src/hugo/preflow.h
changeset 921 818510fa3d99
parent 911 89a4fbb99cad
equal deleted inserted replaced
6:d4819f3d37d2 -1:000000000000
     1 /* -*- C++ -*-
       
     2  * src/hugo/preflow.h - Part of HUGOlib, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 
       
    17 #ifndef HUGO_PREFLOW_H
       
    18 #define HUGO_PREFLOW_H
       
    19 
       
    20 #include <vector>
       
    21 #include <queue>
       
    22 
       
    23 #include <hugo/invalid.h>
       
    24 #include <hugo/maps.h>
       
    25 
       
    26 /// \file
       
    27 /// \ingroup flowalgs
       
    28 /// Implementation of the preflow algorithm.
       
    29 
       
    30 namespace hugo {
       
    31 
       
    32   /// \addtogroup flowalgs
       
    33   /// @{                                                   
       
    34 
       
    35   ///%Preflow algorithms class.
       
    36 
       
    37   ///This class provides an implementation of the \e preflow \e
       
    38   ///algorithm producing a flow of maximum value in a directed
       
    39   ///graph. The preflow algorithms are the fastest max flow algorithms
       
    40   ///up to now. The \e source node, the \e target node, the \e
       
    41   ///capacity of the edges and the \e starting \e flow value of the
       
    42   ///edges should be passed to the algorithm through the
       
    43   ///constructor. It is possible to change these quantities using the
       
    44   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
       
    45   ///setFlow.
       
    46   ///
       
    47   ///After running \ref hugo::Preflow::phase1() "phase1()"
       
    48   ///or \ref hugo::Preflow::run() "run()", the maximal flow
       
    49   ///value can be obtained by calling \ref flowValue(). The minimum
       
    50   ///value cut can be written into a <tt>bool</tt> node map by
       
    51   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
       
    52   ///the inclusionwise minimum and maximum of the minimum value cuts,
       
    53   ///resp.)
       
    54   ///
       
    55   ///\param Graph The directed graph type the algorithm runs on.
       
    56   ///\param Num The number type of the capacities and the flow values.
       
    57   ///\param CapMap The capacity map type.
       
    58   ///\param FlowMap The flow map type.
       
    59   ///
       
    60   ///\author Jacint Szabo 
       
    61   template <typename Graph, typename Num,
       
    62 	    typename CapMap=typename Graph::template EdgeMap<Num>,
       
    63             typename FlowMap=typename Graph::template EdgeMap<Num> >
       
    64   class Preflow {
       
    65   protected:
       
    66     typedef typename Graph::Node Node;
       
    67     typedef typename Graph::NodeIt NodeIt;
       
    68     typedef typename Graph::EdgeIt EdgeIt;
       
    69     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    70     typedef typename Graph::InEdgeIt InEdgeIt;
       
    71 
       
    72     typedef typename Graph::template NodeMap<Node> NNMap;
       
    73     typedef typename std::vector<Node> VecNode;
       
    74 
       
    75     const Graph* g;
       
    76     Node s;
       
    77     Node t;
       
    78     const CapMap* capacity;
       
    79     FlowMap* flow;
       
    80     int n;      //the number of nodes of G
       
    81     
       
    82     typename Graph::template NodeMap<int> level;  
       
    83     typename Graph::template NodeMap<Num> excess;
       
    84 
       
    85     // constants used for heuristics
       
    86     static const int H0=20;
       
    87     static const int H1=1;
       
    88 
       
    89     public:
       
    90 
       
    91     ///Indicates the property of the starting flow map.
       
    92 
       
    93     ///Indicates the property of the starting flow map. The meanings are as follows:
       
    94     ///- \c ZERO_FLOW: constant zero flow
       
    95     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
       
    96     ///the sum of the out-flows in every node except the \e source and
       
    97     ///the \e target.
       
    98     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
       
    99     ///least the sum of the out-flows in every node except the \e source.
       
   100     ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be 
       
   101     ///set to the constant zero flow in the beginning of
       
   102     ///the algorithm in this case.
       
   103     ///
       
   104     enum FlowEnum{
       
   105       NO_FLOW,
       
   106       ZERO_FLOW,
       
   107       GEN_FLOW,
       
   108       PRE_FLOW
       
   109     };
       
   110 
       
   111     ///Indicates the state of the preflow algorithm.
       
   112 
       
   113     ///Indicates the state of the preflow algorithm. The meanings are as follows:
       
   114     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
       
   115     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
       
   116     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
       
   117     ///
       
   118     enum StatusEnum {
       
   119       AFTER_NOTHING,
       
   120       AFTER_PREFLOW_PHASE_1,      
       
   121       AFTER_PREFLOW_PHASE_2
       
   122     };
       
   123     
       
   124     protected: 
       
   125       FlowEnum flow_prop;
       
   126     StatusEnum status; // Do not needle this flag only if necessary.
       
   127     
       
   128   public: 
       
   129     ///The constructor of the class.
       
   130 
       
   131     ///The constructor of the class. 
       
   132     ///\param _G The directed graph the algorithm runs on. 
       
   133     ///\param _s The source node.
       
   134     ///\param _t The target node.
       
   135     ///\param _capacity The capacity of the edges. 
       
   136     ///\param _flow The flow of the edges. 
       
   137     ///Except the graph, all of these parameters can be reset by
       
   138     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
       
   139     ///setFlow, resp.
       
   140       Preflow(const Graph& _G, Node _s, Node _t, 
       
   141 	      const CapMap& _capacity, FlowMap& _flow) :
       
   142 	g(&_G), s(_s), t(_t), capacity(&_capacity),
       
   143 	flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
       
   144 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
       
   145 
       
   146 
       
   147                                                                               
       
   148     ///Runs the preflow algorithm.  
       
   149 
       
   150     ///Runs the preflow algorithm.
       
   151     ///
       
   152     void run() {
       
   153       phase1(flow_prop);
       
   154       phase2();
       
   155     }
       
   156     
       
   157     ///Runs the preflow algorithm.  
       
   158     
       
   159     ///Runs the preflow algorithm. 
       
   160     ///\pre The starting flow map must be
       
   161     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
       
   162     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
       
   163     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
       
   164     /// - any map if \c fp is NO_FLOW.
       
   165     ///If the starting flow map is a flow or a preflow then 
       
   166     ///the algorithm terminates faster.
       
   167     void run(FlowEnum fp) {
       
   168       flow_prop=fp;
       
   169       run();
       
   170     }
       
   171       
       
   172     ///Runs the first phase of the preflow algorithm.
       
   173 
       
   174     ///The preflow algorithm consists of two phases, this method runs
       
   175     ///the first phase. After the first phase the maximum flow value
       
   176     ///and a minimum value cut can already be computed, though a
       
   177     ///maximum flow is not yet obtained. So after calling this method
       
   178     ///\ref flowValue returns the value of a maximum flow and \ref
       
   179     ///minCut returns a minimum cut.     
       
   180     ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
       
   181     ///value cuts unless calling \ref phase2.  
       
   182     ///\pre The starting flow must be 
       
   183     ///- a constant zero flow if \c fp is \c ZERO_FLOW, 
       
   184     ///- an arbitary flow if \c fp is \c GEN_FLOW, 
       
   185     ///- an arbitary preflow if \c fp is \c PRE_FLOW, 
       
   186     ///- any map if \c fp is NO_FLOW.
       
   187     void phase1(FlowEnum fp)
       
   188     {
       
   189       flow_prop=fp;
       
   190       phase1();
       
   191     }
       
   192 
       
   193     
       
   194     ///Runs the first phase of the preflow algorithm.
       
   195 
       
   196     ///The preflow algorithm consists of two phases, this method runs
       
   197     ///the first phase. After the first phase the maximum flow value
       
   198     ///and a minimum value cut can already be computed, though a
       
   199     ///maximum flow is not yet obtained. So after calling this method
       
   200     ///\ref flowValue returns the value of a maximum flow and \ref
       
   201     ///minCut returns a minimum cut.
       
   202     ///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not
       
   203     ///give minimum value cuts unless calling \ref phase2().
       
   204     void phase1()
       
   205     {
       
   206       int heur0=(int)(H0*n);  //time while running 'bound decrease'
       
   207       int heur1=(int)(H1*n);  //time while running 'highest label'
       
   208       int heur=heur1;         //starting time interval (#of relabels)
       
   209       int numrelabel=0;
       
   210 
       
   211       bool what_heur=1;
       
   212       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
       
   213 
       
   214       bool end=false;
       
   215       //Needed for 'bound decrease', true means no active 
       
   216       //nodes are above bound b.
       
   217 
       
   218       int k=n-2;  //bound on the highest level under n containing a node
       
   219       int b=k;    //bound on the highest level under n of an active node
       
   220 
       
   221       VecNode first(n, INVALID);
       
   222       NNMap next(*g, INVALID);
       
   223 
       
   224       NNMap left(*g, INVALID);
       
   225       NNMap right(*g, INVALID);
       
   226       VecNode level_list(n,INVALID);
       
   227       //List of the nodes in level i<n, set to n.
       
   228 
       
   229       preflowPreproc(first, next, level_list, left, right);
       
   230 
       
   231       //Push/relabel on the highest level active nodes.
       
   232       while ( true ) {
       
   233 	if ( b == 0 ) {
       
   234 	  if ( !what_heur && !end && k > 0 ) {
       
   235 	    b=k;
       
   236 	    end=true;
       
   237 	  } else break;
       
   238 	}
       
   239 
       
   240 	if ( first[b]==INVALID ) --b;
       
   241 	else {
       
   242 	  end=false;
       
   243 	  Node w=first[b];
       
   244 	  first[b]=next[w];
       
   245 	  int newlevel=push(w, next, first);
       
   246 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
       
   247 				       left, right, b, k, what_heur);
       
   248 
       
   249 	  ++numrelabel;
       
   250 	  if ( numrelabel >= heur ) {
       
   251 	    numrelabel=0;
       
   252 	    if ( what_heur ) {
       
   253 	      what_heur=0;
       
   254 	      heur=heur0;
       
   255 	      end=false;
       
   256 	    } else {
       
   257 	      what_heur=1;
       
   258 	      heur=heur1;
       
   259 	      b=k;
       
   260 	    }
       
   261 	  }
       
   262 	}
       
   263       }
       
   264       flow_prop=PRE_FLOW;
       
   265       status=AFTER_PREFLOW_PHASE_1;
       
   266     }
       
   267     // Heuristics:
       
   268     //   2 phase
       
   269     //   gap
       
   270     //   list 'level_list' on the nodes on level i implemented by hand
       
   271     //   stack 'active' on the active nodes on level i      
       
   272     //   runs heuristic 'highest label' for H1*n relabels
       
   273     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
   274     //   Parameters H0 and H1 are initialized to 20 and 1.
       
   275 
       
   276 
       
   277     ///Runs the second phase of the preflow algorithm.
       
   278 
       
   279     ///The preflow algorithm consists of two phases, this method runs
       
   280     ///the second phase. After calling \ref phase1 and then \ref
       
   281     ///phase2, \ref flow contains a maximum flow, \ref flowValue
       
   282     ///returns the value of a maximum flow, \ref minCut returns a
       
   283     ///minimum cut, while the methods \ref minMinCut and \ref
       
   284     ///maxMinCut return the inclusionwise minimum and maximum cuts of
       
   285     ///minimum value, resp.  \pre \ref phase1 must be called before.
       
   286     void phase2()
       
   287     {
       
   288 
       
   289       int k=n-2;  //bound on the highest level under n containing a node
       
   290       int b=k;    //bound on the highest level under n of an active node
       
   291 
       
   292     
       
   293       VecNode first(n, INVALID);
       
   294       NNMap next(*g, INVALID); 
       
   295       level.set(s,0);
       
   296       std::queue<Node> bfs_queue;
       
   297       bfs_queue.push(s);
       
   298 
       
   299       while ( !bfs_queue.empty() ) {
       
   300 
       
   301 	Node v=bfs_queue.front();
       
   302 	bfs_queue.pop();
       
   303 	int l=level[v]+1;
       
   304 
       
   305 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
       
   306 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   307 	  Node u=g->tail(e);
       
   308 	  if ( level[u] >= n ) {
       
   309 	    bfs_queue.push(u);
       
   310 	    level.set(u, l);
       
   311 	    if ( excess[u] > 0 ) {
       
   312 	      next.set(u,first[l]);
       
   313 	      first[l]=u;
       
   314 	    }
       
   315 	  }
       
   316 	}
       
   317 
       
   318 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
       
   319 	  if ( 0 >= (*flow)[e] ) continue;
       
   320 	  Node u=g->head(e);
       
   321 	  if ( level[u] >= n ) {
       
   322 	    bfs_queue.push(u);
       
   323 	    level.set(u, l);
       
   324 	    if ( excess[u] > 0 ) {
       
   325 	      next.set(u,first[l]);
       
   326 	      first[l]=u;
       
   327 	    }
       
   328 	  }
       
   329 	}
       
   330       }
       
   331       b=n-2;
       
   332 
       
   333       while ( true ) {
       
   334 
       
   335 	if ( b == 0 ) break;
       
   336 	if ( first[b]==INVALID ) --b;
       
   337 	else {
       
   338 	  Node w=first[b];
       
   339 	  first[b]=next[w];
       
   340 	  int newlevel=push(w,next, first);
       
   341 	  
       
   342 	  //relabel
       
   343 	  if ( excess[w] > 0 ) {
       
   344 	    level.set(w,++newlevel);
       
   345 	    next.set(w,first[newlevel]);
       
   346 	    first[newlevel]=w;
       
   347 	    b=newlevel;
       
   348 	  }
       
   349 	} 
       
   350       } // while(true)
       
   351       flow_prop=GEN_FLOW;
       
   352       status=AFTER_PREFLOW_PHASE_2;
       
   353     }
       
   354 
       
   355     /// Returns the value of the maximum flow.
       
   356 
       
   357     /// Returns the value of the maximum flow by returning the excess
       
   358     /// of the target node \c t. This value equals to the value of
       
   359     /// the maximum flow already after running \ref phase1.
       
   360     Num flowValue() const {
       
   361       return excess[t];
       
   362     }
       
   363 
       
   364 
       
   365     ///Returns a minimum value cut.
       
   366 
       
   367     ///Sets \c M to the characteristic vector of a minimum value
       
   368     ///cut. This method can be called both after running \ref
       
   369     ///phase1 and \ref phase2. It is much faster after
       
   370     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
       
   371     ///If \ref minCut() is called after \ref phase2() then M should
       
   372     ///be initialized to false.
       
   373     template<typename _CutMap>
       
   374     void minCut(_CutMap& M) const {
       
   375       switch ( status ) {
       
   376 	case AFTER_PREFLOW_PHASE_1:
       
   377 	for(NodeIt v(*g); v!=INVALID; ++v) {
       
   378 	  if (level[v] < n) {
       
   379 	    M.set(v, false);
       
   380 	  } else {
       
   381 	    M.set(v, true);
       
   382 	  }
       
   383 	}
       
   384 	break;
       
   385 	case AFTER_PREFLOW_PHASE_2:
       
   386 	minMinCut(M);
       
   387 	break;
       
   388 	case AFTER_NOTHING:
       
   389 	break;
       
   390       }
       
   391     }
       
   392 
       
   393     ///Returns the inclusionwise minimum of the minimum value cuts.
       
   394 
       
   395     ///Sets \c M to the characteristic vector of the minimum value cut
       
   396     ///which is inclusionwise minimum. It is computed by processing a
       
   397     ///bfs from the source node \c s in the residual graph.  \pre M
       
   398     ///should be a node map of bools initialized to false.  \pre \ref
       
   399     ///phase2 should already be run.
       
   400     template<typename _CutMap>
       
   401     void minMinCut(_CutMap& M) const {
       
   402 
       
   403       std::queue<Node> queue;
       
   404       M.set(s,true);
       
   405       queue.push(s);
       
   406       
       
   407       while (!queue.empty()) {
       
   408 	Node w=queue.front();
       
   409 	queue.pop();
       
   410 	
       
   411 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   412 	  Node v=g->head(e);
       
   413 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   414 	    queue.push(v);
       
   415 	    M.set(v, true);
       
   416 	  }
       
   417 	}
       
   418 	
       
   419 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   420 	  Node v=g->tail(e);
       
   421 	  if (!M[v] && (*flow)[e] > 0 ) {
       
   422 	    queue.push(v);
       
   423 	    M.set(v, true);
       
   424 	  }
       
   425 	}
       
   426       }
       
   427     }
       
   428     
       
   429     ///Returns the inclusionwise maximum of the minimum value cuts.
       
   430 
       
   431     ///Sets \c M to the characteristic vector of the minimum value cut
       
   432     ///which is inclusionwise maximum. It is computed by processing a
       
   433     ///backward bfs from the target node \c t in the residual graph.
       
   434     ///\pre \ref phase2() or run() should already be run.
       
   435     template<typename _CutMap>
       
   436     void maxMinCut(_CutMap& M) const {
       
   437 
       
   438       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
       
   439 
       
   440       std::queue<Node> queue;
       
   441 
       
   442       M.set(t,false);
       
   443       queue.push(t);
       
   444 
       
   445       while (!queue.empty()) {
       
   446         Node w=queue.front();
       
   447 	queue.pop();
       
   448 
       
   449 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   450 	  Node v=g->tail(e);
       
   451 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   452 	    queue.push(v);
       
   453 	    M.set(v, false);
       
   454 	  }
       
   455 	}
       
   456 
       
   457 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   458 	  Node v=g->head(e);
       
   459 	  if (M[v] && (*flow)[e] > 0 ) {
       
   460 	    queue.push(v);
       
   461 	    M.set(v, false);
       
   462 	  }
       
   463 	}
       
   464       }
       
   465     }
       
   466 
       
   467     ///Sets the source node to \c _s.
       
   468 
       
   469     ///Sets the source node to \c _s.
       
   470     /// 
       
   471     void setSource(Node _s) { 
       
   472       s=_s; 
       
   473       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
       
   474       status=AFTER_NOTHING; 
       
   475     }
       
   476 
       
   477     ///Sets the target node to \c _t.
       
   478 
       
   479     ///Sets the target node to \c _t.
       
   480     ///
       
   481     void setTarget(Node _t) { 
       
   482       t=_t; 
       
   483       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
       
   484       status=AFTER_NOTHING; 
       
   485     }
       
   486 
       
   487     /// Sets the edge map of the capacities to _cap.
       
   488 
       
   489     /// Sets the edge map of the capacities to _cap.
       
   490     /// 
       
   491     void setCap(const CapMap& _cap) { 
       
   492       capacity=&_cap; 
       
   493       status=AFTER_NOTHING; 
       
   494     }
       
   495 
       
   496     /// Sets the edge map of the flows to _flow.
       
   497 
       
   498     /// Sets the edge map of the flows to _flow.
       
   499     /// 
       
   500     void setFlow(FlowMap& _flow) { 
       
   501       flow=&_flow; 
       
   502       flow_prop=NO_FLOW;
       
   503       status=AFTER_NOTHING; 
       
   504     }
       
   505 
       
   506 
       
   507   private:
       
   508 
       
   509     int push(Node w, NNMap& next, VecNode& first) {
       
   510 
       
   511       int lev=level[w];
       
   512       Num exc=excess[w];
       
   513       int newlevel=n;       //bound on the next level of w
       
   514 
       
   515       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   516 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
       
   517 	Node v=g->head(e);
       
   518 
       
   519 	if( lev > level[v] ) { //Push is allowed now
       
   520 	  
       
   521 	  if ( excess[v]<=0 && v!=t && v!=s ) {
       
   522 	    next.set(v,first[level[v]]);
       
   523 	    first[level[v]]=v;
       
   524 	  }
       
   525 
       
   526 	  Num cap=(*capacity)[e];
       
   527 	  Num flo=(*flow)[e];
       
   528 	  Num remcap=cap-flo;
       
   529 	  
       
   530 	  if ( remcap >= exc ) { //A nonsaturating push.
       
   531 	    
       
   532 	    flow->set(e, flo+exc);
       
   533 	    excess.set(v, excess[v]+exc);
       
   534 	    exc=0;
       
   535 	    break;
       
   536 
       
   537 	  } else { //A saturating push.
       
   538 	    flow->set(e, cap);
       
   539 	    excess.set(v, excess[v]+remcap);
       
   540 	    exc-=remcap;
       
   541 	  }
       
   542 	} else if ( newlevel > level[v] ) newlevel = level[v];
       
   543       } //for out edges wv
       
   544 
       
   545       if ( exc > 0 ) {
       
   546 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   547 	  
       
   548 	  if( (*flow)[e] <= 0 ) continue;
       
   549 	  Node v=g->tail(e);
       
   550 
       
   551 	  if( lev > level[v] ) { //Push is allowed now
       
   552 
       
   553 	    if ( excess[v]<=0 && v!=t && v!=s ) {
       
   554 	      next.set(v,first[level[v]]);
       
   555 	      first[level[v]]=v;
       
   556 	    }
       
   557 
       
   558 	    Num flo=(*flow)[e];
       
   559 
       
   560 	    if ( flo >= exc ) { //A nonsaturating push.
       
   561 
       
   562 	      flow->set(e, flo-exc);
       
   563 	      excess.set(v, excess[v]+exc);
       
   564 	      exc=0;
       
   565 	      break;
       
   566 	    } else {  //A saturating push.
       
   567 
       
   568 	      excess.set(v, excess[v]+flo);
       
   569 	      exc-=flo;
       
   570 	      flow->set(e,0);
       
   571 	    }
       
   572 	  } else if ( newlevel > level[v] ) newlevel = level[v];
       
   573 	} //for in edges vw
       
   574 
       
   575       } // if w still has excess after the out edge for cycle
       
   576 
       
   577       excess.set(w, exc);
       
   578       
       
   579       return newlevel;
       
   580     }
       
   581     
       
   582     
       
   583     
       
   584     void preflowPreproc(VecNode& first, NNMap& next, 
       
   585 			VecNode& level_list, NNMap& left, NNMap& right)
       
   586     {
       
   587       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
       
   588       std::queue<Node> bfs_queue;
       
   589       
       
   590       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
       
   591 	//Reverse_bfs from t in the residual graph,
       
   592 	//to find the starting level.
       
   593 	level.set(t,0);
       
   594 	bfs_queue.push(t);
       
   595 	
       
   596 	while ( !bfs_queue.empty() ) {
       
   597 	  
       
   598 	  Node v=bfs_queue.front();
       
   599 	  bfs_queue.pop();
       
   600 	  int l=level[v]+1;
       
   601 	  
       
   602 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
       
   603 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   604 	    Node w=g->tail(e);
       
   605 	    if ( level[w] == n && w != s ) {
       
   606 	      bfs_queue.push(w);
       
   607 	      Node z=level_list[l];
       
   608 	      if ( z!=INVALID ) left.set(z,w);
       
   609 	      right.set(w,z);
       
   610 	      level_list[l]=w;
       
   611 	      level.set(w, l);
       
   612 	    }
       
   613 	  }
       
   614 	  
       
   615 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
       
   616 	    if ( 0 >= (*flow)[e] ) continue;
       
   617 	    Node w=g->head(e);
       
   618 	    if ( level[w] == n && w != s ) {
       
   619 	      bfs_queue.push(w);
       
   620 	      Node z=level_list[l];
       
   621 	      if ( z!=INVALID ) left.set(z,w);
       
   622 	      right.set(w,z);
       
   623 	      level_list[l]=w;
       
   624 	      level.set(w, l);
       
   625 	    }
       
   626 	  }
       
   627 	} //while
       
   628       } //if
       
   629 
       
   630 
       
   631       switch (flow_prop) {
       
   632 	case NO_FLOW:  
       
   633 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
       
   634 	case ZERO_FLOW:
       
   635 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
       
   636 	
       
   637 	//Reverse_bfs from t, to find the starting level.
       
   638 	level.set(t,0);
       
   639 	bfs_queue.push(t);
       
   640 	
       
   641 	while ( !bfs_queue.empty() ) {
       
   642 	  
       
   643 	  Node v=bfs_queue.front();
       
   644 	  bfs_queue.pop();
       
   645 	  int l=level[v]+1;
       
   646 	  
       
   647 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
       
   648 	    Node w=g->tail(e);
       
   649 	    if ( level[w] == n && w != s ) {
       
   650 	      bfs_queue.push(w);
       
   651 	      Node z=level_list[l];
       
   652 	      if ( z!=INVALID ) left.set(z,w);
       
   653 	      right.set(w,z);
       
   654 	      level_list[l]=w;
       
   655 	      level.set(w, l);
       
   656 	    }
       
   657 	  }
       
   658 	}
       
   659 	
       
   660 	//the starting flow
       
   661 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
       
   662 	  Num c=(*capacity)[e];
       
   663 	  if ( c <= 0 ) continue;
       
   664 	  Node w=g->head(e);
       
   665 	  if ( level[w] < n ) {
       
   666 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
       
   667 	      next.set(w,first[level[w]]);
       
   668 	      first[level[w]]=w;
       
   669 	    }
       
   670 	    flow->set(e, c);
       
   671 	    excess.set(w, excess[w]+c);
       
   672 	  }
       
   673 	}
       
   674 	break;
       
   675 
       
   676 	case GEN_FLOW:
       
   677 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
       
   678 	{
       
   679 	  Num exc=0;
       
   680 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
       
   681 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
       
   682 	  excess.set(t,exc);
       
   683 	}
       
   684 
       
   685 	//the starting flow
       
   686 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
       
   687 	  Num rem=(*capacity)[e]-(*flow)[e];
       
   688 	  if ( rem <= 0 ) continue;
       
   689 	  Node w=g->head(e);
       
   690 	  if ( level[w] < n ) {
       
   691 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
       
   692 	      next.set(w,first[level[w]]);
       
   693 	      first[level[w]]=w;
       
   694 	    }   
       
   695 	    flow->set(e, (*capacity)[e]);
       
   696 	    excess.set(w, excess[w]+rem);
       
   697 	  }
       
   698 	}
       
   699 	
       
   700 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
       
   701 	  if ( (*flow)[e] <= 0 ) continue;
       
   702 	  Node w=g->tail(e);
       
   703 	  if ( level[w] < n ) {
       
   704 	    if ( excess[w] <= 0 && w!=t ) {
       
   705 	      next.set(w,first[level[w]]);
       
   706 	      first[level[w]]=w;
       
   707 	    }  
       
   708 	    excess.set(w, excess[w]+(*flow)[e]);
       
   709 	    flow->set(e, 0);
       
   710 	  }
       
   711 	}
       
   712 	break;
       
   713 
       
   714 	case PRE_FLOW:	
       
   715 	//the starting flow
       
   716 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
       
   717 	  Num rem=(*capacity)[e]-(*flow)[e];
       
   718 	  if ( rem <= 0 ) continue;
       
   719 	  Node w=g->head(e);
       
   720 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
       
   721 	}
       
   722 	
       
   723 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
       
   724 	  if ( (*flow)[e] <= 0 ) continue;
       
   725 	  Node w=g->tail(e);
       
   726 	  if ( level[w] < n ) flow->set(e, 0);
       
   727 	}
       
   728 	
       
   729 	//computing the excess
       
   730 	for(NodeIt w(*g); w!=INVALID; ++w) {
       
   731 	  Num exc=0;
       
   732 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
       
   733 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
       
   734 	  excess.set(w,exc);
       
   735 	  
       
   736 	  //putting the active nodes into the stack
       
   737 	  int lev=level[w];
       
   738 	    if ( exc > 0 && lev < n && Node(w) != t ) {
       
   739 	      next.set(w,first[lev]);
       
   740 	      first[lev]=w;
       
   741 	    }
       
   742 	}
       
   743 	break;
       
   744       } //switch
       
   745     } //preflowPreproc
       
   746 
       
   747 
       
   748     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
       
   749 		 VecNode& level_list, NNMap& left,
       
   750 		 NNMap& right, int& b, int& k, bool what_heur )
       
   751     {
       
   752 
       
   753       int lev=level[w];
       
   754 
       
   755       Node right_n=right[w];
       
   756       Node left_n=left[w];
       
   757 
       
   758       //unlacing starts
       
   759       if ( right_n!=INVALID ) {
       
   760 	if ( left_n!=INVALID ) {
       
   761 	  right.set(left_n, right_n);
       
   762 	  left.set(right_n, left_n);
       
   763 	} else {
       
   764 	  level_list[lev]=right_n;
       
   765 	  left.set(right_n, INVALID);
       
   766 	}
       
   767       } else {
       
   768 	if ( left_n!=INVALID ) {
       
   769 	  right.set(left_n, INVALID);
       
   770 	} else {
       
   771 	  level_list[lev]=INVALID;
       
   772 	}
       
   773       }
       
   774       //unlacing ends
       
   775 
       
   776       if ( level_list[lev]==INVALID ) {
       
   777 
       
   778 	//gapping starts
       
   779 	for (int i=lev; i!=k ; ) {
       
   780 	  Node v=level_list[++i];
       
   781 	  while ( v!=INVALID ) {
       
   782 	    level.set(v,n);
       
   783 	    v=right[v];
       
   784 	  }
       
   785 	  level_list[i]=INVALID;
       
   786 	  if ( !what_heur ) first[i]=INVALID;
       
   787 	}
       
   788 
       
   789 	level.set(w,n);
       
   790 	b=lev-1;
       
   791 	k=b;
       
   792 	//gapping ends
       
   793 
       
   794       } else {
       
   795 
       
   796 	if ( newlevel == n ) level.set(w,n);
       
   797 	else {
       
   798 	  level.set(w,++newlevel);
       
   799 	  next.set(w,first[newlevel]);
       
   800 	  first[newlevel]=w;
       
   801 	  if ( what_heur ) b=newlevel;
       
   802 	  if ( k < newlevel ) ++k;      //now k=newlevel
       
   803 	  Node z=level_list[newlevel];
       
   804 	  if ( z!=INVALID ) left.set(z,w);
       
   805 	  right.set(w,z);
       
   806 	  left.set(w,INVALID);
       
   807 	  level_list[newlevel]=w;
       
   808 	}
       
   809       }
       
   810     } //relabel
       
   811 
       
   812   }; 
       
   813 } //namespace hugo
       
   814 
       
   815 #endif //HUGO_PREFLOW_H
       
   816 
       
   817 
       
   818 
       
   819