103 	    }
       
   104 	  }
       
   105 	}
       
   106       }
       
   107       _levels.initFinish();
       
   108       for(BNodeIt n(_g);n!=INVALID;++n)
       
   109 	if(_cov[n]<1&&_levels[n]<_node_num)
       
   110 	  _levels.activate(n);
       
   111     }
       
   112   public:
       
   113     int run() 
       
   114     {
       
   115       init();
       
   116 
       
   117       Node act;
       
   118       Node bact=INVALID;
       
   119       Node last_activated=INVALID;
       
   120 //       while((act=last_activated!=INVALID?
       
   121 // 	     last_activated:_levels.highestActive())
       
   122 // 	    !=INVALID)
       
   123       while((act=_levels.highestActive())!=INVALID) {
       
   124 	last_activated=INVALID;
       
   125 	int actlevel=_levels[act];
       
   126 	
       
   127 	UEdge bedge=INVALID;
       
   128 	int nlevel=_node_num;
       
   129 	{
       
   130 	  int nnlevel;
       
   131 	  for(IncEdgeIt tbedge(_g,act);
       
   132 	      tbedge!=INVALID && nlevel>=actlevel;
       
   133 	      ++tbedge)
       
   134 	    if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
       
   135 	       nlevel)
       
   136 	      {
       
   137 		nlevel=nnlevel;
       
   138 		bedge=tbedge;
       
   139 	      }
       
   140 	}
       
   141 	if(nlevel<_node_num) {
       
   142 	  if(nlevel>=actlevel)
       
   143 	    _levels.liftHighestActiveTo(nlevel+1);
       
   144 // 	    _levels.liftTo(act,nlevel+1);
       
   145 	  bact=_g.bNode(_matching[_g.aNode(bedge)]);
       
   146 	  if(--_cov[bact]<1) {
       
   147 	    _levels.activate(bact);
       
   148 	    last_activated=bact;
       
   149 	  }
       
   150 	  _matching[_g.aNode(bedge)]=bedge;
       
   151 	  _cov[act]=1;
       
   152 	  _levels.deactivate(act);
       
   153 	}
       
   154 	else {
       
   155 	  if(_node_num>actlevel) 
       
   156 	    _levels.liftHighestActiveTo(_node_num);
       
   157 //  	    _levels.liftTo(act,_node_num);
       
   158 	  _levels.deactivate(act); 
       
   159 	}
       
   160 
       
   161 	if(_levels.onLevel(actlevel)==0)
       
   162 	  _levels.liftToTop(actlevel);
       
   163       }
       
   164       
       
   165       int ret=_node_num;
       
   166       for(ANodeIt n(_g);n!=INVALID;++n)
       
   167 	if(_matching[n]==INVALID) ret--;
       
   168 	else if (_cov[_g.bNode(_matching[n])]>1) {
       
   169 	  _cov[_g.bNode(_matching[n])]--;
       
   170 	  ret--;
       
   171 	  _matching[n]=INVALID;
       
   172 	}
       
   173       return ret;
       
   174     }
       
   175     
       
   176     ///\returns -1 if there is a perfect matching, or an empty level
       
   177     ///if it doesn't exists
       
   178     int runPerfect() 
       
   179     {
       
   180       init();
       
   181 
       
   182       Node act;
       
   183       Node bact=INVALID;
       
   184       Node last_activated=INVALID;
       
   185       while((act=_levels.highestActive())!=INVALID) {
       
   186 	last_activated=INVALID;
       
   187 	int actlevel=_levels[act];
       
   188 	
       
   189 	UEdge bedge=INVALID;
       
   190 	int nlevel=_node_num;
       
   191 	{
       
   192 	  int nnlevel;
       
   193 	  for(IncEdgeIt tbedge(_g,act);
       
   194 	      tbedge!=INVALID && nlevel>=actlevel;
       
   195 	      ++tbedge)
       
   196 	    if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
       
   197 	       nlevel)
       
   198 	      {
       
   199 		nlevel=nnlevel;
       
   200 		bedge=tbedge;
       
   201 	      }
       
   202 	}
       
   203 	if(nlevel<_node_num) {
       
   204 	  if(nlevel>=actlevel)
       
   205 	    _levels.liftHighestActiveTo(nlevel+1);
       
   206 	  bact=_g.bNode(_matching[_g.aNode(bedge)]);
       
   207 	  if(--_cov[bact]<1) {
       
   208 	    _levels.activate(bact);
       
   209 	    last_activated=bact;
       
   210 	  }
       
   211 	  _matching[_g.aNode(bedge)]=bedge;
       
   212 	  _cov[act]=1;
       
   213 	  _levels.deactivate(act);
       
   214 	}
       
   215 	else {
       
   216 	  if(_node_num>actlevel) 
       
   217 	    _levels.liftHighestActiveTo(_node_num);
       
   218 	  _levels.deactivate(act); 
       
   219 	}
       
   220 
       
   221 	if(_levels.onLevel(actlevel)==0)
       
   222 	  return actlevel;
       
   223       }
       
   224       return -1;
       
   225     }
       
   226  
       
   227     template<class GT>
       
   228     void aBarrier(GT &bar,int empty_level=-1) 
       
   229     {
       
   230       if(empty_level==-1)
       
   231 	for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
       
   232       for(ANodeIt n(_g);n!=INVALID;++n)
       
   233 	bar[n] = _matching[n]==INVALID ||
       
   234 	  _levels[_g.bNode(_matching[n])]<empty_level;  
       
   235     }  
       
   236     template<class GT>
       
   237     void bBarrier(GT &bar, int empty_level=-1) 
       
   238     {
       
   239       if(empty_level==-1)
       
   240 	for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
       
   241       for(BNodeIt n(_g);n!=INVALID;++n) bar[n]=(_levels[n]>empty_level);  
       
   242     }  
       
   243   
       
   244   };
       
   245   
       
   246   
       
   247   ///Maximum cardinality of the matchings in a bipartite graph
       
   248 
       
   249   ///\ingroup matching
       
   250   ///This function finds the maximum cardinality of the matchings
       
   251   ///in a bipartite graph \c g.
       
   252   ///\param g An undirected bipartite graph.
       
   253   ///\return The cardinality of the maximum matching.
       
   254   ///
       
   255   ///\note The the implementation is based
       
   256   ///on the push-relabel principle.
       
   257   template<class Graph>
       
   258   int maxBpMatching(const Graph &g)
       
   259   {
       
   260     typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
       
   261     return maxBpMatching(g,matching);
       
   262   }
       
   263 
       
   264   ///Maximum cardinality matching in a bipartite graph
       
   265 
       
   266   ///\ingroup matching
       
   267   ///This function finds a maximum cardinality matching
       
   268   ///in a bipartite graph \c g.
       
   269   ///\param g An undirected bipartite graph.
       
   270   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   271   /// The found edges will be returned in this map,
       
   272   /// i.e. for an \c ANode \c n,
       
   273   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
       
   274   /// \ref INVALID if it is uncovered.
       
   275   ///\return The cardinality of the maximum matching.
       
   276   ///
       
   277   ///\note The the implementation is based
       
   278   ///on the push-relabel principle.
       
   279   template<class Graph,class MT>
       
   280   int maxBpMatching(const Graph &g,MT &matching) 
       
   281   {
       
   282     return BpMatching<Graph,MT>(g,matching).run();
       
   283   }
       
   284 
       
   285   ///Maximum cardinality matching in a bipartite graph
       
   286 
       
   287   ///\ingroup matching
       
   288   ///This function finds a maximum cardinality matching
       
   289   ///in a bipartite graph \c g.
       
   290   ///\param g An undirected bipartite graph.
       
   291   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   292   /// The found edges will be returned in this map,
       
   293   /// i.e. for an \c ANode \c n,
       
   294   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
       
   295   /// \ref INVALID if it is uncovered.
       
   296   ///\retval barrier A \c bool WriteMap on the BNodes. The map will be set
       
   297   /// exactly once for each BNode. The nodes with \c true value represent
       
   298   /// a barrier \e B, i.e. the cardinality of \e B minus the number of its
       
   299   /// neighbor is equal to the number of the <tt>BNode</tt>s minus the
       
   300   /// cardinality of the maximum matching.
       
   301   ///\return The cardinality of the maximum matching.
       
   302   ///
       
   303   ///\note The the implementation is based
       
   304   ///on the push-relabel principle.
       
   305   template<class Graph,class MT, class GT>
       
   306   int maxBpMatching(const Graph &g,MT &matching,GT &barrier) 
       
   307   {
       
   308     BpMatching<Graph,MT> bpm(g,matching);
       
   309     int ret=bpm.run();
       
   310     bpm.barrier(barrier);
       
   311     return ret;
       
   312   }  
       
   313 
       
   314   ///Perfect matching in a bipartite graph
       
   315 
       
   316   ///\ingroup matching
       
   317   ///This function checks whether the bipartite graph \c g
       
   318   ///has a perfect matching.
       
   319   ///\param g An undirected bipartite graph.
       
   320   ///\return \c true iff \c g has a perfect matching.
       
   321   ///
       
   322   ///\note The the implementation is based
       
   323   ///on the push-relabel principle.
       
   324   template<class Graph>
       
   325   bool perfectBpMatching(const Graph &g)
       
   326   {
       
   327     typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
       
   328     return perfectBpMatching(g,matching);
       
   329   }
       
   330 
       
   331   ///Perfect matching in a bipartite graph
       
   332 
       
   333   ///\ingroup matching
       
   334   ///This function finds a perfect matching in a bipartite graph \c g.
       
   335   ///\param g An undirected bipartite graph.
       
   336   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   337   /// The found edges will be returned in this map,
       
   338   /// i.e. for an \c ANode \c n,
       
   339   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
       
   340   /// The values are unspecified if the graph
       
   341   /// has no perfect matching.
       
   342   ///\return \c true iff \c g has a perfect matching.
       
   343   ///
       
   344   ///\note The the implementation is based
       
   345   ///on the push-relabel principle.
       
   346   template<class Graph,class MT>
       
   347   bool perfectBpMatching(const Graph &g,MT &matching) 
       
   348   {
       
   349     return BpMatching<Graph,MT>(g,matching).runPerfect()<0;
       
   350   }
       
   351 
       
   352   ///Perfect matching in a bipartite graph
       
   353 
       
   354   ///\ingroup matching
       
   355   ///This function finds a perfect matching in a bipartite graph \c g.
       
   356   ///\param g An undirected bipartite graph.
       
   357   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   358   /// The found edges will be returned in this map,
       
   359   /// i.e. for an \c ANode \c n,
       
   360   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
       
   361   /// The values are unspecified if the graph
       
   362   /// has no perfect matching.
       
   363   ///\retval barrier A \c bool WriteMap on the BNodes. The map will only
       
   364   /// be set if \c g has no perfect matching. In this case it is set 
       
   365   /// exactly once for each BNode. The nodes with \c true value represent
       
   366   /// a barrier, i.e. a subset \e B a of BNodes with the property that
       
   367   /// the cardinality of \e B is greater than the numner of its neighbors.
       
   368   ///\return \c true iff \c g has a perfect matching.
       
   369   ///
       
   370   ///\note The the implementation is based
       
   371   ///on the push-relabel principle.
       
   372   template<class Graph,class MT, class GT>
       
   373   int perfectBpMatching(const Graph &g,MT &matching,GT &barrier) 
       
   374   {
       
   375     BpMatching<Graph,MT> bpm(g,matching);
       
   376     int ret=bpm.run();
       
   377     if(ret>=0)
       
   378       bpm.barrier(barrier,ret);
       
   379     return ret<0;
       
   380   }  
       
   381 }
       
   382 
       
   383 #endif