src/work/jacint/max_flow_no_stack.h
changeset 726 835ebe1b3250
parent 714 104069336039
equal deleted inserted replaced
1:36f1ea451ba3 -1:000000000000
     1 // -*- C++ -*-
       
     2 #ifndef HUGO_MAX_FLOW_NO_STACK_H
       
     3 #define HUGO_MAX_FLOW_NO_STACK_H
       
     4 
       
     5 #include <vector>
       
     6 #include <queue>
       
     7 //#include <stack>
       
     8 
       
     9 #include <hugo/graph_wrapper.h>
       
    10 #include <bfs_dfs.h>
       
    11 #include <hugo/invalid.h>
       
    12 #include <hugo/maps.h>
       
    13 #include <hugo/for_each_macros.h>
       
    14 
       
    15 /// \file
       
    16 /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test.
       
    17 /// \ingroup galgs
       
    18 
       
    19 namespace hugo {
       
    20 
       
    21   /// \addtogroup galgs
       
    22   /// @{                                                                                                                                        
       
    23   ///Maximum flow algorithms class.
       
    24 
       
    25   ///This class provides various algorithms for finding a flow of
       
    26   ///maximum value in a directed graph. The \e source node, the \e
       
    27   ///target node, the \e capacity of the edges and the \e starting \e
       
    28   ///flow value of the edges should be passed to the algorithm through the
       
    29   ///constructor. It is possible to change these quantities using the
       
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
       
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
       
    32   ///the class \ref resetFlow should be called. 
       
    33 
       
    34   ///After running an algorithm of the class, the actual flow value 
       
    35   ///can be obtained by calling \ref flowValue(). The minimum
       
    36   ///value cut can be written into a \c node map of \c bools by
       
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
       
    38   ///the inclusionwise minimum and maximum of the minimum value
       
    39   ///cuts, resp.)                                                                                                                               
       
    40   ///\param Graph The directed graph type the algorithm runs on.
       
    41   ///\param Num The number type of the capacities and the flow values.
       
    42   ///\param CapMap The capacity map type.
       
    43   ///\param FlowMap The flow map type.                                                                                                           
       
    44   ///\author Marton Makai, Jacint Szabo 
       
    45   template <typename Graph, typename Num,
       
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
       
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
       
    48   class MaxFlowNoStack {
       
    49   protected:
       
    50     typedef typename Graph::Node Node;
       
    51     typedef typename Graph::NodeIt NodeIt;
       
    52     typedef typename Graph::EdgeIt EdgeIt;
       
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    54     typedef typename Graph::InEdgeIt InEdgeIt;
       
    55 
       
    56     //    typedef typename std::vector<std::stack<Node> > VecStack;
       
    57     typedef typename std::vector<Node> VecFirst;
       
    58     typedef typename Graph::template NodeMap<Node> NNMap;
       
    59     typedef typename std::vector<Node> VecNode;
       
    60 
       
    61     const Graph* g;
       
    62     Node s;
       
    63     Node t;
       
    64     const CapMap* capacity;
       
    65     FlowMap* flow;
       
    66     int n;      //the number of nodes of G
       
    67     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
       
    68     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
       
    69     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
       
    70     typedef typename ResGW::Edge ResGWEdge;
       
    71     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
       
    72     typedef typename Graph::template NodeMap<int> ReachedMap;
       
    73 
       
    74 
       
    75     //level works as a bool map in augmenting path algorithms and is
       
    76     //used by bfs for storing reached information.  In preflow, it
       
    77     //shows the levels of nodes.     
       
    78     ReachedMap level;
       
    79 
       
    80     //excess is needed only in preflow
       
    81     typename Graph::template NodeMap<Num> excess;
       
    82 
       
    83     //fixme    
       
    84 //   protected:
       
    85     //     MaxFlow() { }
       
    86     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
       
    87     // 	     FlowMap& _flow)
       
    88     //       {
       
    89     // 	g=&_G;
       
    90     // 	s=_s;
       
    91     // 	t=_t;
       
    92     // 	capacity=&_capacity;
       
    93     // 	flow=&_flow;
       
    94     // 	n=_G.nodeNum;
       
    95     // 	level.set (_G); //kellene vmi ilyesmi fv
       
    96     // 	excess(_G,0); //itt is
       
    97     //       }
       
    98 
       
    99     // constants used for heuristics
       
   100     static const int H0=20;
       
   101     static const int H1=1;
       
   102 
       
   103   public:
       
   104 
       
   105     ///Indicates the property of the starting flow.
       
   106 
       
   107     ///Indicates the property of the starting flow. The meanings are as follows:
       
   108     ///- \c ZERO_FLOW: constant zero flow
       
   109     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
       
   110     ///the sum of the out-flows in every node except the \e source and
       
   111     ///the \e target.
       
   112     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
       
   113     ///least the sum of the out-flows in every node except the \e source.
       
   114     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
       
   115     ///set to the constant zero flow in the beginning of the algorithm in this case.
       
   116     enum FlowEnum{
       
   117       ZERO_FLOW,
       
   118       GEN_FLOW,
       
   119       PRE_FLOW,
       
   120       NO_FLOW
       
   121     };
       
   122 
       
   123     enum StatusEnum {
       
   124       AFTER_NOTHING,
       
   125       AFTER_AUGMENTING,
       
   126       AFTER_FAST_AUGMENTING, 
       
   127       AFTER_PRE_FLOW_PHASE_1,      
       
   128       AFTER_PRE_FLOW_PHASE_2
       
   129     };
       
   130 
       
   131     /// Don not needle this flag only if necessary.
       
   132     StatusEnum status;
       
   133     int number_of_augmentations;
       
   134 
       
   135 
       
   136     template<typename IntMap>
       
   137     class TrickyReachedMap {
       
   138     protected:
       
   139       IntMap* map;
       
   140       int* number_of_augmentations;
       
   141     public:
       
   142       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
       
   143 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
       
   144       void set(const Node& n, bool b) {
       
   145 	if (b)
       
   146 	  map->set(n, *number_of_augmentations);
       
   147 	else 
       
   148 	  map->set(n, *number_of_augmentations-1);
       
   149       }
       
   150       bool operator[](const Node& n) const { 
       
   151 	return (*map)[n]==*number_of_augmentations; 
       
   152       }
       
   153     };
       
   154     
       
   155     ///Constructor
       
   156 
       
   157     ///\todo Document, please.
       
   158     ///
       
   159     MaxFlowNoStack(const Graph& _G, Node _s, Node _t,
       
   160 		   const CapMap& _capacity, FlowMap& _flow) :
       
   161       g(&_G), s(_s), t(_t), capacity(&_capacity),
       
   162       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
       
   163       status(AFTER_NOTHING), number_of_augmentations(0) { }
       
   164 
       
   165     ///Runs a maximum flow algorithm.
       
   166 
       
   167     ///Runs a preflow algorithm, which is the fastest maximum flow
       
   168     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
       
   169     ///\pre The starting flow must be
       
   170     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
       
   171     /// - an arbitary flow if \c fe is \c GEN_FLOW,
       
   172     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
       
   173     /// - any map if \c fe is NO_FLOW.
       
   174     void run(FlowEnum fe=ZERO_FLOW) {
       
   175       preflow(fe);
       
   176     }
       
   177 
       
   178                                                                               
       
   179     ///Runs a preflow algorithm.  
       
   180 
       
   181     ///Runs a preflow algorithm. The preflow algorithms provide the
       
   182     ///fastest way to compute a maximum flow in a directed graph.
       
   183     ///\pre The starting flow must be
       
   184     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
       
   185     /// - an arbitary flow if \c fe is \c GEN_FLOW,
       
   186     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
       
   187     /// - any map if \c fe is NO_FLOW.
       
   188     ///
       
   189     ///\todo NO_FLOW should be the default flow.
       
   190     void preflow(FlowEnum fe) {
       
   191       preflowPhase1(fe);
       
   192       preflowPhase2();
       
   193     }
       
   194     // Heuristics:
       
   195     //   2 phase
       
   196     //   gap
       
   197     //   list 'level_list' on the nodes on level i implemented by hand
       
   198     //   stack 'active' on the active nodes on level i                                                                                    
       
   199     //   runs heuristic 'highest label' for H1*n relabels
       
   200     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
   201     //   Parameters H0 and H1 are initialized to 20 and 1.
       
   202 
       
   203     ///Runs the first phase of the preflow algorithm.
       
   204 
       
   205     ///The preflow algorithm consists of two phases, this method runs the
       
   206     ///first phase. After the first phase the maximum flow value and a
       
   207     ///minimum value cut can already be computed, though a maximum flow
       
   208     ///is net yet obtained. So after calling this method \ref flowValue
       
   209     ///and \ref actMinCut gives proper results.
       
   210     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
       
   211     ///give minimum value cuts unless calling \ref preflowPhase2.
       
   212     ///\pre The starting flow must be
       
   213     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
       
   214     /// - an arbitary flow if \c fe is \c GEN_FLOW,
       
   215     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
       
   216     /// - any map if \c fe is NO_FLOW.
       
   217     void preflowPhase1(FlowEnum fe);
       
   218 
       
   219     ///Runs the second phase of the preflow algorithm.
       
   220 
       
   221     ///The preflow algorithm consists of two phases, this method runs
       
   222     ///the second phase. After calling \ref preflowPhase1 and then
       
   223     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
       
   224     ///\ref minMinCut and \ref maxMinCut give proper results.
       
   225     ///\pre \ref preflowPhase1 must be called before.
       
   226     void preflowPhase2();
       
   227 
       
   228     /// Starting from a flow, this method searches for an augmenting path
       
   229     /// according to the Edmonds-Karp algorithm
       
   230     /// and augments the flow on if any.
       
   231     /// The return value shows if the augmentation was succesful.
       
   232     bool augmentOnShortestPath();
       
   233     bool augmentOnShortestPath2();
       
   234 
       
   235     /// Starting from a flow, this method searches for an augmenting blocking
       
   236     /// flow according to Dinits' algorithm and augments the flow on if any.
       
   237     /// The blocking flow is computed in a physically constructed
       
   238     /// residual graph of type \c Mutablegraph.
       
   239     /// The return value show sif the augmentation was succesful.
       
   240     template<typename MutableGraph> bool augmentOnBlockingFlow();
       
   241 
       
   242     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
       
   243     /// residual graph is not constructed physically.
       
   244     /// The return value shows if the augmentation was succesful.
       
   245     bool augmentOnBlockingFlow2();
       
   246 
       
   247     /// Returns the maximum value of a flow.
       
   248 
       
   249     /// Returns the maximum value of a flow, by counting the 
       
   250     /// over-flow of the target node \ref t.
       
   251     /// It can be called already after running \ref preflowPhase1.
       
   252     Num flowValue() const {
       
   253       Num a=0;
       
   254       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
       
   255       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
       
   256       return a;
       
   257       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
       
   258     }
       
   259 
       
   260     ///Returns a minimum value cut after calling \ref preflowPhase1.
       
   261 
       
   262     ///After the first phase of the preflow algorithm the maximum flow
       
   263     ///value and a minimum value cut can already be computed. This
       
   264     ///method can be called after running \ref preflowPhase1 for
       
   265     ///obtaining a minimum value cut.
       
   266     /// \warning Gives proper result only right after calling \ref
       
   267     /// preflowPhase1.
       
   268     /// \todo We have to make some status variable which shows the
       
   269     /// actual state
       
   270     /// of the class. This enables us to determine which methods are valid
       
   271     /// for MinCut computation
       
   272     template<typename _CutMap>
       
   273     void actMinCut(_CutMap& M) const {
       
   274       NodeIt v;
       
   275       switch (status) {
       
   276       case AFTER_PRE_FLOW_PHASE_1:
       
   277 	for(g->first(v); g->valid(v); g->next(v)) {
       
   278 	  if (level[v] < n) {
       
   279 	    M.set(v, false);
       
   280 	  } else {
       
   281 	    M.set(v, true);
       
   282 	  }
       
   283 	}
       
   284 	break;
       
   285       case AFTER_PRE_FLOW_PHASE_2:
       
   286       case AFTER_NOTHING:
       
   287 	minMinCut(M);
       
   288 	break;
       
   289       case AFTER_AUGMENTING:
       
   290 	for(g->first(v); g->valid(v); g->next(v)) {
       
   291 	  if (level[v]) {
       
   292 	    M.set(v, true);
       
   293 	  } else {
       
   294 	    M.set(v, false);
       
   295 	  }
       
   296 	}
       
   297 	break;
       
   298       case AFTER_FAST_AUGMENTING:
       
   299 	for(g->first(v); g->valid(v); g->next(v)) {
       
   300 	  if (level[v]==number_of_augmentations) {
       
   301 	    M.set(v, true);
       
   302 	  } else {
       
   303 	    M.set(v, false);
       
   304 	  }
       
   305 	}
       
   306 	break;
       
   307       }
       
   308     }
       
   309 
       
   310     ///Returns the inclusionwise minimum of the minimum value cuts.
       
   311 
       
   312     ///Sets \c M to the characteristic vector of the minimum value cut
       
   313     ///which is inclusionwise minimum. It is computed by processing
       
   314     ///a bfs from the source node \c s in the residual graph.
       
   315     ///\pre M should be a node map of bools initialized to false.
       
   316     ///\pre \c flow must be a maximum flow.
       
   317     template<typename _CutMap>
       
   318     void minMinCut(_CutMap& M) const {
       
   319       std::queue<Node> queue;
       
   320 
       
   321       M.set(s,true);
       
   322       queue.push(s);
       
   323 
       
   324       while (!queue.empty()) {
       
   325         Node w=queue.front();
       
   326 	queue.pop();
       
   327 
       
   328 	OutEdgeIt e;
       
   329 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
       
   330 	  Node v=g->head(e);
       
   331 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   332 	    queue.push(v);
       
   333 	    M.set(v, true);
       
   334 	  }
       
   335 	}
       
   336 
       
   337 	InEdgeIt f;
       
   338 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
       
   339 	  Node v=g->tail(f);
       
   340 	  if (!M[v] && (*flow)[f] > 0 ) {
       
   341 	    queue.push(v);
       
   342 	    M.set(v, true);
       
   343 	  }
       
   344 	}
       
   345       }
       
   346     }
       
   347 
       
   348     ///Returns the inclusionwise maximum of the minimum value cuts.
       
   349 
       
   350     ///Sets \c M to the characteristic vector of the minimum value cut
       
   351     ///which is inclusionwise maximum. It is computed by processing a
       
   352     ///backward bfs from the target node \c t in the residual graph.
       
   353     ///\pre M should be a node map of bools initialized to false.
       
   354     ///\pre \c flow must be a maximum flow. 
       
   355     template<typename _CutMap>
       
   356     void maxMinCut(_CutMap& M) const {
       
   357 
       
   358       NodeIt v;
       
   359       for(g->first(v) ; g->valid(v); g->next(v)) {
       
   360 	M.set(v, true);
       
   361       }
       
   362 
       
   363       std::queue<Node> queue;
       
   364 
       
   365       M.set(t,false);
       
   366       queue.push(t);
       
   367 
       
   368       while (!queue.empty()) {
       
   369         Node w=queue.front();
       
   370 	queue.pop();
       
   371 
       
   372 	InEdgeIt e;
       
   373 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
       
   374 	  Node v=g->tail(e);
       
   375 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   376 	    queue.push(v);
       
   377 	    M.set(v, false);
       
   378 	  }
       
   379 	}
       
   380 
       
   381 	OutEdgeIt f;
       
   382 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
       
   383 	  Node v=g->head(f);
       
   384 	  if (M[v] && (*flow)[f] > 0 ) {
       
   385 	    queue.push(v);
       
   386 	    M.set(v, false);
       
   387 	  }
       
   388 	}
       
   389       }
       
   390     }
       
   391 
       
   392     ///Returns a minimum value cut.
       
   393 
       
   394     ///Sets \c M to the characteristic vector of a minimum value cut.
       
   395     ///\pre M should be a node map of bools initialized to false.
       
   396     ///\pre \c flow must be a maximum flow.    
       
   397     template<typename CutMap>
       
   398     void minCut(CutMap& M) const { minMinCut(M); }
       
   399 
       
   400     ///Resets the source node to \c _s.
       
   401 
       
   402     ///Resets the source node to \c _s.
       
   403     /// 
       
   404     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
       
   405 
       
   406     ///Resets the target node to \c _t.
       
   407 
       
   408     ///Resets the target node to \c _t.
       
   409     ///
       
   410     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
       
   411 
       
   412     /// Resets the edge map of the capacities to _cap.
       
   413 
       
   414     /// Resets the edge map of the capacities to _cap.
       
   415     /// 
       
   416     void resetCap(const CapMap& _cap)
       
   417     { capacity=&_cap; status=AFTER_NOTHING; }
       
   418 
       
   419     /// Resets the edge map of the flows to _flow.
       
   420 
       
   421     /// Resets the edge map of the flows to _flow.
       
   422     /// 
       
   423     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
       
   424 
       
   425 
       
   426   private:
       
   427 
       
   428     int push(Node w, NNMap& next, VecFirst& first) {
       
   429 
       
   430       int lev=level[w];
       
   431       Num exc=excess[w];
       
   432       int newlevel=n;       //bound on the next level of w
       
   433 
       
   434       OutEdgeIt e;
       
   435       for(g->first(e,w); g->valid(e); g->next(e)) {
       
   436 
       
   437 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
       
   438 	Node v=g->head(e);
       
   439 
       
   440 	if( lev > level[v] ) { //Push is allowed now
       
   441 
       
   442 	  if ( excess[v]<=0 && v!=t && v!=s ) {
       
   443 	    next.set(v,first[level[v]]);
       
   444 	    first[level[v]]=v;
       
   445 	    //	    int lev_v=level[v];
       
   446 	    //active[lev_v].push(v);
       
   447 	  }
       
   448 
       
   449 	  Num cap=(*capacity)[e];
       
   450 	  Num flo=(*flow)[e];
       
   451 	  Num remcap=cap-flo;
       
   452 
       
   453 	  if ( remcap >= exc ) { //A nonsaturating push.
       
   454 
       
   455 	    flow->set(e, flo+exc);
       
   456 	    excess.set(v, excess[v]+exc);
       
   457 	    exc=0;
       
   458 	    break;
       
   459 
       
   460 	  } else { //A saturating push.
       
   461 	    flow->set(e, cap);
       
   462 	    excess.set(v, excess[v]+remcap);
       
   463 	    exc-=remcap;
       
   464 	  }
       
   465 	} else if ( newlevel > level[v] ) newlevel = level[v];
       
   466       } //for out edges wv
       
   467 
       
   468       if ( exc > 0 ) {
       
   469 	InEdgeIt e;
       
   470 	for(g->first(e,w); g->valid(e); g->next(e)) {
       
   471 
       
   472 	  if( (*flow)[e] <= 0 ) continue;
       
   473 	  Node v=g->tail(e);
       
   474 
       
   475 	  if( lev > level[v] ) { //Push is allowed now
       
   476 
       
   477 	    if ( excess[v]<=0 && v!=t && v!=s ) {
       
   478 	      next.set(v,first[level[v]]);
       
   479 	      first[level[v]]=v;
       
   480 	      //int lev_v=level[v];
       
   481 	      //active[lev_v].push(v);
       
   482 	    }
       
   483 
       
   484 	    Num flo=(*flow)[e];
       
   485 
       
   486 	    if ( flo >= exc ) { //A nonsaturating push.
       
   487 
       
   488 	      flow->set(e, flo-exc);
       
   489 	      excess.set(v, excess[v]+exc);
       
   490 	      exc=0;
       
   491 	      break;
       
   492 	    } else {  //A saturating push.
       
   493 
       
   494 	      excess.set(v, excess[v]+flo);
       
   495 	      exc-=flo;
       
   496 	      flow->set(e,0);
       
   497 	    }
       
   498 	  } else if ( newlevel > level[v] ) newlevel = level[v];
       
   499 	} //for in edges vw
       
   500 
       
   501       } // if w still has excess after the out edge for cycle
       
   502 
       
   503       excess.set(w, exc);
       
   504 
       
   505       return newlevel;
       
   506     }
       
   507 
       
   508 
       
   509     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
       
   510 			VecNode& level_list, NNMap& left, NNMap& right)
       
   511     {
       
   512       std::queue<Node> bfs_queue;
       
   513 
       
   514       switch (fe) {
       
   515       case NO_FLOW:   //flow is already set to const zero in this case
       
   516       case ZERO_FLOW:
       
   517 	{
       
   518 	  //Reverse_bfs from t, to find the starting level.
       
   519 	  level.set(t,0);
       
   520 	  bfs_queue.push(t);
       
   521 
       
   522 	  while (!bfs_queue.empty()) {
       
   523 
       
   524 	    Node v=bfs_queue.front();
       
   525 	    bfs_queue.pop();
       
   526 	    int l=level[v]+1;
       
   527 
       
   528 	    InEdgeIt e;
       
   529 	    for(g->first(e,v); g->valid(e); g->next(e)) {
       
   530 	      Node w=g->tail(e);
       
   531 	      if ( level[w] == n && w != s ) {
       
   532 		bfs_queue.push(w);
       
   533 		Node z=level_list[l];
       
   534 		if ( g->valid(z) ) left.set(z,w);
       
   535 		right.set(w,z);
       
   536 		level_list[l]=w;
       
   537 		level.set(w, l);
       
   538 	      }
       
   539 	    }
       
   540 	  }
       
   541 
       
   542 	  //the starting flow
       
   543 	  OutEdgeIt e;
       
   544 	  for(g->first(e,s); g->valid(e); g->next(e))
       
   545 	    {
       
   546 	      Num c=(*capacity)[e];
       
   547 	      if ( c <= 0 ) continue;
       
   548 	      Node w=g->head(e);
       
   549 	      if ( level[w] < n ) {
       
   550 		if ( excess[w] <= 0 && w!=t ) 
       
   551 		  {
       
   552 		    next.set(w,first[level[w]]);
       
   553 		    first[level[w]]=w;
       
   554 		    //active[level[w]].push(w);
       
   555 		  }
       
   556 		flow->set(e, c);
       
   557 		excess.set(w, excess[w]+c);
       
   558 	      }
       
   559 	    }
       
   560 	  break;
       
   561 	}
       
   562 
       
   563       case GEN_FLOW:
       
   564       case PRE_FLOW:
       
   565 	{
       
   566 	  //Reverse_bfs from t in the residual graph,
       
   567 	  //to find the starting level.
       
   568 	  level.set(t,0);
       
   569 	  bfs_queue.push(t);
       
   570 
       
   571 	  while (!bfs_queue.empty()) {
       
   572 
       
   573 	    Node v=bfs_queue.front();
       
   574 	    bfs_queue.pop();
       
   575 	    int l=level[v]+1;
       
   576 
       
   577 	    InEdgeIt e;
       
   578 	    for(g->first(e,v); g->valid(e); g->next(e)) {
       
   579 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   580 	      Node w=g->tail(e);
       
   581 	      if ( level[w] == n && w != s ) {
       
   582 		bfs_queue.push(w);
       
   583 		Node z=level_list[l];
       
   584 		if ( g->valid(z) ) left.set(z,w);
       
   585 		right.set(w,z);
       
   586 		level_list[l]=w;
       
   587 		level.set(w, l);
       
   588 	      }
       
   589 	    }
       
   590 
       
   591 	    OutEdgeIt f;
       
   592 	    for(g->first(f,v); g->valid(f); g->next(f)) {
       
   593 	      if ( 0 >= (*flow)[f] ) continue;
       
   594 	      Node w=g->head(f);
       
   595 	      if ( level[w] == n && w != s ) {
       
   596 		bfs_queue.push(w);
       
   597 		Node z=level_list[l];
       
   598 		if ( g->valid(z) ) left.set(z,w);
       
   599 		right.set(w,z);
       
   600 		level_list[l]=w;
       
   601 		level.set(w, l);
       
   602 	      }
       
   603 	    }
       
   604 	  }
       
   605 
       
   606 
       
   607 	  //the starting flow
       
   608 	  OutEdgeIt e;
       
   609 	  for(g->first(e,s); g->valid(e); g->next(e))
       
   610 	    {
       
   611 	      Num rem=(*capacity)[e]-(*flow)[e];
       
   612 	      if ( rem <= 0 ) continue;
       
   613 	      Node w=g->head(e);
       
   614 	      if ( level[w] < n ) {
       
   615 		if ( excess[w] <= 0 && w!=t )
       
   616 		  {
       
   617 		    next.set(w,first[level[w]]);
       
   618 		    first[level[w]]=w;
       
   619 		    //active[level[w]].push(w);
       
   620 		  }   
       
   621 		flow->set(e, (*capacity)[e]);
       
   622 		excess.set(w, excess[w]+rem);
       
   623 	      }
       
   624 	    }
       
   625 
       
   626 	  InEdgeIt f;
       
   627 	  for(g->first(f,s); g->valid(f); g->next(f))
       
   628 	    {
       
   629 	      if ( (*flow)[f] <= 0 ) continue;
       
   630 	      Node w=g->tail(f);
       
   631 	      if ( level[w] < n ) {
       
   632 		if ( excess[w] <= 0 && w!=t )
       
   633 		  {
       
   634 		    next.set(w,first[level[w]]);
       
   635 		    first[level[w]]=w;
       
   636 		    //active[level[w]].push(w);
       
   637 		  }   
       
   638 		excess.set(w, excess[w]+(*flow)[f]);
       
   639 		flow->set(f, 0);
       
   640 	      }
       
   641 	    }
       
   642 	  break;
       
   643 	} //case PRE_FLOW
       
   644       }
       
   645     } //preflowPreproc
       
   646 
       
   647 
       
   648 
       
   649     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
       
   650 		 VecNode& level_list, NNMap& left,
       
   651 		 NNMap& right, int& b, int& k, bool what_heur )
       
   652     {
       
   653 
       
   654       Num lev=level[w];
       
   655 
       
   656       Node right_n=right[w];
       
   657       Node left_n=left[w];
       
   658 
       
   659       //unlacing starts
       
   660       if ( g->valid(right_n) ) {
       
   661 	if ( g->valid(left_n) ) {
       
   662 	  right.set(left_n, right_n);
       
   663 	  left.set(right_n, left_n);
       
   664 	} else {
       
   665 	  level_list[lev]=right_n;
       
   666 	  left.set(right_n, INVALID);
       
   667 	}
       
   668       } else {
       
   669 	if ( g->valid(left_n) ) {
       
   670 	  right.set(left_n, INVALID);
       
   671 	} else {
       
   672 	  level_list[lev]=INVALID;
       
   673 	}
       
   674       }
       
   675       //unlacing ends
       
   676 
       
   677       if ( !g->valid(level_list[lev]) ) {
       
   678 
       
   679 	//gapping starts
       
   680 	for (int i=lev; i!=k ; ) {
       
   681 	  Node v=level_list[++i];
       
   682 	  while ( g->valid(v) ) {
       
   683 	    level.set(v,n);
       
   684 	    v=right[v];
       
   685 	  }
       
   686 	  level_list[i]=INVALID;
       
   687 	  if ( !what_heur ) first[i]=INVALID;
       
   688 	  /*{
       
   689 	    while ( !active[i].empty() ) {
       
   690 	    active[i].pop();    //FIXME: ezt szebben kene
       
   691 	    }
       
   692 	    }*/
       
   693 	}
       
   694 
       
   695 	level.set(w,n);
       
   696 	b=lev-1;
       
   697 	k=b;
       
   698 	//gapping ends
       
   699 
       
   700       } else {
       
   701 
       
   702 	if ( newlevel == n ) level.set(w,n);
       
   703 	else {
       
   704 	  level.set(w,++newlevel);
       
   705 	  next.set(w,first[newlevel]);
       
   706 	  first[newlevel]=w;
       
   707 	  //	  active[newlevel].push(w);
       
   708 	  if ( what_heur ) b=newlevel;
       
   709 	  if ( k < newlevel ) ++k;      //now k=newlevel
       
   710 	  Node z=level_list[newlevel];
       
   711 	  if ( g->valid(z) ) left.set(z,w);
       
   712 	  right.set(w,z);
       
   713 	  left.set(w,INVALID);
       
   714 	  level_list[newlevel]=w;
       
   715 	}
       
   716       }
       
   717 
       
   718     } //relabel
       
   719 
       
   720 
       
   721     template<typename MapGraphWrapper>
       
   722     class DistanceMap {
       
   723     protected:
       
   724       const MapGraphWrapper* g;
       
   725       typename MapGraphWrapper::template NodeMap<int> dist;
       
   726     public:
       
   727       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
       
   728       void set(const typename MapGraphWrapper::Node& n, int a) {
       
   729 	dist.set(n, a);
       
   730       }
       
   731       int operator[](const typename MapGraphWrapper::Node& n) const { 
       
   732 	return dist[n]; 
       
   733       }
       
   734       //       int get(const typename MapGraphWrapper::Node& n) const {
       
   735       // 	return dist[n]; }
       
   736       //       bool get(const typename MapGraphWrapper::Edge& e) const {
       
   737       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
       
   738       bool operator[](const typename MapGraphWrapper::Edge& e) const {
       
   739 	return (dist[g->tail(e)]<dist[g->head(e)]);
       
   740       }
       
   741     };
       
   742 
       
   743   };
       
   744 
       
   745 
       
   746   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   747   void MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
       
   748   {
       
   749 
       
   750     int heur0=(int)(H0*n);  //time while running 'bound decrease'
       
   751     int heur1=(int)(H1*n);  //time while running 'highest label'
       
   752     int heur=heur1;         //starting time interval (#of relabels)
       
   753     int numrelabel=0;
       
   754 
       
   755     bool what_heur=1;
       
   756     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
       
   757 
       
   758     bool end=false;
       
   759     //Needed for 'bound decrease', true means no active nodes are above bound
       
   760     //b.
       
   761 
       
   762     int k=n-2;  //bound on the highest level under n containing a node
       
   763     int b=k;    //bound on the highest level under n of an active node
       
   764 
       
   765     VecFirst first(n, INVALID);
       
   766     NNMap next(*g, INVALID); //maybe INVALID is not needed
       
   767     //    VecStack active(n);
       
   768 
       
   769     NNMap left(*g, INVALID);
       
   770     NNMap right(*g, INVALID);
       
   771     VecNode level_list(n,INVALID);
       
   772     //List of the nodes in level i<n, set to n.
       
   773 
       
   774     NodeIt v;
       
   775     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
       
   776     //setting each node to level n
       
   777 
       
   778     if ( fe == NO_FLOW ) {
       
   779       EdgeIt e;
       
   780       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
       
   781     }
       
   782 
       
   783     switch (fe) { //computing the excess
       
   784     case PRE_FLOW:
       
   785       {
       
   786 	NodeIt v;
       
   787 	for(g->first(v); g->valid(v); g->next(v)) {
       
   788 	  Num exc=0;
       
   789 
       
   790 	  InEdgeIt e;
       
   791 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
       
   792 	  OutEdgeIt f;
       
   793 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
       
   794 
       
   795 	  excess.set(v,exc);
       
   796 
       
   797 	  //putting the active nodes into the stack
       
   798 	  int lev=level[v];
       
   799 	  if ( exc > 0 && lev < n && v != t ) 
       
   800 	    {
       
   801 	      next.set(v,first[lev]);
       
   802 	      first[lev]=v;
       
   803 	    }
       
   804 	  //	  active[lev].push(v);
       
   805 	}
       
   806 	break;
       
   807       }
       
   808     case GEN_FLOW:
       
   809       {
       
   810 	NodeIt v;
       
   811 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
       
   812 
       
   813 	Num exc=0;
       
   814 	InEdgeIt e;
       
   815 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
       
   816 	OutEdgeIt f;
       
   817 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
       
   818 	excess.set(t,exc);
       
   819 	break;
       
   820       }
       
   821     case ZERO_FLOW:
       
   822     case NO_FLOW:
       
   823       {
       
   824 	NodeIt v;
       
   825         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
       
   826 	break;
       
   827       }
       
   828     }
       
   829 
       
   830     preflowPreproc(fe, next, first,/*active*/ level_list, left, right);
       
   831     //End of preprocessing
       
   832 
       
   833 
       
   834     //Push/relabel on the highest level active nodes.
       
   835     while ( true ) {
       
   836       if ( b == 0 ) {
       
   837 	if ( !what_heur && !end && k > 0 ) {
       
   838 	  b=k;
       
   839 	  end=true;
       
   840 	} else break;
       
   841       }
       
   842 
       
   843       if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
       
   844       else {
       
   845 	end=false;
       
   846 	Node w=first[b];
       
   847 	first[b]=next[w];
       
   848 	/*	Node w=active[b].top();
       
   849 		active[b].pop();*/
       
   850 	int newlevel=push(w,/*active*/next, first);
       
   851 	if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list,
       
   852 				     left, right, b, k, what_heur);
       
   853 
       
   854 	++numrelabel;
       
   855 	if ( numrelabel >= heur ) {
       
   856 	  numrelabel=0;
       
   857 	  if ( what_heur ) {
       
   858 	    what_heur=0;
       
   859 	    heur=heur0;
       
   860 	    end=false;
       
   861 	  } else {
       
   862 	    what_heur=1;
       
   863 	    heur=heur1;
       
   864 	    b=k;
       
   865 	  }
       
   866 	}
       
   867       }
       
   868     }
       
   869 
       
   870     status=AFTER_PRE_FLOW_PHASE_1;
       
   871   }
       
   872 
       
   873 
       
   874 
       
   875   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   876   void MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::preflowPhase2()
       
   877   {
       
   878 
       
   879     int k=n-2;  //bound on the highest level under n containing a node
       
   880     int b=k;    //bound on the highest level under n of an active node
       
   881 
       
   882     
       
   883     VecFirst first(n, INVALID);
       
   884     NNMap next(*g, INVALID); //maybe INVALID is not needed
       
   885     //    VecStack active(n);
       
   886     level.set(s,0);
       
   887     std::queue<Node> bfs_queue;
       
   888     bfs_queue.push(s);
       
   889 
       
   890     while (!bfs_queue.empty()) {
       
   891 
       
   892       Node v=bfs_queue.front();
       
   893       bfs_queue.pop();
       
   894       int l=level[v]+1;
       
   895 
       
   896       InEdgeIt e;
       
   897       for(g->first(e,v); g->valid(e); g->next(e)) {
       
   898 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   899 	Node u=g->tail(e);
       
   900 	if ( level[u] >= n ) {
       
   901 	  bfs_queue.push(u);
       
   902 	  level.set(u, l);
       
   903 	  if ( excess[u] > 0 ) {
       
   904 	    next.set(u,first[l]);
       
   905 	    first[l]=u;
       
   906 	    //active[l].push(u);
       
   907 	  }
       
   908 	}
       
   909       }
       
   910 
       
   911       OutEdgeIt f;
       
   912       for(g->first(f,v); g->valid(f); g->next(f)) {
       
   913 	if ( 0 >= (*flow)[f] ) continue;
       
   914 	Node u=g->head(f);
       
   915 	if ( level[u] >= n ) {
       
   916 	  bfs_queue.push(u);
       
   917 	  level.set(u, l);
       
   918 	  if ( excess[u] > 0 ) {
       
   919 	    next.set(u,first[l]);
       
   920 	    first[l]=u;
       
   921 	    //active[l].push(u);
       
   922 	  }
       
   923 	}
       
   924       }
       
   925     }
       
   926     b=n-2;
       
   927 
       
   928     while ( true ) {
       
   929 
       
   930       if ( b == 0 ) break;
       
   931 
       
   932       if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
       
   933       else {
       
   934 
       
   935 	Node w=first[b];
       
   936 	first[b]=next[w];
       
   937 	/*	Node w=active[b].top();
       
   938 		active[b].pop();*/
       
   939 	int newlevel=push(w,next, first/*active*/);
       
   940 
       
   941 	//relabel
       
   942 	if ( excess[w] > 0 ) {
       
   943 	  level.set(w,++newlevel);
       
   944 	  next.set(w,first[newlevel]);
       
   945 	  first[newlevel]=w;
       
   946 	  //active[newlevel].push(w);
       
   947 	  b=newlevel;
       
   948 	}
       
   949       }  // if stack[b] is nonempty
       
   950     } // while(true)
       
   951 
       
   952     status=AFTER_PRE_FLOW_PHASE_2;
       
   953   }
       
   954 
       
   955 
       
   956 
       
   957   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
   958   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
       
   959   {
       
   960     ResGW res_graph(*g, *capacity, *flow);
       
   961     bool _augment=false;
       
   962 
       
   963     //ReachedMap level(res_graph);
       
   964     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
   965     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
       
   966     bfs.pushAndSetReached(s);
       
   967 
       
   968     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
       
   969     pred.set(s, INVALID);
       
   970 
       
   971     typename ResGW::template NodeMap<Num> free(res_graph);
       
   972 
       
   973     //searching for augmenting path
       
   974     while ( !bfs.finished() ) {
       
   975       ResGWOutEdgeIt e=bfs;
       
   976       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
       
   977 	Node v=res_graph.tail(e);
       
   978 	Node w=res_graph.head(e);
       
   979 	pred.set(w, e);
       
   980 	if (res_graph.valid(pred[v])) {
       
   981 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
       
   982 	} else {
       
   983 	  free.set(w, res_graph.resCap(e));
       
   984 	}
       
   985 	if (res_graph.head(e)==t) { _augment=true; break; }
       
   986       }
       
   987 
       
   988       ++bfs;
       
   989     } //end of searching augmenting path
       
   990 
       
   991     if (_augment) {
       
   992       Node n=t;
       
   993       Num augment_value=free[t];
       
   994       while (res_graph.valid(pred[n])) {
       
   995 	ResGWEdge e=pred[n];
       
   996 	res_graph.augment(e, augment_value);
       
   997 	n=res_graph.tail(e);
       
   998       }
       
   999     }
       
  1000 
       
  1001     status=AFTER_AUGMENTING;
       
  1002     return _augment;
       
  1003   }
       
  1004 
       
  1005 
       
  1006   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
  1007   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
       
  1008   {
       
  1009     ResGW res_graph(*g, *capacity, *flow);
       
  1010     bool _augment=false;
       
  1011 
       
  1012     if (status!=AFTER_FAST_AUGMENTING) {
       
  1013       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
       
  1014       number_of_augmentations=1;
       
  1015     } else {
       
  1016       ++number_of_augmentations;
       
  1017     }
       
  1018     TrickyReachedMap<ReachedMap> 
       
  1019       tricky_reached_map(level, number_of_augmentations);
       
  1020     //ReachedMap level(res_graph);
       
  1021 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
  1022     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
       
  1023       bfs(res_graph, tricky_reached_map);
       
  1024     bfs.pushAndSetReached(s);
       
  1025 
       
  1026     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
       
  1027     pred.set(s, INVALID);
       
  1028 
       
  1029     typename ResGW::template NodeMap<Num> free(res_graph);
       
  1030 
       
  1031     //searching for augmenting path
       
  1032     while ( !bfs.finished() ) {
       
  1033       ResGWOutEdgeIt e=bfs;
       
  1034       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
       
  1035 	Node v=res_graph.tail(e);
       
  1036 	Node w=res_graph.head(e);
       
  1037 	pred.set(w, e);
       
  1038 	if (res_graph.valid(pred[v])) {
       
  1039 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
       
  1040 	} else {
       
  1041 	  free.set(w, res_graph.resCap(e));
       
  1042 	}
       
  1043 	if (res_graph.head(e)==t) { _augment=true; break; }
       
  1044       }
       
  1045 
       
  1046       ++bfs;
       
  1047     } //end of searching augmenting path
       
  1048 
       
  1049     if (_augment) {
       
  1050       Node n=t;
       
  1051       Num augment_value=free[t];
       
  1052       while (res_graph.valid(pred[n])) {
       
  1053 	ResGWEdge e=pred[n];
       
  1054 	res_graph.augment(e, augment_value);
       
  1055 	n=res_graph.tail(e);
       
  1056       }
       
  1057     }
       
  1058 
       
  1059     status=AFTER_FAST_AUGMENTING;
       
  1060     return _augment;
       
  1061   }
       
  1062 
       
  1063 
       
  1064   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
  1065   template<typename MutableGraph>
       
  1066   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
       
  1067   {
       
  1068     typedef MutableGraph MG;
       
  1069     bool _augment=false;
       
  1070 
       
  1071     ResGW res_graph(*g, *capacity, *flow);
       
  1072 
       
  1073     //bfs for distances on the residual graph
       
  1074     //ReachedMap level(res_graph);
       
  1075     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
  1076     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
       
  1077     bfs.pushAndSetReached(s);
       
  1078     typename ResGW::template NodeMap<int>
       
  1079       dist(res_graph); //filled up with 0's
       
  1080 
       
  1081     //F will contain the physical copy of the residual graph
       
  1082     //with the set of edges which are on shortest paths
       
  1083     MG F;
       
  1084     typename ResGW::template NodeMap<typename MG::Node>
       
  1085       res_graph_to_F(res_graph);
       
  1086     {
       
  1087       typename ResGW::NodeIt n;
       
  1088       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
       
  1089 	res_graph_to_F.set(n, F.addNode());
       
  1090       }
       
  1091     }
       
  1092 
       
  1093     typename MG::Node sF=res_graph_to_F[s];
       
  1094     typename MG::Node tF=res_graph_to_F[t];
       
  1095     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
       
  1096     typename MG::template EdgeMap<Num> residual_capacity(F);
       
  1097 
       
  1098     while ( !bfs.finished() ) {
       
  1099       ResGWOutEdgeIt e=bfs;
       
  1100       if (res_graph.valid(e)) {
       
  1101 	if (bfs.isBNodeNewlyReached()) {
       
  1102 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
       
  1103 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
       
  1104 					res_graph_to_F[res_graph.head(e)]);
       
  1105 	  original_edge.update();
       
  1106 	  original_edge.set(f, e);
       
  1107 	  residual_capacity.update();
       
  1108 	  residual_capacity.set(f, res_graph.resCap(e));
       
  1109 	} else {
       
  1110 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
       
  1111 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
       
  1112 					  res_graph_to_F[res_graph.head(e)]);
       
  1113 	    original_edge.update();
       
  1114 	    original_edge.set(f, e);
       
  1115 	    residual_capacity.update();
       
  1116 	    residual_capacity.set(f, res_graph.resCap(e));
       
  1117 	  }
       
  1118 	}
       
  1119       }
       
  1120       ++bfs;
       
  1121     } //computing distances from s in the residual graph
       
  1122 
       
  1123     bool __augment=true;
       
  1124 
       
  1125     while (__augment) {
       
  1126       __augment=false;
       
  1127       //computing blocking flow with dfs
       
  1128       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
       
  1129       typename MG::template NodeMap<typename MG::Edge> pred(F);
       
  1130       pred.set(sF, INVALID);
       
  1131       //invalid iterators for sources
       
  1132 
       
  1133       typename MG::template NodeMap<Num> free(F);
       
  1134 
       
  1135       dfs.pushAndSetReached(sF);
       
  1136       while (!dfs.finished()) {
       
  1137 	++dfs;
       
  1138 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
       
  1139 	  if (dfs.isBNodeNewlyReached()) {
       
  1140 	    typename MG::Node v=F.aNode(dfs);
       
  1141 	    typename MG::Node w=F.bNode(dfs);
       
  1142 	    pred.set(w, dfs);
       
  1143 	    if (F.valid(pred[v])) {
       
  1144 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
       
  1145 	    } else {
       
  1146 	      free.set(w, residual_capacity[dfs]);
       
  1147 	    }
       
  1148 	    if (w==tF) {
       
  1149 	      __augment=true;
       
  1150 	      _augment=true;
       
  1151 	      break;
       
  1152 	    }
       
  1153 
       
  1154 	  } else {
       
  1155 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
       
  1156 	  }
       
  1157 	}
       
  1158       }
       
  1159 
       
  1160       if (__augment) {
       
  1161 	typename MG::Node n=tF;
       
  1162 	Num augment_value=free[tF];
       
  1163 	while (F.valid(pred[n])) {
       
  1164 	  typename MG::Edge e=pred[n];
       
  1165 	  res_graph.augment(original_edge[e], augment_value);
       
  1166 	  n=F.tail(e);
       
  1167 	  if (residual_capacity[e]==augment_value)
       
  1168 	    F.erase(e);
       
  1169 	  else
       
  1170 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
       
  1171 	}
       
  1172       }
       
  1173 
       
  1174     }
       
  1175 
       
  1176     status=AFTER_AUGMENTING;
       
  1177     return _augment;
       
  1178   }
       
  1179 
       
  1180 
       
  1181 
       
  1182 
       
  1183   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
       
  1184   bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
       
  1185   {
       
  1186     bool _augment=false;
       
  1187 
       
  1188     ResGW res_graph(*g, *capacity, *flow);
       
  1189 
       
  1190     //ReachedMap level(res_graph);
       
  1191     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
       
  1192     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
       
  1193 
       
  1194     bfs.pushAndSetReached(s);
       
  1195     DistanceMap<ResGW> dist(res_graph);
       
  1196     while ( !bfs.finished() ) {
       
  1197       ResGWOutEdgeIt e=bfs;
       
  1198       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
       
  1199 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
       
  1200       }
       
  1201       ++bfs;
       
  1202     } //computing distances from s in the residual graph
       
  1203 
       
  1204       //Subgraph containing the edges on some shortest paths
       
  1205     ConstMap<typename ResGW::Node, bool> true_map(true);
       
  1206     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
       
  1207       DistanceMap<ResGW> > FilterResGW;
       
  1208     FilterResGW filter_res_graph(res_graph, true_map, dist);
       
  1209 
       
  1210     //Subgraph, which is able to delete edges which are already
       
  1211     //met by the dfs
       
  1212     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
       
  1213       first_out_edges(filter_res_graph);
       
  1214     typename FilterResGW::NodeIt v;
       
  1215     for(filter_res_graph.first(v); filter_res_graph.valid(v);
       
  1216 	filter_res_graph.next(v))
       
  1217       {
       
  1218  	typename FilterResGW::OutEdgeIt e;
       
  1219  	filter_res_graph.first(e, v);
       
  1220  	first_out_edges.set(v, e);
       
  1221       }
       
  1222     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
       
  1223       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
       
  1224     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
       
  1225 
       
  1226     bool __augment=true;
       
  1227 
       
  1228     while (__augment) {
       
  1229 
       
  1230       __augment=false;
       
  1231       //computing blocking flow with dfs
       
  1232       DfsIterator< ErasingResGW,
       
  1233 	typename ErasingResGW::template NodeMap<bool> >
       
  1234 	dfs(erasing_res_graph);
       
  1235       typename ErasingResGW::
       
  1236 	template NodeMap<typename ErasingResGW::OutEdgeIt>
       
  1237 	pred(erasing_res_graph);
       
  1238       pred.set(s, INVALID);
       
  1239       //invalid iterators for sources
       
  1240 
       
  1241       typename ErasingResGW::template NodeMap<Num>
       
  1242 	free1(erasing_res_graph);
       
  1243 
       
  1244       dfs.pushAndSetReached
       
  1245 	///\bug hugo 0.2
       
  1246 	(typename ErasingResGW::Node
       
  1247 	 (typename FilterResGW::Node
       
  1248 	  (typename ResGW::Node(s)
       
  1249 	   )
       
  1250 	  )
       
  1251 	 );
       
  1252       while (!dfs.finished()) {
       
  1253 	++dfs;
       
  1254 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
       
  1255  	  {
       
  1256   	    if (dfs.isBNodeNewlyReached()) {
       
  1257 
       
  1258  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
       
  1259  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
       
  1260 
       
  1261  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
       
  1262  	      if (erasing_res_graph.valid(pred[v])) {
       
  1263  		free1.set
       
  1264 		  (w, std::min(free1[v], res_graph.resCap
       
  1265 			       (typename ErasingResGW::OutEdgeIt(dfs))));
       
  1266  	      } else {
       
  1267  		free1.set
       
  1268 		  (w, res_graph.resCap
       
  1269 		   (typename ErasingResGW::OutEdgeIt(dfs)));
       
  1270  	      }
       
  1271 
       
  1272  	      if (w==t) {
       
  1273  		__augment=true;
       
  1274  		_augment=true;
       
  1275  		break;
       
  1276  	      }
       
  1277  	    } else {
       
  1278  	      erasing_res_graph.erase(dfs);
       
  1279 	    }
       
  1280 	  }
       
  1281       }
       
  1282 
       
  1283       if (__augment) {
       
  1284 	typename ErasingResGW::Node
       
  1285 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
       
  1286 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
       
  1287 	// 	  typename ResGW::Node b;
       
  1288 	// 	  Num j=a[b];
       
  1289 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
       
  1290 	// 	  typename FilterResGW::Node b1;
       
  1291 	// 	  Num j1=a1[b1];
       
  1292 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
       
  1293 	// 	  typename ErasingResGW::Node b2;
       
  1294 	// 	  Num j2=a2[b2];
       
  1295 	Num augment_value=free1[n];
       
  1296 	while (erasing_res_graph.valid(pred[n])) {
       
  1297 	  typename ErasingResGW::OutEdgeIt e=pred[n];
       
  1298 	  res_graph.augment(e, augment_value);
       
  1299 	  n=erasing_res_graph.tail(e);
       
  1300 	  if (res_graph.resCap(e)==0)
       
  1301 	    erasing_res_graph.erase(e);
       
  1302 	}
       
  1303       }
       
  1304 
       
  1305     } //while (__augment)
       
  1306 
       
  1307     status=AFTER_AUGMENTING;
       
  1308     return _augment;
       
  1309   }
       
  1310 
       
  1311 
       
  1312 } //namespace hugo
       
  1313 
       
  1314 #endif //HUGO_MAX_FLOW_H
       
  1315 
       
  1316 
       
  1317 
       
  1318