|
1 // -*- C++ -*- |
|
2 /* |
|
3 preflow_hl3.h |
|
4 by jacint. |
|
5 Runs the highest label variant of the preflow push algorithm with |
|
6 running time O(n^2\sqrt(m)), with the felszippantos 'empty level' |
|
7 and with the two-phase heuristic: if there is no active node of |
|
8 level at most n, then we go into phase 1, do a bfs |
|
9 from s, and flow the excess back to s. |
|
10 |
|
11 In phase 1 we shift everything downwards by n. |
|
12 |
|
13 'A' is a parameter for the empty_level heuristic |
|
14 |
|
15 Member functions: |
|
16 |
|
17 void run() : runs the algorithm |
|
18 |
|
19 The following functions should be used after run() was already run. |
|
20 |
|
21 T maxflow() : returns the value of a maximum flow |
|
22 |
|
23 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) |
|
24 |
|
25 FlowMap allflow() : returns the fixed maximum flow x |
|
26 |
|
27 void mincut(CutMap& M) : sets M to the characteristic vector of a |
|
28 minimum cut. M should be a map of bools initialized to false. |
|
29 |
|
30 void min_mincut(CutMap& M) : sets M to the characteristic vector of the |
|
31 minimum min cut. M should be a map of bools initialized to false. |
|
32 |
|
33 void max_mincut(CutMap& M) : sets M to the characteristic vector of the |
|
34 maximum min cut. M should be a map of bools initialized to false. |
|
35 |
|
36 */ |
|
37 |
|
38 #ifndef PREFLOW_HL3_H |
|
39 #define PREFLOW_HL3_H |
|
40 |
|
41 #define A 1 |
|
42 |
|
43 #include <vector> |
|
44 #include <stack> |
|
45 #include <queue> |
|
46 |
|
47 namespace marci { |
|
48 |
|
49 template <typename Graph, typename T, |
|
50 typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, |
|
51 typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> > |
|
52 class preflow_hl3 { |
|
53 |
|
54 typedef typename Graph::NodeIt NodeIt; |
|
55 typedef typename Graph::EdgeIt EdgeIt; |
|
56 typedef typename Graph::EachNodeIt EachNodeIt; |
|
57 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
58 typedef typename Graph::InEdgeIt InEdgeIt; |
|
59 |
|
60 Graph& G; |
|
61 NodeIt s; |
|
62 NodeIt t; |
|
63 FlowMap flow; |
|
64 CapMap& capacity; |
|
65 T value; |
|
66 |
|
67 public: |
|
68 |
|
69 preflow_hl3(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) : |
|
70 G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { } |
|
71 |
|
72 |
|
73 void run() { |
|
74 |
|
75 bool phase=0; |
|
76 int n=G.nodeNum(); |
|
77 int b=n-2; |
|
78 /* |
|
79 b is a bound on the highest level of the stack. |
|
80 In the beginning it is at most n-2. |
|
81 */ |
|
82 |
|
83 IntMap level(G,n); |
|
84 TMap excess(G); |
|
85 |
|
86 std::vector<int> numb(n); |
|
87 /* |
|
88 The number of nodes on level i < n. It is |
|
89 initialized to n+1, because of the reverse_bfs-part. |
|
90 Needed only in phase 0. |
|
91 */ |
|
92 |
|
93 std::vector<std::stack<NodeIt> > stack(n); |
|
94 //Stack of the active nodes in level i < n. |
|
95 //We use it in both phases. |
|
96 |
|
97 |
|
98 /*Reverse_bfs from t, to find the starting level.*/ |
|
99 level.set(t,0); |
|
100 std::queue<NodeIt> bfs_queue; |
|
101 bfs_queue.push(t); |
|
102 |
|
103 while (!bfs_queue.empty()) { |
|
104 |
|
105 NodeIt v=bfs_queue.front(); |
|
106 bfs_queue.pop(); |
|
107 int l=level.get(v)+1; |
|
108 |
|
109 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
|
110 NodeIt w=G.tail(e); |
|
111 if ( level.get(w) == n ) { |
|
112 bfs_queue.push(w); |
|
113 ++numb[l]; |
|
114 level.set(w, l); |
|
115 } |
|
116 } |
|
117 } |
|
118 |
|
119 level.set(s,n); |
|
120 |
|
121 |
|
122 |
|
123 /* Starting flow. It is everywhere 0 at the moment. */ |
|
124 for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) |
|
125 { |
|
126 T c=capacity.get(e); |
|
127 if ( c == 0 ) continue; |
|
128 NodeIt w=G.head(e); |
|
129 if ( level.get(w) < n ) { |
|
130 if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); |
|
131 flow.set(e, c); |
|
132 excess.set(w, excess.get(w)+c); |
|
133 } |
|
134 } |
|
135 |
|
136 /* |
|
137 End of preprocessing |
|
138 */ |
|
139 |
|
140 |
|
141 |
|
142 /* |
|
143 Push/relabel on the highest level active nodes. |
|
144 */ |
|
145 /*While there exists an active node.*/ |
|
146 while ( true ) { |
|
147 |
|
148 if ( b == 0 ) { |
|
149 if ( phase ) break; |
|
150 phase=1; |
|
151 |
|
152 level.set(s,0); |
|
153 |
|
154 std::queue<NodeIt> bfs_queue; |
|
155 bfs_queue.push(s); |
|
156 |
|
157 while (!bfs_queue.empty()) { |
|
158 |
|
159 NodeIt v=bfs_queue.front(); |
|
160 bfs_queue.pop(); |
|
161 int l=level.get(v)+1; |
|
162 |
|
163 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
|
164 if ( capacity.get(e) == flow.get(e) ) continue; |
|
165 NodeIt u=G.tail(e); |
|
166 if ( level.get(u) == n ) { |
|
167 bfs_queue.push(u); |
|
168 level.set(u, l); |
|
169 if ( excess.get(u) > 0 ) stack[l].push(u); |
|
170 } |
|
171 } |
|
172 |
|
173 for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) { |
|
174 if ( 0 == flow.get(e) ) continue; |
|
175 NodeIt u=G.head(e); |
|
176 if ( level.get(u) == n ) { |
|
177 bfs_queue.push(u); |
|
178 level.set(u, l); |
|
179 if ( excess.get(u) > 0 ) stack[l].push(u); |
|
180 } |
|
181 } |
|
182 } |
|
183 |
|
184 b=n-2; |
|
185 } |
|
186 |
|
187 if ( stack[b].empty() ) --b; |
|
188 else { |
|
189 |
|
190 NodeIt w=stack[b].top(); //w is a highest label active node. |
|
191 stack[b].pop(); |
|
192 int lev=level.get(w); |
|
193 int exc=excess.get(w); |
|
194 int newlevel=n; //In newlevel we bound the next level of w. |
|
195 |
|
196 for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) { |
|
197 |
|
198 if ( flow.get(e) == capacity.get(e) ) continue; |
|
199 NodeIt v=G.head(e); |
|
200 //e=wv |
|
201 |
|
202 if( lev > level.get(v) ) { |
|
203 /*Push is allowed now*/ |
|
204 |
|
205 if ( excess.get(v)==0 && v !=t && v!=s ) |
|
206 stack[level.get(v)].push(v); |
|
207 /*v becomes active.*/ |
|
208 |
|
209 int cap=capacity.get(e); |
|
210 int flo=flow.get(e); |
|
211 int remcap=cap-flo; |
|
212 |
|
213 if ( remcap >= exc ) { |
|
214 /*A nonsaturating push.*/ |
|
215 |
|
216 flow.set(e, flo+exc); |
|
217 excess.set(v, excess.get(v)+exc); |
|
218 exc=0; |
|
219 break; |
|
220 |
|
221 } else { |
|
222 /*A saturating push.*/ |
|
223 |
|
224 flow.set(e, cap ); |
|
225 excess.set(v, excess.get(v)+remcap); |
|
226 exc-=remcap; |
|
227 } |
|
228 } else if ( newlevel > level.get(v) ) newlevel = level.get(v); |
|
229 |
|
230 } //for out edges wv |
|
231 |
|
232 |
|
233 if ( exc > 0 ) { |
|
234 for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) { |
|
235 |
|
236 if( flow.get(e) == 0 ) continue; |
|
237 NodeIt v=G.tail(e); |
|
238 //e=vw |
|
239 |
|
240 if( lev > level.get(v) ) { |
|
241 /*Push is allowed now*/ |
|
242 |
|
243 if ( excess.get(v)==0 && v !=t && v!=s ) |
|
244 stack[level.get(v)].push(v); |
|
245 /*v becomes active.*/ |
|
246 |
|
247 int flo=flow.get(e); |
|
248 |
|
249 if ( flo >= exc ) { |
|
250 /*A nonsaturating push.*/ |
|
251 |
|
252 flow.set(e, flo-exc); |
|
253 excess.set(v, excess.get(v)+exc); |
|
254 exc=0; |
|
255 break; |
|
256 } else { |
|
257 /*A saturating push.*/ |
|
258 |
|
259 excess.set(v, excess.get(v)+flo); |
|
260 exc-=flo; |
|
261 flow.set(e,0); |
|
262 } |
|
263 } else if ( newlevel > level.get(v) ) newlevel = level.get(v); |
|
264 |
|
265 } //for in edges vw |
|
266 |
|
267 } // if w still has excess after the out edge for cycle |
|
268 |
|
269 excess.set(w, exc); |
|
270 |
|
271 |
|
272 /* |
|
273 Relabel |
|
274 */ |
|
275 |
|
276 if ( exc > 0 ) { |
|
277 //now 'lev' is the old level of w |
|
278 |
|
279 if ( phase ) { |
|
280 level.set(w,++newlevel); |
|
281 stack[newlevel].push(w); |
|
282 b=newlevel; |
|
283 } else { |
|
284 |
|
285 if ( newlevel >= n-2 || --numb[lev] == 0 ) { |
|
286 |
|
287 level.set(w,n); |
|
288 |
|
289 if ( newlevel < n ) { |
|
290 |
|
291 std::queue<NodeIt> bfs_queue; |
|
292 bfs_queue.push(w); |
|
293 |
|
294 while (!bfs_queue.empty()) { |
|
295 |
|
296 NodeIt v=bfs_queue.front(); |
|
297 bfs_queue.pop(); |
|
298 |
|
299 for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) { |
|
300 if ( capacity.get(e) == flow.get(e) ) continue; |
|
301 NodeIt u=G.head(e); |
|
302 if ( level.get(u) < n ) { |
|
303 bfs_queue.push(u); |
|
304 --numb[level.get(u)]; |
|
305 level.set(u, n); |
|
306 } |
|
307 } |
|
308 |
|
309 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
|
310 if ( 0 == flow.get(e) ) continue; |
|
311 NodeIt u=G.tail(e); |
|
312 if ( level.get(u) < n ) { |
|
313 bfs_queue.push(u); |
|
314 --numb[level.get(u)]; |
|
315 level.set(u, n); |
|
316 } |
|
317 } |
|
318 } |
|
319 } |
|
320 b=n-1; |
|
321 |
|
322 } else { |
|
323 level.set(w,++newlevel); |
|
324 stack[newlevel].push(w); |
|
325 ++numb[newlevel]; |
|
326 b=newlevel; |
|
327 } |
|
328 } |
|
329 } |
|
330 |
|
331 |
|
332 |
|
333 } // if stack[b] is nonempty |
|
334 |
|
335 } // while(true) |
|
336 |
|
337 |
|
338 value = excess.get(t); |
|
339 /*Max flow value.*/ |
|
340 |
|
341 |
|
342 } //void run() |
|
343 |
|
344 |
|
345 |
|
346 |
|
347 |
|
348 /* |
|
349 Returns the maximum value of a flow. |
|
350 */ |
|
351 |
|
352 T maxflow() { |
|
353 return value; |
|
354 } |
|
355 |
|
356 |
|
357 |
|
358 /* |
|
359 For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). |
|
360 */ |
|
361 |
|
362 T flowonedge(EdgeIt e) { |
|
363 return flow.get(e); |
|
364 } |
|
365 |
|
366 |
|
367 |
|
368 /* |
|
369 Returns the maximum flow x found by the algorithm. |
|
370 */ |
|
371 |
|
372 FlowMap allflow() { |
|
373 return flow; |
|
374 } |
|
375 |
|
376 |
|
377 |
|
378 |
|
379 /* |
|
380 Returns the minimum min cut, by a bfs from s in the residual graph. |
|
381 */ |
|
382 |
|
383 template<typename CutMap> |
|
384 void mincut(CutMap& M) { |
|
385 |
|
386 std::queue<NodeIt> queue; |
|
387 |
|
388 M.set(s,true); |
|
389 queue.push(s); |
|
390 |
|
391 while (!queue.empty()) { |
|
392 NodeIt w=queue.front(); |
|
393 queue.pop(); |
|
394 |
|
395 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
|
396 NodeIt v=G.head(e); |
|
397 if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
|
398 queue.push(v); |
|
399 M.set(v, true); |
|
400 } |
|
401 } |
|
402 |
|
403 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
|
404 NodeIt v=G.tail(e); |
|
405 if (!M.get(v) && flow.get(e) > 0 ) { |
|
406 queue.push(v); |
|
407 M.set(v, true); |
|
408 } |
|
409 } |
|
410 |
|
411 } |
|
412 |
|
413 } |
|
414 |
|
415 |
|
416 |
|
417 /* |
|
418 Returns the maximum min cut, by a reverse bfs |
|
419 from t in the residual graph. |
|
420 */ |
|
421 |
|
422 template<typename CutMap> |
|
423 void max_mincut(CutMap& M) { |
|
424 |
|
425 std::queue<NodeIt> queue; |
|
426 |
|
427 M.set(t,true); |
|
428 queue.push(t); |
|
429 |
|
430 while (!queue.empty()) { |
|
431 NodeIt w=queue.front(); |
|
432 queue.pop(); |
|
433 |
|
434 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
|
435 NodeIt v=G.tail(e); |
|
436 if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
|
437 queue.push(v); |
|
438 M.set(v, true); |
|
439 } |
|
440 } |
|
441 |
|
442 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
|
443 NodeIt v=G.head(e); |
|
444 if (!M.get(v) && flow.get(e) > 0 ) { |
|
445 queue.push(v); |
|
446 M.set(v, true); |
|
447 } |
|
448 } |
|
449 } |
|
450 |
|
451 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) { |
|
452 M.set(v, !M.get(v)); |
|
453 } |
|
454 |
|
455 } |
|
456 |
|
457 |
|
458 |
|
459 template<typename CutMap> |
|
460 void min_mincut(CutMap& M) { |
|
461 mincut(M); |
|
462 } |
|
463 |
|
464 |
|
465 |
|
466 }; |
|
467 }//namespace marci |
|
468 #endif |
|
469 |
|
470 |
|
471 |
|
472 |