src/work/jacint/preflow_hl3.h
changeset 104 7a2d991e9852
child 105 a3c73e9b9b2e
equal deleted inserted replaced
-1:000000000000 0:0dd9bf481de1
       
     1 // -*- C++ -*-
       
     2 /*
       
     3 preflow_hl3.h
       
     4 by jacint. 
       
     5 Runs the highest label variant of the preflow push algorithm with 
       
     6 running time O(n^2\sqrt(m)), with the felszippantos 'empty level' 
       
     7 and with the two-phase heuristic: if there is no active node of
       
     8 level at most n, then we go into phase 1, do a bfs
       
     9 from s, and flow the excess back to s.
       
    10 
       
    11 In phase 1 we shift everything downwards by n.
       
    12 
       
    13 'A' is a parameter for the empty_level heuristic
       
    14 
       
    15 Member functions:
       
    16 
       
    17 void run() : runs the algorithm
       
    18 
       
    19  The following functions should be used after run() was already run.
       
    20 
       
    21 T maxflow() : returns the value of a maximum flow
       
    22 
       
    23 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
       
    24 
       
    25 FlowMap allflow() : returns the fixed maximum flow x
       
    26 
       
    27 void mincut(CutMap& M) : sets M to the characteristic vector of a 
       
    28      minimum cut. M should be a map of bools initialized to false.
       
    29 
       
    30 void min_mincut(CutMap& M) : sets M to the characteristic vector of the 
       
    31      minimum min cut. M should be a map of bools initialized to false.
       
    32 
       
    33 void max_mincut(CutMap& M) : sets M to the characteristic vector of the 
       
    34      maximum min cut. M should be a map of bools initialized to false.
       
    35 
       
    36 */
       
    37 
       
    38 #ifndef PREFLOW_HL3_H
       
    39 #define PREFLOW_HL3_H
       
    40 
       
    41 #define A 1
       
    42 
       
    43 #include <vector>
       
    44 #include <stack>
       
    45 #include <queue>
       
    46 
       
    47 namespace marci {
       
    48 
       
    49   template <typename Graph, typename T, 
       
    50     typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, 
       
    51     typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> >
       
    52   class preflow_hl3 {
       
    53     
       
    54     typedef typename Graph::NodeIt NodeIt;
       
    55     typedef typename Graph::EdgeIt EdgeIt;
       
    56     typedef typename Graph::EachNodeIt EachNodeIt;
       
    57     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    58     typedef typename Graph::InEdgeIt InEdgeIt;
       
    59     
       
    60     Graph& G;
       
    61     NodeIt s;
       
    62     NodeIt t;
       
    63     FlowMap flow;
       
    64     CapMap& capacity;  
       
    65     T value;
       
    66     
       
    67   public:
       
    68 
       
    69     preflow_hl3(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
       
    70       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
       
    71 
       
    72 
       
    73     void run() {
       
    74  
       
    75       bool phase=0;
       
    76       int n=G.nodeNum(); 
       
    77       int b=n-2; 
       
    78       /*
       
    79 	b is a bound on the highest level of the stack. 
       
    80 	In the beginning it is at most n-2.
       
    81       */
       
    82 
       
    83       IntMap level(G,n);      
       
    84       TMap excess(G); 
       
    85       
       
    86       std::vector<int> numb(n);    
       
    87       /*
       
    88 	The number of nodes on level i < n. It is
       
    89 	initialized to n+1, because of the reverse_bfs-part.
       
    90 	Needed only in phase 0.
       
    91       */
       
    92 
       
    93       std::vector<std::stack<NodeIt> > stack(n);    
       
    94       //Stack of the active nodes in level i < n.
       
    95       //We use it in both phases.
       
    96 
       
    97 
       
    98       /*Reverse_bfs from t, to find the starting level.*/
       
    99       level.set(t,0);
       
   100       std::queue<NodeIt> bfs_queue;
       
   101       bfs_queue.push(t);
       
   102 
       
   103       while (!bfs_queue.empty()) {
       
   104 
       
   105 	NodeIt v=bfs_queue.front();	
       
   106 	bfs_queue.pop();
       
   107 	int l=level.get(v)+1;
       
   108 
       
   109 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
       
   110 	  NodeIt w=G.tail(e);
       
   111 	  if ( level.get(w) == n ) {
       
   112 	    bfs_queue.push(w);
       
   113 	    ++numb[l];
       
   114 	    level.set(w, l);
       
   115 	  }
       
   116 	}
       
   117       }
       
   118       
       
   119       level.set(s,n);
       
   120 
       
   121 
       
   122 
       
   123       /* Starting flow. It is everywhere 0 at the moment. */     
       
   124       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
       
   125 	{
       
   126 	  T c=capacity.get(e);
       
   127 	  if ( c == 0 ) continue;
       
   128 	  NodeIt w=G.head(e);
       
   129 	  if ( level.get(w) < n ) {	  
       
   130 	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
       
   131 	    flow.set(e, c); 
       
   132 	    excess.set(w, excess.get(w)+c);
       
   133 	  }
       
   134 	}
       
   135 
       
   136       /* 
       
   137 	 End of preprocessing 
       
   138       */
       
   139 
       
   140 
       
   141 
       
   142       /*
       
   143 	Push/relabel on the highest level active nodes.
       
   144       */	
       
   145       /*While there exists an active node.*/
       
   146       while ( true ) {
       
   147 
       
   148 	if ( b == 0 ) {
       
   149 	  if ( phase ) break; 
       
   150 	  phase=1;
       
   151 
       
   152 	  level.set(s,0);
       
   153 
       
   154 	  std::queue<NodeIt> bfs_queue;
       
   155 	  bfs_queue.push(s);
       
   156 	  
       
   157 	  while (!bfs_queue.empty()) {
       
   158 	    
       
   159 	    NodeIt v=bfs_queue.front();	
       
   160 	    bfs_queue.pop();
       
   161 	    int l=level.get(v)+1;
       
   162 
       
   163 	    for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
       
   164 	      if ( capacity.get(e) == flow.get(e) ) continue;
       
   165 	      NodeIt u=G.tail(e);
       
   166 	      if ( level.get(u) == n ) { 
       
   167 		bfs_queue.push(u);
       
   168 		level.set(u, l);
       
   169 		if ( excess.get(u) > 0 ) stack[l].push(u);
       
   170 	      }
       
   171 	    }
       
   172 
       
   173 	    for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
       
   174 	      if ( 0 == flow.get(e) ) continue;
       
   175 	      NodeIt u=G.head(e);
       
   176 	      if ( level.get(u) == n ) { 
       
   177 		bfs_queue.push(u);
       
   178 		level.set(u, l);
       
   179 		if ( excess.get(u) > 0 ) stack[l].push(u);
       
   180 	      }
       
   181 	    }
       
   182 	  }
       
   183 
       
   184 	  b=n-2;
       
   185 	}
       
   186 
       
   187 	if ( stack[b].empty() ) --b;
       
   188 	else {
       
   189 	  
       
   190 	  NodeIt w=stack[b].top();        //w is a highest label active node.
       
   191 	  stack[b].pop();           
       
   192 	  int lev=level.get(w);
       
   193 	  int exc=excess.get(w);
       
   194 	  int newlevel=n;                 //In newlevel we bound the next level of w.
       
   195 	  
       
   196 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
       
   197 	    
       
   198 	    if ( flow.get(e) == capacity.get(e) ) continue; 
       
   199 	    NodeIt v=G.head(e);            
       
   200 	    //e=wv	    
       
   201 	    
       
   202 	    if( lev > level.get(v) ) {      
       
   203 	      /*Push is allowed now*/
       
   204 	      
       
   205 	      if ( excess.get(v)==0 && v !=t && v!=s ) 
       
   206 		stack[level.get(v)].push(v); 
       
   207 	      /*v becomes active.*/
       
   208 	      
       
   209 	      int cap=capacity.get(e);
       
   210 	      int flo=flow.get(e);
       
   211 	      int remcap=cap-flo;
       
   212 	      
       
   213 	      if ( remcap >= exc ) {       
       
   214 		/*A nonsaturating push.*/
       
   215 		
       
   216 		flow.set(e, flo+exc);
       
   217 		excess.set(v, excess.get(v)+exc);
       
   218 		exc=0;
       
   219 		break; 
       
   220 		
       
   221 	      } else { 
       
   222 		/*A saturating push.*/
       
   223 		
       
   224 		flow.set(e, cap );
       
   225 		excess.set(v, excess.get(v)+remcap);
       
   226 		exc-=remcap;
       
   227 	      }
       
   228 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
       
   229 	    
       
   230 	  } //for out edges wv 
       
   231 	
       
   232 	
       
   233 	if ( exc > 0 ) {	
       
   234 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
       
   235 	    
       
   236 	    if( flow.get(e) == 0 ) continue; 
       
   237 	    NodeIt v=G.tail(e);  
       
   238 	    //e=vw
       
   239 	    
       
   240 	    if( lev > level.get(v) ) {  
       
   241 	      /*Push is allowed now*/
       
   242 	      
       
   243 	      if ( excess.get(v)==0 && v !=t && v!=s ) 
       
   244 		stack[level.get(v)].push(v); 
       
   245 	      /*v becomes active.*/
       
   246 	      
       
   247 	      int flo=flow.get(e);
       
   248 	      
       
   249 	      if ( flo >= exc ) { 
       
   250 		/*A nonsaturating push.*/
       
   251 		
       
   252 		flow.set(e, flo-exc);
       
   253 		excess.set(v, excess.get(v)+exc);
       
   254 		exc=0;
       
   255 		break; 
       
   256 	      } else {                                               
       
   257 		/*A saturating push.*/
       
   258 		
       
   259 		excess.set(v, excess.get(v)+flo);
       
   260 		exc-=flo;
       
   261 		flow.set(e,0);
       
   262 	      }  
       
   263 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
       
   264 	    
       
   265 	  } //for in edges vw
       
   266 	  
       
   267 	} // if w still has excess after the out edge for cycle
       
   268 	
       
   269 	excess.set(w, exc);
       
   270 	  
       
   271 
       
   272 	/*
       
   273 	  Relabel
       
   274 	*/
       
   275 	
       
   276 	if ( exc > 0 ) {
       
   277 	  //now 'lev' is the old level of w
       
   278 	
       
   279 	  if ( phase ) {
       
   280 	    level.set(w,++newlevel);
       
   281 	    stack[newlevel].push(w);
       
   282 	    b=newlevel;
       
   283 	  } else {
       
   284 
       
   285 	    if ( newlevel >= n-2 || --numb[lev] == 0 ) {
       
   286 	      
       
   287 	      level.set(w,n);
       
   288 	      
       
   289 	      if ( newlevel < n ) {
       
   290 		
       
   291 		std::queue<NodeIt> bfs_queue;
       
   292 		bfs_queue.push(w);
       
   293 
       
   294 		while (!bfs_queue.empty()) {
       
   295 
       
   296 		  NodeIt v=bfs_queue.front();	
       
   297 		  bfs_queue.pop();
       
   298 
       
   299 		  for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
       
   300 		    if ( capacity.get(e) == flow.get(e) ) continue;
       
   301 		    NodeIt u=G.head(e);
       
   302 		    if ( level.get(u) < n ) { 
       
   303 		      bfs_queue.push(u);
       
   304 		      --numb[level.get(u)];
       
   305 		      level.set(u, n);
       
   306 		    }
       
   307 		  }
       
   308 
       
   309 		  for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
       
   310 		    if ( 0 == flow.get(e) ) continue;
       
   311 		    NodeIt u=G.tail(e);
       
   312 		    if ( level.get(u) < n ) { 
       
   313 		      bfs_queue.push(u);
       
   314 		      --numb[level.get(u)];
       
   315 		      level.set(u, n);
       
   316 		    }
       
   317 		  }
       
   318 		}
       
   319 	      }
       
   320 	      b=n-1;
       
   321 
       
   322 	    } else {
       
   323 	      level.set(w,++newlevel);
       
   324 	      stack[newlevel].push(w);
       
   325 	      ++numb[newlevel];
       
   326 	      b=newlevel;
       
   327 	    }
       
   328 	  }
       
   329 	}
       
   330 
       
   331  
       
   332 	
       
   333 	} // if stack[b] is nonempty
       
   334 	
       
   335       } // while(true)
       
   336 
       
   337 
       
   338       value = excess.get(t);
       
   339       /*Max flow value.*/
       
   340 
       
   341 
       
   342     } //void run()
       
   343 
       
   344 
       
   345 
       
   346 
       
   347 
       
   348     /*
       
   349       Returns the maximum value of a flow.
       
   350      */
       
   351 
       
   352     T maxflow() {
       
   353       return value;
       
   354     }
       
   355 
       
   356 
       
   357 
       
   358     /*
       
   359       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
       
   360     */
       
   361 
       
   362     T flowonedge(EdgeIt e) {
       
   363       return flow.get(e);
       
   364     }
       
   365 
       
   366 
       
   367 
       
   368     /*
       
   369       Returns the maximum flow x found by the algorithm.
       
   370     */
       
   371 
       
   372     FlowMap allflow() {
       
   373       return flow;
       
   374     }
       
   375 
       
   376 
       
   377 
       
   378 
       
   379     /*
       
   380       Returns the minimum min cut, by a bfs from s in the residual graph.
       
   381     */
       
   382     
       
   383     template<typename CutMap>
       
   384     void mincut(CutMap& M) {
       
   385     
       
   386       std::queue<NodeIt> queue;
       
   387       
       
   388       M.set(s,true);      
       
   389       queue.push(s);
       
   390 
       
   391       while (!queue.empty()) {
       
   392         NodeIt w=queue.front();
       
   393 	queue.pop();
       
   394 
       
   395 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
       
   396 	  NodeIt v=G.head(e);
       
   397 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
       
   398 	    queue.push(v);
       
   399 	    M.set(v, true);
       
   400 	  }
       
   401 	} 
       
   402 
       
   403 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
       
   404 	  NodeIt v=G.tail(e);
       
   405 	  if (!M.get(v) && flow.get(e) > 0 ) {
       
   406 	    queue.push(v);
       
   407 	    M.set(v, true);
       
   408 	  }
       
   409 	} 
       
   410 
       
   411       }
       
   412 
       
   413     }
       
   414 
       
   415 
       
   416 
       
   417     /*
       
   418       Returns the maximum min cut, by a reverse bfs 
       
   419       from t in the residual graph.
       
   420     */
       
   421     
       
   422     template<typename CutMap>
       
   423     void max_mincut(CutMap& M) {
       
   424     
       
   425       std::queue<NodeIt> queue;
       
   426       
       
   427       M.set(t,true);        
       
   428       queue.push(t);
       
   429 
       
   430       while (!queue.empty()) {
       
   431         NodeIt w=queue.front();
       
   432 	queue.pop();
       
   433 
       
   434 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
       
   435 	  NodeIt v=G.tail(e);
       
   436 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
       
   437 	    queue.push(v);
       
   438 	    M.set(v, true);
       
   439 	  }
       
   440 	}
       
   441 
       
   442 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
       
   443 	  NodeIt v=G.head(e);
       
   444 	  if (!M.get(v) && flow.get(e) > 0 ) {
       
   445 	    queue.push(v);
       
   446 	    M.set(v, true);
       
   447 	  }
       
   448 	}
       
   449       }
       
   450 
       
   451       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
       
   452 	M.set(v, !M.get(v));
       
   453       }
       
   454 
       
   455     }
       
   456 
       
   457 
       
   458 
       
   459     template<typename CutMap>
       
   460     void min_mincut(CutMap& M) {
       
   461       mincut(M);
       
   462     }
       
   463 
       
   464 
       
   465 
       
   466   };
       
   467 }//namespace marci
       
   468 #endif 
       
   469 
       
   470 
       
   471 
       
   472