|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2006 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_STEINER_H |
|
20 #define LEMON_STEINER_H |
|
21 |
|
22 ///\ingroup approx |
|
23 ///\file |
|
24 ///\brief Algorithm for the 2-approximation of Steiner Tree problem. |
|
25 /// |
|
26 |
|
27 #include <lemon/smart_graph.h> |
|
28 #include <lemon/graph_utils.h> |
|
29 #include <lemon/error.h> |
|
30 |
|
31 #include <lemon/ugraph_adaptor.h> |
|
32 #include <lemon/maps.h> |
|
33 |
|
34 #include <lemon/dijkstra.h> |
|
35 #include <lemon/prim.h> |
|
36 |
|
37 |
|
38 namespace lemon { |
|
39 |
|
40 /// \ingroup approx |
|
41 |
|
42 /// \brief Algorithm for the 2-approximation of Steiner Tree problem |
|
43 /// |
|
44 /// The Steiner-tree problem is the next: Given a connected |
|
45 /// undirected graph, a cost function on the edges and a subset of |
|
46 /// the nodes. Construct a tree with minimum cost which covers the |
|
47 /// given subset of the nodes. The problem is NP-hard moreover |
|
48 /// it is APX-complete too. |
|
49 /// |
|
50 /// Mehlhorn's approximation algorithm is implemented in this class, |
|
51 /// which gives a 2-approximation for the Steiner-tree problem. The |
|
52 /// algorithm's time complexity is O(nlog(n)+e). |
|
53 template <typename UGraph, |
|
54 typename CostMap = typename UGraph:: template UEdgeMap<double> > |
|
55 class SteinerTree { |
|
56 public: |
|
57 |
|
58 UGRAPH_TYPEDEFS(typename UGraph) |
|
59 |
|
60 typedef typename CostMap::Value Value; |
|
61 |
|
62 private: |
|
63 |
|
64 class CompMap { |
|
65 public: |
|
66 typedef Node Key; |
|
67 typedef Edge Value; |
|
68 |
|
69 private: |
|
70 const UGraph& _graph; |
|
71 typename UGraph::template NodeMap<int> _comp; |
|
72 |
|
73 public: |
|
74 CompMap(const UGraph& graph) : _graph(graph), _comp(graph) {} |
|
75 |
|
76 void set(const Node& node, const Edge& edge) { |
|
77 if (edge != INVALID) { |
|
78 _comp.set(node, _comp[_graph.source(edge)]); |
|
79 } else { |
|
80 _comp.set(node, -1); |
|
81 } |
|
82 } |
|
83 |
|
84 int comp(const Node& node) const { return _comp[node]; } |
|
85 void comp(const Node& node, int value) { _comp.set(node, value); } |
|
86 }; |
|
87 |
|
88 typedef typename UGraph::template NodeMap<Edge> PredMap; |
|
89 |
|
90 typedef ForkWriteMap<PredMap, CompMap> ForkedMap; |
|
91 |
|
92 |
|
93 struct External { |
|
94 int source, target; |
|
95 UEdge uedge; |
|
96 Value value; |
|
97 |
|
98 External(int s, int t, const UEdge& e, const Value& v) |
|
99 : source(s), target(t), uedge(e), value(v) {} |
|
100 }; |
|
101 |
|
102 struct ExternalLess { |
|
103 bool operator()(const External& left, const External& right) const { |
|
104 return (left.source < right.source) || |
|
105 (left.source == right.source && left.target < right.target); |
|
106 } |
|
107 }; |
|
108 |
|
109 |
|
110 typedef typename UGraph::template NodeMap<bool> FilterMap; |
|
111 |
|
112 typedef typename UGraph::template UEdgeMap<bool> TreeMap; |
|
113 |
|
114 const UGraph& _graph; |
|
115 const CostMap& _cost; |
|
116 |
|
117 typename Dijkstra<UGraph, CostMap>:: |
|
118 template DefPredMap<ForkedMap>::Create _dijkstra; |
|
119 |
|
120 PredMap* _pred; |
|
121 CompMap* _comp; |
|
122 ForkedMap* _forked; |
|
123 |
|
124 int _terminal_num; |
|
125 |
|
126 FilterMap *_filter; |
|
127 TreeMap *_tree; |
|
128 |
|
129 public: |
|
130 |
|
131 /// \brief Constructor |
|
132 |
|
133 /// Constructor |
|
134 /// |
|
135 SteinerTree(const UGraph &graph, const CostMap &cost) |
|
136 : _graph(graph), _cost(cost), _dijkstra(graph, _cost), |
|
137 _pred(0), _comp(0), _forked(0), _filter(0), _tree(0) {} |
|
138 |
|
139 /// \brief Initializes the internal data structures. |
|
140 /// |
|
141 /// Initializes the internal data structures. |
|
142 void init() { |
|
143 if (!_pred) _pred = new PredMap(_graph); |
|
144 if (!_comp) _comp = new CompMap(_graph); |
|
145 if (!_forked) _forked = new ForkedMap(*_pred, *_comp); |
|
146 if (!_filter) _filter = new FilterMap(_graph); |
|
147 if (!_tree) _tree = new TreeMap(_graph); |
|
148 _dijkstra.predMap(*_forked); |
|
149 _dijkstra.init(); |
|
150 _terminal_num = 0; |
|
151 for (NodeIt it(_graph); it != INVALID; ++it) { |
|
152 _filter->set(it, false); |
|
153 } |
|
154 } |
|
155 |
|
156 /// \brief Adds a new terminal node. |
|
157 /// |
|
158 /// Adds a new terminal node to the Steiner-tree problem. |
|
159 void addTerminal(const Node& node) { |
|
160 if (!_dijkstra.reached(node)) { |
|
161 _dijkstra.addSource(node); |
|
162 _comp->comp(node, _terminal_num); |
|
163 ++_terminal_num; |
|
164 } |
|
165 } |
|
166 |
|
167 /// \brief Executes the algorithm. |
|
168 /// |
|
169 /// Executes the algorithm. |
|
170 /// |
|
171 /// \pre init() must be called and at least some nodes should be |
|
172 /// added with addTerminal() before using this function. |
|
173 /// |
|
174 /// This method constructs an approximation of the Steiner-Tree. |
|
175 void start() { |
|
176 _dijkstra.start(); |
|
177 |
|
178 std::vector<External> externals; |
|
179 for (UEdgeIt it(_graph); it != INVALID; ++it) { |
|
180 Node s = _graph.source(it); |
|
181 Node t = _graph.target(it); |
|
182 if (_comp->comp(s) == _comp->comp(t)) continue; |
|
183 |
|
184 Value cost = _dijkstra.dist(s) + _dijkstra.dist(t) + _cost[it]; |
|
185 |
|
186 if (_comp->comp(s) < _comp->comp(t)) { |
|
187 externals.push_back(External(_comp->comp(s), _comp->comp(t), |
|
188 it, cost)); |
|
189 } else { |
|
190 externals.push_back(External(_comp->comp(t), _comp->comp(s), |
|
191 it, cost)); |
|
192 } |
|
193 } |
|
194 std::sort(externals.begin(), externals.end(), ExternalLess()); |
|
195 |
|
196 SmartUGraph aux_graph; |
|
197 std::vector<SmartUGraph::Node> aux_nodes; |
|
198 |
|
199 for (int i = 0; i < _terminal_num; ++i) { |
|
200 aux_nodes.push_back(aux_graph.addNode()); |
|
201 } |
|
202 |
|
203 SmartUGraph::UEdgeMap<Value> aux_cost(aux_graph); |
|
204 SmartUGraph::UEdgeMap<UEdge> cross(aux_graph); |
|
205 { |
|
206 int i = 0; |
|
207 while (i < (int)externals.size()) { |
|
208 int sn = externals[i].source; |
|
209 int tn = externals[i].target; |
|
210 Value ev = externals[i].value; |
|
211 UEdge ee = externals[i].uedge; |
|
212 ++i; |
|
213 while (i < (int)externals.size() && |
|
214 sn == externals[i].source && tn == externals[i].target) { |
|
215 if (externals[i].value < ev) { |
|
216 ev = externals[i].value; |
|
217 ee = externals[i].uedge; |
|
218 } |
|
219 ++i; |
|
220 } |
|
221 SmartUGraph::UEdge ne = |
|
222 aux_graph.addEdge(aux_nodes[sn], aux_nodes[tn]); |
|
223 aux_cost.set(ne, ev); |
|
224 cross.set(ne, ee); |
|
225 } |
|
226 } |
|
227 |
|
228 std::vector<SmartUGraph::UEdge> aux_tree_edges; |
|
229 BackInserterBoolMap<std::vector<SmartUGraph::UEdge> > |
|
230 aux_tree_map(aux_tree_edges); |
|
231 prim(aux_graph, aux_cost, aux_tree_map); |
|
232 |
|
233 for (std::vector<SmartUGraph::UEdge>::iterator |
|
234 it = aux_tree_edges.begin(); it != aux_tree_edges.end(); ++it) { |
|
235 Node node; |
|
236 node = _graph.source(cross[*it]); |
|
237 while (node != INVALID && !(*_filter)[node]) { |
|
238 _filter->set(node, true); |
|
239 node = (*_pred)[node] != INVALID ? |
|
240 _graph.source((*_pred)[node]) : INVALID; |
|
241 } |
|
242 node = _graph.target(cross[*it]); |
|
243 while (node != INVALID && !(*_filter)[node]) { |
|
244 _filter->set(node, true); |
|
245 node = (*_pred)[node] != INVALID ? |
|
246 _graph.source((*_pred)[node]) : INVALID; |
|
247 } |
|
248 } |
|
249 |
|
250 prim(nodeSubUGraphAdaptor(_graph, *_filter), _cost, *_tree); |
|
251 |
|
252 } |
|
253 |
|
254 /// \brief Checks if an edge is in the Steiner-tree or not. |
|
255 /// |
|
256 /// Checks if an edge is in the Steiner-tree or not. |
|
257 /// \param e is the edge that will be checked |
|
258 /// \return \c true if e is in the Steiner-tree, \c false otherwise |
|
259 bool tree(UEdge e){ |
|
260 return (*_tree)[e]; |
|
261 } |
|
262 |
|
263 /// \brief Checks if the node is in the Steiner-tree or not. |
|
264 /// |
|
265 /// Checks if a node is in the Steiner-tree or not. |
|
266 /// \param n is the node that will be checked |
|
267 /// \return \c true if n is in the Steiner-tree, \c false otherwise |
|
268 bool tree(Node n){ |
|
269 return (*_filter)[n]; |
|
270 } |
|
271 |
|
272 |
|
273 }; |
|
274 |
|
275 } //END OF NAMESPACE LEMON |
|
276 |
|
277 #endif |