src/hugo/dijkstra.h
changeset 921 818510fa3d99
parent 906 17f31d280385
equal deleted inserted replaced
18:3156b20bc543 -1:000000000000
     1 /* -*- C++ -*-
       
     2  * src/hugo/dijkstra.h - Part of HUGOlib, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 
       
    17 #ifndef HUGO_DIJKSTRA_H
       
    18 #define HUGO_DIJKSTRA_H
       
    19 
       
    20 ///\ingroup flowalgs
       
    21 ///\file
       
    22 ///\brief Dijkstra algorithm.
       
    23 
       
    24 #include <hugo/bin_heap.h>
       
    25 #include <hugo/invalid.h>
       
    26 
       
    27 namespace hugo {
       
    28 
       
    29 /// \addtogroup flowalgs
       
    30 /// @{
       
    31 
       
    32   ///%Dijkstra algorithm class.
       
    33 
       
    34   ///This class provides an efficient implementation of %Dijkstra algorithm.
       
    35   ///The edge lengths are passed to the algorithm using a
       
    36   ///\ref skeleton::ReadMap "ReadMap",
       
    37   ///so it is easy to change it to any kind of length.
       
    38   ///
       
    39   ///The type of the length is determined by the
       
    40   ///\ref skeleton::ReadMap::ValueType "ValueType" of the length map.
       
    41   ///
       
    42   ///It is also possible to change the underlying priority heap.
       
    43   ///
       
    44   ///\param GR The graph type the algorithm runs on.
       
    45   ///\param LM This read-only
       
    46   ///EdgeMap
       
    47   ///determines the
       
    48   ///lengths of the edges. It is read once for each edge, so the map
       
    49   ///may involve in relatively time consuming process to compute the edge
       
    50   ///length if it is necessary. The default map type is
       
    51   ///\ref skeleton::StaticGraph::EdgeMap "Graph::EdgeMap<int>"
       
    52   ///\param Heap The heap type used by the %Dijkstra
       
    53   ///algorithm. The default
       
    54   ///is using \ref BinHeap "binary heap".
       
    55   ///
       
    56   ///\author Jacint Szabo and Alpar Juttner
       
    57   ///\todo We need a typedef-names should be standardized. (-:
       
    58   ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
       
    59   ///should not be fixed. (Problematic to solve).
       
    60 
       
    61 #ifdef DOXYGEN
       
    62   template <typename GR,
       
    63 	    typename LM,
       
    64 	    typename Heap>
       
    65 #else
       
    66   template <typename GR,
       
    67 	    typename LM=typename GR::template EdgeMap<int>,
       
    68 	    template <class,class,class,class> class Heap = BinHeap >
       
    69 #endif
       
    70   class Dijkstra{
       
    71   public:
       
    72     ///The type of the underlying graph.
       
    73     typedef GR Graph;
       
    74     ///\e
       
    75     typedef typename Graph::Node Node;
       
    76     ///\e
       
    77     typedef typename Graph::NodeIt NodeIt;
       
    78     ///\e
       
    79     typedef typename Graph::Edge Edge;
       
    80     ///\e
       
    81     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    82     
       
    83     ///The type of the length of the edges.
       
    84     typedef typename LM::ValueType ValueType;
       
    85     ///The type of the map that stores the edge lengths.
       
    86     typedef LM LengthMap;
       
    87     ///\brief The type of the map that stores the last
       
    88     ///edges of the shortest paths.
       
    89     typedef typename Graph::template NodeMap<Edge> PredMap;
       
    90     ///\brief The type of the map that stores the last but one
       
    91     ///nodes of the shortest paths.
       
    92     typedef typename Graph::template NodeMap<Node> PredNodeMap;
       
    93     ///The type of the map that stores the dists of the nodes.
       
    94     typedef typename Graph::template NodeMap<ValueType> DistMap;
       
    95 
       
    96   private:
       
    97     /// Pointer to the underlying graph.
       
    98     const Graph *G;
       
    99     /// Pointer to the length map
       
   100     const LM *length;
       
   101     ///Pointer to the map of predecessors edges.
       
   102     PredMap *predecessor;
       
   103     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
       
   104     bool local_predecessor;
       
   105     ///Pointer to the map of predecessors nodes.
       
   106     PredNodeMap *pred_node;
       
   107     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
       
   108     bool local_pred_node;
       
   109     ///Pointer to the map of distances.
       
   110     DistMap *distance;
       
   111     ///Indicates if \ref distance is locally allocated (\c true) or not.
       
   112     bool local_distance;
       
   113 
       
   114     ///The source node of the last execution.
       
   115     Node source;
       
   116 
       
   117     ///Initializes the maps.
       
   118     
       
   119     ///\todo Error if \c G or are \c NULL. What about \c length?
       
   120     ///\todo Better memory allocation (instead of new).
       
   121     void init_maps() 
       
   122     {
       
   123       if(!predecessor) {
       
   124 	local_predecessor = true;
       
   125 	predecessor = new PredMap(*G);
       
   126       }
       
   127       if(!pred_node) {
       
   128 	local_pred_node = true;
       
   129 	pred_node = new PredNodeMap(*G);
       
   130       }
       
   131       if(!distance) {
       
   132 	local_distance = true;
       
   133 	distance = new DistMap(*G);
       
   134       }
       
   135     }
       
   136     
       
   137   public :
       
   138     ///Constructor.
       
   139     
       
   140     ///\param _G the graph the algorithm will run on.
       
   141     ///\param _length the length map used by the algorithm.
       
   142     Dijkstra(const Graph& _G, const LM& _length) :
       
   143       G(&_G), length(&_length),
       
   144       predecessor(NULL), local_predecessor(false),
       
   145       pred_node(NULL), local_pred_node(false),
       
   146       distance(NULL), local_distance(false)
       
   147     { }
       
   148     
       
   149     ///Destructor.
       
   150     ~Dijkstra() 
       
   151     {
       
   152       if(local_predecessor) delete predecessor;
       
   153       if(local_pred_node) delete pred_node;
       
   154       if(local_distance) delete distance;
       
   155     }
       
   156 
       
   157     ///Sets the length map.
       
   158 
       
   159     ///Sets the length map.
       
   160     ///\return <tt> (*this) </tt>
       
   161     Dijkstra &setLengthMap(const LM &m) 
       
   162     {
       
   163       length = &m;
       
   164       return *this;
       
   165     }
       
   166 
       
   167     ///Sets the map storing the predecessor edges.
       
   168 
       
   169     ///Sets the map storing the predecessor edges.
       
   170     ///If you don't use this function before calling \ref run(),
       
   171     ///it will allocate one. The destuctor deallocates this
       
   172     ///automatically allocated map, of course.
       
   173     ///\return <tt> (*this) </tt>
       
   174     Dijkstra &setPredMap(PredMap &m) 
       
   175     {
       
   176       if(local_predecessor) {
       
   177 	delete predecessor;
       
   178 	local_predecessor=false;
       
   179       }
       
   180       predecessor = &m;
       
   181       return *this;
       
   182     }
       
   183 
       
   184     ///Sets the map storing the predecessor nodes.
       
   185 
       
   186     ///Sets the map storing the predecessor nodes.
       
   187     ///If you don't use this function before calling \ref run(),
       
   188     ///it will allocate one. The destuctor deallocates this
       
   189     ///automatically allocated map, of course.
       
   190     ///\return <tt> (*this) </tt>
       
   191     Dijkstra &setPredNodeMap(PredNodeMap &m) 
       
   192     {
       
   193       if(local_pred_node) {
       
   194 	delete pred_node;
       
   195 	local_pred_node=false;
       
   196       }
       
   197       pred_node = &m;
       
   198       return *this;
       
   199     }
       
   200 
       
   201     ///Sets the map storing the distances calculated by the algorithm.
       
   202 
       
   203     ///Sets the map storing the distances calculated by the algorithm.
       
   204     ///If you don't use this function before calling \ref run(),
       
   205     ///it will allocate one. The destuctor deallocates this
       
   206     ///automatically allocated map, of course.
       
   207     ///\return <tt> (*this) </tt>
       
   208     Dijkstra &setDistMap(DistMap &m) 
       
   209     {
       
   210       if(local_distance) {
       
   211 	delete distance;
       
   212 	local_distance=false;
       
   213       }
       
   214       distance = &m;
       
   215       return *this;
       
   216     }
       
   217     
       
   218   ///Runs %Dijkstra algorithm from node \c s.
       
   219 
       
   220   ///This method runs the %Dijkstra algorithm from a root node \c s
       
   221   ///in order to
       
   222   ///compute the
       
   223   ///shortest path to each node. The algorithm computes
       
   224   ///- The shortest path tree.
       
   225   ///- The distance of each node from the root.
       
   226     
       
   227     void run(Node s) {
       
   228       
       
   229       init_maps();
       
   230       
       
   231       source = s;
       
   232       
       
   233       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
       
   234 	predecessor->set(u,INVALID);
       
   235 	pred_node->set(u,INVALID);
       
   236       }
       
   237       
       
   238       typename GR::template NodeMap<int> heap_map(*G,-1);
       
   239       
       
   240       typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
       
   241       std::less<ValueType> > 
       
   242       HeapType;
       
   243       
       
   244       HeapType heap(heap_map);
       
   245       
       
   246       heap.push(s,0); 
       
   247       
       
   248       while ( !heap.empty() ) {
       
   249 	
       
   250 	Node v=heap.top(); 
       
   251 	ValueType oldvalue=heap[v];
       
   252 	heap.pop();
       
   253 	distance->set(v, oldvalue);
       
   254 	
       
   255 	
       
   256 	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
       
   257 	  Node w=G->head(e); 
       
   258 	  switch(heap.state(w)) {
       
   259 	  case HeapType::PRE_HEAP:
       
   260 	    heap.push(w,oldvalue+(*length)[e]); 
       
   261 	    predecessor->set(w,e);
       
   262 	    pred_node->set(w,v);
       
   263 	    break;
       
   264 	  case HeapType::IN_HEAP:
       
   265 	    if ( oldvalue+(*length)[e] < heap[w] ) {
       
   266 	      heap.decrease(w, oldvalue+(*length)[e]); 
       
   267 	      predecessor->set(w,e);
       
   268 	      pred_node->set(w,v);
       
   269 	    }
       
   270 	    break;
       
   271 	  case HeapType::POST_HEAP:
       
   272 	    break;
       
   273 	  }
       
   274 	}
       
   275       }
       
   276     }
       
   277     
       
   278     ///The distance of a node from the root.
       
   279 
       
   280     ///Returns the distance of a node from the root.
       
   281     ///\pre \ref run() must be called before using this function.
       
   282     ///\warning If node \c v in unreachable from the root the return value
       
   283     ///of this funcion is undefined.
       
   284     ValueType dist(Node v) const { return (*distance)[v]; }
       
   285 
       
   286     ///Returns the 'previous edge' of the shortest path tree.
       
   287 
       
   288     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
       
   289     ///i.e. it returns the last edge of a shortest path from the root to \c
       
   290     ///v. It is \ref INVALID
       
   291     ///if \c v is unreachable from the root or if \c v=s. The
       
   292     ///shortest path tree used here is equal to the shortest path tree used in
       
   293     ///\ref predNode(Node v).  \pre \ref run() must be called before using
       
   294     ///this function.
       
   295     ///\todo predEdge could be a better name.
       
   296     Edge pred(Node v) const { return (*predecessor)[v]; }
       
   297 
       
   298     ///Returns the 'previous node' of the shortest path tree.
       
   299 
       
   300     ///For a node \c v it returns the 'previous node' of the shortest path tree,
       
   301     ///i.e. it returns the last but one node from a shortest path from the
       
   302     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
       
   303     ///\c v=s. The shortest path tree used here is equal to the shortest path
       
   304     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
       
   305     ///using this function.
       
   306     Node predNode(Node v) const { return (*pred_node)[v]; }
       
   307     
       
   308     ///Returns a reference to the NodeMap of distances.
       
   309 
       
   310     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
       
   311     ///be called before using this function.
       
   312     const DistMap &distMap() const { return *distance;}
       
   313  
       
   314     ///Returns a reference to the shortest path tree map.
       
   315 
       
   316     ///Returns a reference to the NodeMap of the edges of the
       
   317     ///shortest path tree.
       
   318     ///\pre \ref run() must be called before using this function.
       
   319     const PredMap &predMap() const { return *predecessor;}
       
   320  
       
   321     ///Returns a reference to the map of nodes of shortest paths.
       
   322 
       
   323     ///Returns a reference to the NodeMap of the last but one nodes of the
       
   324     ///shortest path tree.
       
   325     ///\pre \ref run() must be called before using this function.
       
   326     const PredNodeMap &predNodeMap() const { return *pred_node;}
       
   327 
       
   328     ///Checks if a node is reachable from the root.
       
   329 
       
   330     ///Returns \c true if \c v is reachable from the root.
       
   331     ///\note The root node is reported to be reached!
       
   332     ///\pre \ref run() must be called before using this function.
       
   333     ///
       
   334     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
       
   335     
       
   336   };
       
   337   
       
   338 /// @}
       
   339   
       
   340 } //END OF NAMESPACE HUGO
       
   341 
       
   342 #endif
       
   343 
       
   344