|
1 // -*- c++ -*- |
|
2 #ifndef HUGO_EDMONDS_KARP_H |
|
3 #define HUGO_EDMONDS_KARP_H |
|
4 |
|
5 #include <algorithm> |
|
6 #include <list> |
|
7 #include <iterator> |
|
8 |
|
9 #include <bfs_iterator_1.h> |
|
10 #include <invalid.h> |
|
11 #include <graph_wrapper_1.h> |
|
12 |
|
13 namespace hugo { |
|
14 |
|
15 template<typename Graph, typename Number, typename FlowMap, typename CapacityMap> |
|
16 class ResGraph { |
|
17 public: |
|
18 typedef typename Graph::Node Node; |
|
19 typedef typename Graph::NodeIt NodeIt; |
|
20 private: |
|
21 typedef typename Graph::SymEdgeIt OldSymEdgeIt; |
|
22 const Graph& G; |
|
23 FlowMap& flow; |
|
24 const CapacityMap& capacity; |
|
25 public: |
|
26 ResGraph(const Graph& _G, FlowMap& _flow, |
|
27 const CapacityMap& _capacity) : |
|
28 G(_G), flow(_flow), capacity(_capacity) { } |
|
29 |
|
30 class Edge; |
|
31 class OutEdgeIt; |
|
32 friend class Edge; |
|
33 friend class OutEdgeIt; |
|
34 |
|
35 class Edge { |
|
36 friend class ResGraph<Graph, Number, FlowMap, CapacityMap>; |
|
37 protected: |
|
38 const ResGraph<Graph, Number, FlowMap, CapacityMap>* resG; |
|
39 OldSymEdgeIt sym; |
|
40 public: |
|
41 Edge() { } |
|
42 //Edge(const Edge& e) : resG(e.resG), sym(e.sym) { } |
|
43 Number free() const { |
|
44 if (resG->G.aNode(sym)==resG->G.tail(sym)) { |
|
45 return (resG->capacity.get(sym)-resG->flow.get(sym)); |
|
46 } else { |
|
47 return (resG->flow.get(sym)); |
|
48 } |
|
49 } |
|
50 bool valid() const { return sym.valid(); } |
|
51 void augment(Number a) const { |
|
52 if (resG->G.aNode(sym)==resG->G.tail(sym)) { |
|
53 resG->flow.set(sym, resG->flow.get(sym)+a); |
|
54 //resG->flow[sym]+=a; |
|
55 } else { |
|
56 resG->flow.set(sym, resG->flow.get(sym)-a); |
|
57 //resG->flow[sym]-=a; |
|
58 } |
|
59 } |
|
60 }; |
|
61 |
|
62 class OutEdgeIt : public Edge { |
|
63 friend class ResGraph<Graph, Number, FlowMap, CapacityMap>; |
|
64 public: |
|
65 OutEdgeIt() { } |
|
66 //OutEdgeIt(const OutEdgeIt& e) { resG=e.resG; sym=e.sym; } |
|
67 private: |
|
68 OutEdgeIt(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) { |
|
69 resG=&_resG; |
|
70 sym=resG->G.template first<OldSymEdgeIt>(v); |
|
71 while( sym.valid() && !(free()>0) ) { ++sym; } |
|
72 } |
|
73 public: |
|
74 OutEdgeIt& operator++() { |
|
75 ++sym; |
|
76 while( sym.valid() && !(free()>0) ) { ++sym; } |
|
77 return *this; |
|
78 } |
|
79 }; |
|
80 |
|
81 void /*getF*/first(OutEdgeIt& e, Node v) const { |
|
82 e=OutEdgeIt(*this, v); |
|
83 } |
|
84 void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); } |
|
85 |
|
86 template< typename It > |
|
87 It first() const { |
|
88 It e; |
|
89 /*getF*/first(e); |
|
90 return e; |
|
91 } |
|
92 |
|
93 template< typename It > |
|
94 It first(Node v) const { |
|
95 It e; |
|
96 /*getF*/first(e, v); |
|
97 return e; |
|
98 } |
|
99 |
|
100 Node tail(Edge e) const { return G.aNode(e.sym); } |
|
101 Node head(Edge e) const { return G.bNode(e.sym); } |
|
102 |
|
103 Node aNode(OutEdgeIt e) const { return G.aNode(e.sym); } |
|
104 Node bNode(OutEdgeIt e) const { return G.bNode(e.sym); } |
|
105 |
|
106 int id(Node v) const { return G.id(v); } |
|
107 |
|
108 template <typename S> |
|
109 class NodeMap { |
|
110 typename Graph::NodeMap<S> node_map; |
|
111 public: |
|
112 NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { } |
|
113 NodeMap(const ResGraph<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { } |
|
114 void set(Node nit, S a) { node_map.set(nit, a); } |
|
115 S get(Node nit) const { return node_map.get(nit); } |
|
116 S& operator[](Node nit) { return node_map[nit]; } |
|
117 const S& operator[](Node nit) const { return node_map[nit]; } |
|
118 }; |
|
119 |
|
120 }; |
|
121 |
|
122 |
|
123 template<typename Graph, typename Number, typename FlowMap, typename CapacityMap> |
|
124 class ResGraph2 { |
|
125 public: |
|
126 typedef typename Graph::Node Node; |
|
127 typedef typename Graph::NodeIt NodeIt; |
|
128 private: |
|
129 //typedef typename Graph::SymEdgeIt OldSymEdgeIt; |
|
130 typedef typename Graph::OutEdgeIt OldOutEdgeIt; |
|
131 typedef typename Graph::InEdgeIt OldInEdgeIt; |
|
132 |
|
133 const Graph& G; |
|
134 FlowMap& flow; |
|
135 const CapacityMap& capacity; |
|
136 public: |
|
137 ResGraph2(const Graph& _G, FlowMap& _flow, |
|
138 const CapacityMap& _capacity) : |
|
139 G(_G), flow(_flow), capacity(_capacity) { } |
|
140 |
|
141 class Edge; |
|
142 class OutEdgeIt; |
|
143 friend class Edge; |
|
144 friend class OutEdgeIt; |
|
145 |
|
146 class Edge { |
|
147 friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>; |
|
148 protected: |
|
149 const ResGraph2<Graph, Number, FlowMap, CapacityMap>* resG; |
|
150 //OldSymEdgeIt sym; |
|
151 OldOutEdgeIt out; |
|
152 OldInEdgeIt in; |
|
153 bool out_or_in; //true, iff out |
|
154 public: |
|
155 Edge() : out_or_in(true) { } |
|
156 Number free() const { |
|
157 if (out_or_in) { |
|
158 return (resG->capacity.get(out)-resG->flow.get(out)); |
|
159 } else { |
|
160 return (resG->flow.get(in)); |
|
161 } |
|
162 } |
|
163 bool valid() const { |
|
164 return out_or_in && out.valid() || in.valid(); } |
|
165 void augment(Number a) const { |
|
166 if (out_or_in) { |
|
167 resG->flow.set(out, resG->flow.get(out)+a); |
|
168 } else { |
|
169 resG->flow.set(in, resG->flow.get(in)-a); |
|
170 } |
|
171 } |
|
172 }; |
|
173 |
|
174 class OutEdgeIt : public Edge { |
|
175 friend class ResGraph2<Graph, Number, FlowMap, CapacityMap>; |
|
176 public: |
|
177 OutEdgeIt() { } |
|
178 private: |
|
179 OutEdgeIt(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _resG, Node v) { |
|
180 resG=&_resG; |
|
181 out=resG->G.template first<OldOutEdgeIt>(v); |
|
182 while( out.valid() && !(free()>0) ) { ++out; } |
|
183 if (!out.valid()) { |
|
184 out_or_in=0; |
|
185 in=resG->G.template first<OldInEdgeIt>(v); |
|
186 while( in.valid() && !(free()>0) ) { ++in; } |
|
187 } |
|
188 } |
|
189 public: |
|
190 OutEdgeIt& operator++() { |
|
191 if (out_or_in) { |
|
192 Node v=resG->G.aNode(out); |
|
193 ++out; |
|
194 while( out.valid() && !(free()>0) ) { ++out; } |
|
195 if (!out.valid()) { |
|
196 out_or_in=0; |
|
197 in=resG->G.template first<OldInEdgeIt>(v); |
|
198 while( in.valid() && !(free()>0) ) { ++in; } |
|
199 } |
|
200 } else { |
|
201 ++in; |
|
202 while( in.valid() && !(free()>0) ) { ++in; } |
|
203 } |
|
204 return *this; |
|
205 } |
|
206 }; |
|
207 |
|
208 void /*getF*/first(OutEdgeIt& e, Node v) const { |
|
209 e=OutEdgeIt(*this, v); |
|
210 } |
|
211 void /*getF*/first(NodeIt& v) const { G./*getF*/first(v); } |
|
212 |
|
213 template< typename It > |
|
214 It first() const { |
|
215 It e; |
|
216 /*getF*/first(e); |
|
217 return e; |
|
218 } |
|
219 |
|
220 template< typename It > |
|
221 It first(Node v) const { |
|
222 It e; |
|
223 /*getF*/first(e, v); |
|
224 return e; |
|
225 } |
|
226 |
|
227 Node tail(Edge e) const { |
|
228 return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); } |
|
229 Node head(Edge e) const { |
|
230 return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); } |
|
231 |
|
232 Node aNode(OutEdgeIt e) const { |
|
233 return ((e.out_or_in) ? G.aNode(e.out) : G.aNode(e.in)); } |
|
234 Node bNode(OutEdgeIt e) const { |
|
235 return ((e.out_or_in) ? G.bNode(e.out) : G.bNode(e.in)); } |
|
236 |
|
237 int id(Node v) const { return G.id(v); } |
|
238 |
|
239 template <typename S> |
|
240 class NodeMap { |
|
241 typename Graph::NodeMap<S> node_map; |
|
242 public: |
|
243 NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G) : node_map(_G.G) { } |
|
244 NodeMap(const ResGraph2<Graph, Number, FlowMap, CapacityMap>& _G, S a) : node_map(_G.G, a) { } |
|
245 void set(Node nit, S a) { node_map.set(nit, a); } |
|
246 S get(Node nit) const { return node_map.get(nit); } |
|
247 }; |
|
248 }; |
|
249 |
|
250 |
|
251 template <typename GraphWrapper, typename Number, typename FlowMap, typename CapacityMap> |
|
252 class MaxFlow { |
|
253 protected: |
|
254 typedef GraphWrapper GW; |
|
255 typedef typename GW::Node Node; |
|
256 typedef typename GW::Edge Edge; |
|
257 typedef typename GW::EdgeIt EdgeIt; |
|
258 typedef typename GW::OutEdgeIt OutEdgeIt; |
|
259 typedef typename GW::InEdgeIt InEdgeIt; |
|
260 //const Graph* G; |
|
261 //GW gw; |
|
262 const GW* g; |
|
263 Node s; |
|
264 Node t; |
|
265 FlowMap* flow; |
|
266 const CapacityMap* capacity; |
|
267 typedef ResGraphWrapper<const GW, Number, FlowMap, CapacityMap > ResGW; |
|
268 typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; |
|
269 typedef typename ResGW::Edge ResGWEdge; |
|
270 public: |
|
271 |
|
272 MaxFlow(const GW& _g, Node _s, Node _t, FlowMap& _flow, const CapacityMap& _capacity) : |
|
273 g(&_g), s(_s), t(_t), flow(&_flow), capacity(&_capacity) { } |
|
274 |
|
275 bool augmentOnShortestPath() { |
|
276 ResGW res_graph(*g, *flow, *capacity); |
|
277 bool _augment=false; |
|
278 |
|
279 typedef typename ResGW::NodeMap<bool> ReachedMap; |
|
280 BfsIterator5< ResGW, ReachedMap > bfs(res_graph); |
|
281 bfs.pushAndSetReached(s); |
|
282 |
|
283 typename ResGW::NodeMap<ResGWEdge> pred(res_graph); |
|
284 pred.set(s, INVALID); |
|
285 |
|
286 typename ResGW::NodeMap<Number> free(res_graph); |
|
287 |
|
288 //searching for augmenting path |
|
289 while ( !bfs.finished() ) { |
|
290 ResGWOutEdgeIt e=bfs; |
|
291 if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
292 Node v=res_graph.tail(e); |
|
293 Node w=res_graph.head(e); |
|
294 pred.set(w, e); |
|
295 if (res_graph.valid(pred.get(v))) { |
|
296 free.set(w, std::min(free.get(v), res_graph.resCap(e))); |
|
297 } else { |
|
298 free.set(w, res_graph.resCap(e)); |
|
299 } |
|
300 if (res_graph.head(e)==t) { _augment=true; break; } |
|
301 } |
|
302 |
|
303 ++bfs; |
|
304 } //end of searching augmenting path |
|
305 |
|
306 if (_augment) { |
|
307 Node n=t; |
|
308 Number augment_value=free.get(t); |
|
309 while (res_graph.valid(pred.get(n))) { |
|
310 ResGWEdge e=pred.get(n); |
|
311 res_graph.augment(e, augment_value); |
|
312 n=res_graph.tail(e); |
|
313 } |
|
314 } |
|
315 |
|
316 return _augment; |
|
317 } |
|
318 |
|
319 template<typename MapGraphWrapper> |
|
320 class DistanceMap { |
|
321 protected: |
|
322 const MapGraphWrapper* g; |
|
323 typename MapGraphWrapper::NodeMap<int> dist; |
|
324 public: |
|
325 DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } |
|
326 void set(const typename MapGraphWrapper::Node& n, int a) { dist[n]=a; } |
|
327 int get(const typename MapGraphWrapper::Node& n) const { return dist[n]; } |
|
328 bool get(const typename MapGraphWrapper::Edge& e) const { |
|
329 return (dist.get(g->tail(e))<dist.get(g->head(e))); |
|
330 } |
|
331 }; |
|
332 |
|
333 template<typename MutableGraph> bool augmentOnBlockingFlow() { |
|
334 typedef MutableGraph MG; |
|
335 bool _augment=false; |
|
336 |
|
337 ResGW res_graph(*g, *flow, *capacity); |
|
338 |
|
339 typedef typename ResGW::NodeMap<bool> ReachedMap; |
|
340 BfsIterator5< ResGW, ReachedMap > bfs(res_graph); |
|
341 |
|
342 bfs.pushAndSetReached(s); |
|
343 //typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's |
|
344 DistanceMap<ResGW> dist(res_graph); |
|
345 while ( !bfs.finished() ) { |
|
346 ResGWOutEdgeIt e=bfs; |
|
347 if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
348 dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
349 } |
|
350 ++bfs; |
|
351 } //computing distances from s in the residual graph |
|
352 |
|
353 MG F; |
|
354 typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW; |
|
355 FilterResGW filter_res_graph(res_graph, dist); |
|
356 typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph); |
|
357 { |
|
358 typename ResGW::NodeIt n; |
|
359 for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { |
|
360 res_graph_to_F.set(n, F.addNode()); |
|
361 } |
|
362 } |
|
363 |
|
364 typename MG::Node sF=res_graph_to_F.get(s); |
|
365 typename MG::Node tF=res_graph_to_F.get(t); |
|
366 typename MG::EdgeMap<ResGWEdge> original_edge(F); |
|
367 typename MG::EdgeMap<Number> residual_capacity(F); |
|
368 |
|
369 //Making F to the graph containing the edges of the residual graph |
|
370 //which are in some shortest paths |
|
371 { |
|
372 typename FilterResGW::EdgeIt e; |
|
373 for(filter_res_graph.first(e); filter_res_graph.valid(e); filter_res_graph.next(e)) { |
|
374 //if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) { |
|
375 typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e))); |
|
376 original_edge.update(); |
|
377 original_edge.set(f, e); |
|
378 residual_capacity.update(); |
|
379 residual_capacity.set(f, res_graph.resCap(e)); |
|
380 //} |
|
381 } |
|
382 } |
|
383 |
|
384 bool __augment=true; |
|
385 |
|
386 while (__augment) { |
|
387 __augment=false; |
|
388 //computing blocking flow with dfs |
|
389 typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap; |
|
390 DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F); |
|
391 typename MG::NodeMap<typename MG::Edge> pred(F); |
|
392 pred.set(sF, INVALID); |
|
393 //invalid iterators for sources |
|
394 |
|
395 typename MG::NodeMap<Number> free(F); |
|
396 |
|
397 dfs.pushAndSetReached(sF); |
|
398 while (!dfs.finished()) { |
|
399 ++dfs; |
|
400 if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { |
|
401 if (dfs.isBNodeNewlyReached()) { |
|
402 typename MG::Node v=F.aNode(dfs); |
|
403 typename MG::Node w=F.bNode(dfs); |
|
404 pred.set(w, dfs); |
|
405 if (F.valid(pred.get(v))) { |
|
406 free.set(w, std::min(free.get(v), residual_capacity.get(dfs))); |
|
407 } else { |
|
408 free.set(w, residual_capacity.get(dfs)); |
|
409 } |
|
410 if (w==tF) { |
|
411 __augment=true; |
|
412 _augment=true; |
|
413 break; |
|
414 } |
|
415 |
|
416 } else { |
|
417 F.erase(/*typename MG::OutEdgeIt*/(dfs)); |
|
418 } |
|
419 } |
|
420 } |
|
421 |
|
422 if (__augment) { |
|
423 typename MG::Node n=tF; |
|
424 Number augment_value=free.get(tF); |
|
425 while (F.valid(pred.get(n))) { |
|
426 typename MG::Edge e=pred.get(n); |
|
427 res_graph.augment(original_edge.get(e), augment_value); |
|
428 n=F.tail(e); |
|
429 if (residual_capacity.get(e)==augment_value) |
|
430 F.erase(e); |
|
431 else |
|
432 residual_capacity.set(e, residual_capacity.get(e)-augment_value); |
|
433 } |
|
434 } |
|
435 |
|
436 } |
|
437 |
|
438 return _augment; |
|
439 } |
|
440 |
|
441 template<typename MutableGraph> bool augmentOnBlockingFlow1() { |
|
442 typedef MutableGraph MG; |
|
443 bool _augment=false; |
|
444 |
|
445 ResGW res_graph(*g, *flow, *capacity); |
|
446 |
|
447 //bfs for distances on the residual graph |
|
448 typedef typename ResGW::NodeMap<bool> ReachedMap; |
|
449 BfsIterator5< ResGW, ReachedMap > bfs(res_graph); |
|
450 bfs.pushAndSetReached(s); |
|
451 typename ResGW::NodeMap<int> dist(res_graph); //filled up with 0's |
|
452 |
|
453 //F will contain the physical copy of the residual graph |
|
454 //with the set of edges which are on shortest paths |
|
455 MG F; |
|
456 typename ResGW::NodeMap<typename MG::Node> res_graph_to_F(res_graph); |
|
457 { |
|
458 typename ResGW::NodeIt n; |
|
459 for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { |
|
460 res_graph_to_F.set(n, F.addNode()); |
|
461 } |
|
462 } |
|
463 |
|
464 typename MG::Node sF=res_graph_to_F.get(s); |
|
465 typename MG::Node tF=res_graph_to_F.get(t); |
|
466 typename MG::EdgeMap<ResGWEdge> original_edge(F); |
|
467 typename MG::EdgeMap<Number> residual_capacity(F); |
|
468 |
|
469 while ( !bfs.finished() ) { |
|
470 ResGWOutEdgeIt e=bfs; |
|
471 if (res_graph.valid(e)) { |
|
472 if (bfs.isBNodeNewlyReached()) { |
|
473 dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
474 typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e))); |
|
475 original_edge.update(); |
|
476 original_edge.set(f, e); |
|
477 residual_capacity.update(); |
|
478 residual_capacity.set(f, res_graph.resCap(e)); |
|
479 } else { |
|
480 if (dist.get(res_graph.head(e))==(dist.get(res_graph.tail(e))+1)) { |
|
481 typename MG::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e))); |
|
482 original_edge.update(); |
|
483 original_edge.set(f, e); |
|
484 residual_capacity.update(); |
|
485 residual_capacity.set(f, res_graph.resCap(e)); |
|
486 } |
|
487 } |
|
488 } |
|
489 ++bfs; |
|
490 } //computing distances from s in the residual graph |
|
491 |
|
492 bool __augment=true; |
|
493 |
|
494 while (__augment) { |
|
495 __augment=false; |
|
496 //computing blocking flow with dfs |
|
497 typedef typename TrivGraphWrapper<MG>::NodeMap<bool> BlockingReachedMap; |
|
498 DfsIterator5< TrivGraphWrapper<MG>, BlockingReachedMap > dfs(F); |
|
499 typename MG::NodeMap<typename MG::Edge> pred(F); |
|
500 pred.set(sF, INVALID); |
|
501 //invalid iterators for sources |
|
502 |
|
503 typename MG::NodeMap<Number> free(F); |
|
504 |
|
505 dfs.pushAndSetReached(sF); |
|
506 while (!dfs.finished()) { |
|
507 ++dfs; |
|
508 if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { |
|
509 if (dfs.isBNodeNewlyReached()) { |
|
510 typename MG::Node v=F.aNode(dfs); |
|
511 typename MG::Node w=F.bNode(dfs); |
|
512 pred.set(w, dfs); |
|
513 if (F.valid(pred.get(v))) { |
|
514 free.set(w, std::min(free.get(v), residual_capacity.get(dfs))); |
|
515 } else { |
|
516 free.set(w, residual_capacity.get(dfs)); |
|
517 } |
|
518 if (w==tF) { |
|
519 __augment=true; |
|
520 _augment=true; |
|
521 break; |
|
522 } |
|
523 |
|
524 } else { |
|
525 F.erase(/*typename MG::OutEdgeIt*/(dfs)); |
|
526 } |
|
527 } |
|
528 } |
|
529 |
|
530 if (__augment) { |
|
531 typename MG::Node n=tF; |
|
532 Number augment_value=free.get(tF); |
|
533 while (F.valid(pred.get(n))) { |
|
534 typename MG::Edge e=pred.get(n); |
|
535 res_graph.augment(original_edge.get(e), augment_value); |
|
536 n=F.tail(e); |
|
537 if (residual_capacity.get(e)==augment_value) |
|
538 F.erase(e); |
|
539 else |
|
540 residual_capacity.set(e, residual_capacity.get(e)-augment_value); |
|
541 } |
|
542 } |
|
543 |
|
544 } |
|
545 |
|
546 return _augment; |
|
547 } |
|
548 |
|
549 bool augmentOnBlockingFlow2() { |
|
550 bool _augment=false; |
|
551 |
|
552 ResGW res_graph(*g, *flow, *capacity); |
|
553 |
|
554 typedef typename ResGW::NodeMap<bool> ReachedMap; |
|
555 BfsIterator5< ResGW, ReachedMap > bfs(res_graph); |
|
556 |
|
557 bfs.pushAndSetReached(s); |
|
558 DistanceMap<ResGW> dist(res_graph); |
|
559 while ( !bfs.finished() ) { |
|
560 ResGWOutEdgeIt e=bfs; |
|
561 if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
562 dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
563 } |
|
564 ++bfs; |
|
565 } //computing distances from s in the residual graph |
|
566 |
|
567 //Subgraph containing the edges on some shortest paths |
|
568 typedef SubGraphWrapper<ResGW, DistanceMap<ResGW> > FilterResGW; |
|
569 FilterResGW filter_res_graph(res_graph, dist); |
|
570 |
|
571 //Subgraph, which is able to delete edges which are already |
|
572 //met by the dfs |
|
573 typename FilterResGW::NodeMap<typename FilterResGW::OutEdgeIt> |
|
574 first_out_edges(filter_res_graph); |
|
575 typename FilterResGW::NodeIt v; |
|
576 for(filter_res_graph.first(v); filter_res_graph.valid(v); |
|
577 filter_res_graph.next(v)) |
|
578 { |
|
579 typename FilterResGW::OutEdgeIt e; |
|
580 filter_res_graph.first(e, v); |
|
581 first_out_edges.set(v, e); |
|
582 } |
|
583 typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW:: |
|
584 NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW; |
|
585 ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); |
|
586 |
|
587 bool __augment=true; |
|
588 |
|
589 while (__augment) { |
|
590 |
|
591 __augment=false; |
|
592 //computing blocking flow with dfs |
|
593 typedef typename ErasingResGW::NodeMap<bool> BlockingReachedMap; |
|
594 DfsIterator5< ErasingResGW, BlockingReachedMap > |
|
595 dfs(erasing_res_graph); |
|
596 typename ErasingResGW::NodeMap<typename ErasingResGW::OutEdgeIt> |
|
597 pred(erasing_res_graph); |
|
598 pred.set(s, INVALID); |
|
599 //invalid iterators for sources |
|
600 |
|
601 typename ErasingResGW::NodeMap<Number> free(erasing_res_graph); |
|
602 |
|
603 dfs.pushAndSetReached(s); |
|
604 while (!dfs.finished()) { |
|
605 ++dfs; |
|
606 if (erasing_res_graph.valid( |
|
607 /*typename ErasingResGW::OutEdgeIt*/(dfs))) |
|
608 { |
|
609 if (dfs.isBNodeNewlyReached()) { |
|
610 |
|
611 typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); |
|
612 typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); |
|
613 |
|
614 pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); |
|
615 if (erasing_res_graph.valid(pred.get(v))) { |
|
616 free.set(w, std::min(free.get(v), res_graph.resCap(dfs))); |
|
617 } else { |
|
618 free.set(w, res_graph.resCap(dfs)); |
|
619 } |
|
620 |
|
621 if (w==t) { |
|
622 __augment=true; |
|
623 _augment=true; |
|
624 break; |
|
625 } |
|
626 } else { |
|
627 erasing_res_graph.erase(dfs); |
|
628 } |
|
629 } |
|
630 } |
|
631 |
|
632 if (__augment) { |
|
633 typename ErasingResGW::Node n=t; |
|
634 Number augment_value=free.get(n); |
|
635 while (erasing_res_graph.valid(pred.get(n))) { |
|
636 typename ErasingResGW::OutEdgeIt e=pred.get(n); |
|
637 res_graph.augment(e, augment_value); |
|
638 n=erasing_res_graph.tail(e); |
|
639 if (res_graph.resCap(e)==0) |
|
640 erasing_res_graph.erase(e); |
|
641 } |
|
642 } |
|
643 |
|
644 } //while (__augment) |
|
645 |
|
646 return _augment; |
|
647 } |
|
648 |
|
649 // bool augmentOnBlockingFlow2() { |
|
650 // bool _augment=false; |
|
651 |
|
652 // //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph; |
|
653 // typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph; |
|
654 // typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt; |
|
655 // typedef typename EAugGraph::Edge EAugEdge; |
|
656 |
|
657 // EAugGraph res_graph(*G, *flow, *capacity); |
|
658 |
|
659 // //typedef typename EAugGraph::NodeMap<bool> ReachedMap; |
|
660 // BfsIterator5< |
|
661 // ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>, |
|
662 // /*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/ |
|
663 // ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph); |
|
664 |
|
665 // bfs.pushAndSetReached(s); |
|
666 |
|
667 // typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>:: |
|
668 // NodeMap<int>& dist=res_graph.dist; |
|
669 |
|
670 // while ( !bfs.finished() ) { |
|
671 // typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs; |
|
672 // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
673 // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
674 // } |
|
675 // ++bfs; |
|
676 // } //computing distances from s in the residual graph |
|
677 |
|
678 // bool __augment=true; |
|
679 |
|
680 // while (__augment) { |
|
681 |
|
682 // __augment=false; |
|
683 // //computing blocking flow with dfs |
|
684 // typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap; |
|
685 // DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > |
|
686 // dfs(res_graph); |
|
687 // typename EAugGraph::NodeMap<EAugEdge> pred(res_graph); |
|
688 // pred.set(s, EAugEdge(INVALID)); |
|
689 // //invalid iterators for sources |
|
690 |
|
691 // typename EAugGraph::NodeMap<Number> free(res_graph); |
|
692 |
|
693 // dfs.pushAndSetReached(s); |
|
694 // while (!dfs.finished()) { |
|
695 // ++dfs; |
|
696 // if (res_graph.valid(EAugOutEdgeIt(dfs))) { |
|
697 // if (dfs.isBNodeNewlyReached()) { |
|
698 |
|
699 // typename EAugGraph::Node v=res_graph.aNode(dfs); |
|
700 // typename EAugGraph::Node w=res_graph.bNode(dfs); |
|
701 |
|
702 // pred.set(w, EAugOutEdgeIt(dfs)); |
|
703 // if (res_graph.valid(pred.get(v))) { |
|
704 // free.set(w, std::min(free.get(v), res_graph.free(dfs))); |
|
705 // } else { |
|
706 // free.set(w, res_graph.free(dfs)); |
|
707 // } |
|
708 |
|
709 // if (w==t) { |
|
710 // __augment=true; |
|
711 // _augment=true; |
|
712 // break; |
|
713 // } |
|
714 // } else { |
|
715 // res_graph.erase(dfs); |
|
716 // } |
|
717 // } |
|
718 |
|
719 // } |
|
720 |
|
721 // if (__augment) { |
|
722 // typename EAugGraph::Node n=t; |
|
723 // Number augment_value=free.get(t); |
|
724 // while (res_graph.valid(pred.get(n))) { |
|
725 // EAugEdge e=pred.get(n); |
|
726 // res_graph.augment(e, augment_value); |
|
727 // n=res_graph.tail(e); |
|
728 // if (res_graph.free(e)==0) |
|
729 // res_graph.erase(e); |
|
730 // } |
|
731 // } |
|
732 |
|
733 // } |
|
734 |
|
735 // return _augment; |
|
736 // } |
|
737 |
|
738 void run() { |
|
739 //int num_of_augmentations=0; |
|
740 while (augmentOnShortestPath()) { |
|
741 //while (augmentOnBlockingFlow<MutableGraph>()) { |
|
742 //std::cout << ++num_of_augmentations << " "; |
|
743 //std::cout<<std::endl; |
|
744 } |
|
745 } |
|
746 |
|
747 template<typename MutableGraph> void run() { |
|
748 //int num_of_augmentations=0; |
|
749 //while (augmentOnShortestPath()) { |
|
750 while (augmentOnBlockingFlow<MutableGraph>()) { |
|
751 //std::cout << ++num_of_augmentations << " "; |
|
752 //std::cout<<std::endl; |
|
753 } |
|
754 } |
|
755 |
|
756 Number flowValue() { |
|
757 Number a=0; |
|
758 OutEdgeIt e; |
|
759 for(g->first(e, s); g->valid(e); g->next(e)) { |
|
760 a+=flow->get(e); |
|
761 } |
|
762 return a; |
|
763 } |
|
764 |
|
765 }; |
|
766 |
|
767 |
|
768 // template <typename Graph, typename Number, typename FlowMap, typename CapacityMap> |
|
769 // class MaxMatching { |
|
770 // public: |
|
771 // typedef typename Graph::Node Node; |
|
772 // typedef typename Graph::NodeIt NodeIt; |
|
773 // typedef typename Graph::Edge Edge; |
|
774 // typedef typename Graph::EdgeIt EdgeIt; |
|
775 // typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
776 // typedef typename Graph::InEdgeIt InEdgeIt; |
|
777 |
|
778 // typedef typename Graph::NodeMap<bool> SMap; |
|
779 // typedef typename Graph::NodeMap<bool> TMap; |
|
780 // private: |
|
781 // const Graph* G; |
|
782 // SMap* S; |
|
783 // TMap* T; |
|
784 // //Node s; |
|
785 // //Node t; |
|
786 // FlowMap* flow; |
|
787 // const CapacityMap* capacity; |
|
788 // typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph; |
|
789 // typedef typename AugGraph::OutEdgeIt AugOutEdgeIt; |
|
790 // typedef typename AugGraph::Edge AugEdge; |
|
791 // typename Graph::NodeMap<int> used; //0 |
|
792 |
|
793 // public: |
|
794 // MaxMatching(const Graph& _G, SMap& _S, TMap& _T, FlowMap& _flow, const CapacityMap& _capacity) : |
|
795 // G(&_G), S(&_S), T(&_T), flow(&_flow), capacity(&_capacity), used(_G) { } |
|
796 // bool augmentOnShortestPath() { |
|
797 // AugGraph res_graph(*G, *flow, *capacity); |
|
798 // bool _augment=false; |
|
799 |
|
800 // typedef typename AugGraph::NodeMap<bool> ReachedMap; |
|
801 // BfsIterator5< AugGraph, /*AugOutEdgeIt,*/ ReachedMap > bfs(res_graph); |
|
802 // typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
803 // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
804 // if ((S->get(s)) && (used.get(s)<1) ) { |
|
805 // //Number u=0; |
|
806 // //for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
807 // //u+=flow->get(e); |
|
808 // //if (u<1) { |
|
809 // bfs.pushAndSetReached(s); |
|
810 // pred.set(s, AugEdge(INVALID)); |
|
811 // //} |
|
812 // } |
|
813 // } |
|
814 |
|
815 // typename AugGraph::NodeMap<Number> free(res_graph); |
|
816 |
|
817 // Node n; |
|
818 // //searching for augmenting path |
|
819 // while ( !bfs.finished() ) { |
|
820 // AugOutEdgeIt e=bfs; |
|
821 // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
822 // Node v=res_graph.tail(e); |
|
823 // Node w=res_graph.head(e); |
|
824 // pred.set(w, e); |
|
825 // if (res_graph.valid(pred.get(v))) { |
|
826 // free.set(w, std::min(free.get(v), res_graph.free(e))); |
|
827 // } else { |
|
828 // free.set(w, res_graph.free(e)); |
|
829 // } |
|
830 // n=res_graph.head(e); |
|
831 // if (T->get(n) && (used.get(n)<1) ) { |
|
832 // //Number u=0; |
|
833 // //for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f)) |
|
834 // //u+=flow->get(f); |
|
835 // //if (u<1) { |
|
836 // _augment=true; |
|
837 // break; |
|
838 // //} |
|
839 // } |
|
840 // } |
|
841 |
|
842 // ++bfs; |
|
843 // } //end of searching augmenting path |
|
844 |
|
845 // if (_augment) { |
|
846 // //Node n=t; |
|
847 // used.set(n, 1); //mind2 vegen jav |
|
848 // Number augment_value=free.get(n); |
|
849 // while (res_graph.valid(pred.get(n))) { |
|
850 // AugEdge e=pred.get(n); |
|
851 // res_graph.augment(e, augment_value); |
|
852 // n=res_graph.tail(e); |
|
853 // } |
|
854 // used.set(n, 1); //mind2 vegen jav |
|
855 // } |
|
856 |
|
857 // return _augment; |
|
858 // } |
|
859 |
|
860 // // template<typename MutableGraph> bool augmentOnBlockingFlow() { |
|
861 // // bool _augment=false; |
|
862 |
|
863 // // AugGraph res_graph(*G, *flow, *capacity); |
|
864 |
|
865 // // typedef typename AugGraph::NodeMap<bool> ReachedMap; |
|
866 // // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph); |
|
867 |
|
868 |
|
869 |
|
870 |
|
871 |
|
872 // // //typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
873 // // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
874 // // if (S->get(s)) { |
|
875 // // Number u=0; |
|
876 // // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
877 // // u+=flow->get(e); |
|
878 // // if (u<1) { |
|
879 // // bfs.pushAndSetReached(s); |
|
880 // // //pred.set(s, AugEdge(INVALID)); |
|
881 // // } |
|
882 // // } |
|
883 // // } |
|
884 |
|
885 |
|
886 |
|
887 |
|
888 // // //bfs.pushAndSetReached(s); |
|
889 // // typename AugGraph::NodeMap<int> dist(res_graph); //filled up with 0's |
|
890 // // while ( !bfs.finished() ) { |
|
891 // // AugOutEdgeIt e=bfs; |
|
892 // // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
893 // // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
894 // // } |
|
895 |
|
896 // // ++bfs; |
|
897 // // } //computing distances from s in the residual graph |
|
898 |
|
899 // // MutableGraph F; |
|
900 // // typename AugGraph::NodeMap<typename MutableGraph::Node> |
|
901 // // res_graph_to_F(res_graph); |
|
902 // // for(typename AugGraph::NodeIt n=res_graph.template first<typename AugGraph::NodeIt>(); res_graph.valid(n); res_graph.next(n)) { |
|
903 // // res_graph_to_F.set(n, F.addNode()); |
|
904 // // } |
|
905 |
|
906 // // typename MutableGraph::Node sF=res_graph_to_F.get(s); |
|
907 // // typename MutableGraph::Node tF=res_graph_to_F.get(t); |
|
908 |
|
909 // // typename MutableGraph::EdgeMap<AugEdge> original_edge(F); |
|
910 // // typename MutableGraph::EdgeMap<Number> residual_capacity(F); |
|
911 |
|
912 // // //Making F to the graph containing the edges of the residual graph |
|
913 // // //which are in some shortest paths |
|
914 // // for(typename AugGraph::EdgeIt e=res_graph.template first<typename AugGraph::EdgeIt>(); res_graph.valid(e); res_graph.next(e)) { |
|
915 // // if (dist.get(res_graph.head(e))==dist.get(res_graph.tail(e))+1) { |
|
916 // // typename MutableGraph::Edge f=F.addEdge(res_graph_to_F.get(res_graph.tail(e)), res_graph_to_F.get(res_graph.head(e))); |
|
917 // // original_edge.update(); |
|
918 // // original_edge.set(f, e); |
|
919 // // residual_capacity.update(); |
|
920 // // residual_capacity.set(f, res_graph.free(e)); |
|
921 // // } |
|
922 // // } |
|
923 |
|
924 // // bool __augment=true; |
|
925 |
|
926 // // while (__augment) { |
|
927 // // __augment=false; |
|
928 // // //computing blocking flow with dfs |
|
929 // // typedef typename MutableGraph::NodeMap<bool> BlockingReachedMap; |
|
930 // // DfsIterator4< MutableGraph, typename MutableGraph::OutEdgeIt, BlockingReachedMap > dfs(F); |
|
931 // // typename MutableGraph::NodeMap<typename MutableGraph::Edge> pred(F); |
|
932 // // pred.set(sF, typename MutableGraph::Edge(INVALID)); |
|
933 // // //invalid iterators for sources |
|
934 |
|
935 // // typename MutableGraph::NodeMap<Number> free(F); |
|
936 |
|
937 // // dfs.pushAndSetReached(sF); |
|
938 // // while (!dfs.finished()) { |
|
939 // // ++dfs; |
|
940 // // if (F.valid(typename MutableGraph::OutEdgeIt(dfs))) { |
|
941 // // if (dfs.isBNodeNewlyReached()) { |
|
942 // // typename MutableGraph::Node v=F.aNode(dfs); |
|
943 // // typename MutableGraph::Node w=F.bNode(dfs); |
|
944 // // pred.set(w, dfs); |
|
945 // // if (F.valid(pred.get(v))) { |
|
946 // // free.set(w, std::min(free.get(v), residual_capacity.get(dfs))); |
|
947 // // } else { |
|
948 // // free.set(w, residual_capacity.get(dfs)); |
|
949 // // } |
|
950 // // if (w==tF) { |
|
951 // // __augment=true; |
|
952 // // _augment=true; |
|
953 // // break; |
|
954 // // } |
|
955 |
|
956 // // } else { |
|
957 // // F.erase(typename MutableGraph::OutEdgeIt(dfs)); |
|
958 // // } |
|
959 // // } |
|
960 // // } |
|
961 |
|
962 // // if (__augment) { |
|
963 // // typename MutableGraph::Node n=tF; |
|
964 // // Number augment_value=free.get(tF); |
|
965 // // while (F.valid(pred.get(n))) { |
|
966 // // typename MutableGraph::Edge e=pred.get(n); |
|
967 // // res_graph.augment(original_edge.get(e), augment_value); |
|
968 // // n=F.tail(e); |
|
969 // // if (residual_capacity.get(e)==augment_value) |
|
970 // // F.erase(e); |
|
971 // // else |
|
972 // // residual_capacity.set(e, residual_capacity.get(e)-augment_value); |
|
973 // // } |
|
974 // // } |
|
975 |
|
976 // // } |
|
977 |
|
978 // // return _augment; |
|
979 // // } |
|
980 // bool augmentOnBlockingFlow2() { |
|
981 // bool _augment=false; |
|
982 |
|
983 // //typedef ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> EAugGraph; |
|
984 // typedef FilterGraphWrapper< ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap> > EAugGraph; |
|
985 // typedef typename EAugGraph::OutEdgeIt EAugOutEdgeIt; |
|
986 // typedef typename EAugGraph::Edge EAugEdge; |
|
987 |
|
988 // EAugGraph res_graph(*G, *flow, *capacity); |
|
989 |
|
990 // //typedef typename EAugGraph::NodeMap<bool> ReachedMap; |
|
991 // BfsIterator5< |
|
992 // ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>, |
|
993 // /*typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt,*/ |
|
994 // ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::NodeMap<bool> > bfs(res_graph); |
|
995 |
|
996 |
|
997 // //typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
998 // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
999 // if (S->get(s)) { |
|
1000 // Number u=0; |
|
1001 // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
1002 // u+=flow->get(e); |
|
1003 // if (u<1) { |
|
1004 // bfs.pushAndSetReached(s); |
|
1005 // //pred.set(s, AugEdge(INVALID)); |
|
1006 // } |
|
1007 // } |
|
1008 // } |
|
1009 |
|
1010 |
|
1011 // //bfs.pushAndSetReached(s); |
|
1012 |
|
1013 // typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>:: |
|
1014 // NodeMap<int>& dist=res_graph.dist; |
|
1015 |
|
1016 // while ( !bfs.finished() ) { |
|
1017 // typename ErasingResGraphWrapper<Graph, Number, FlowMap, CapacityMap>::OutEdgeIt e=bfs; |
|
1018 // if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { |
|
1019 // dist.set(res_graph.head(e), dist.get(res_graph.tail(e))+1); |
|
1020 // } |
|
1021 // ++bfs; |
|
1022 // } //computing distances from s in the residual graph |
|
1023 |
|
1024 // bool __augment=true; |
|
1025 |
|
1026 // while (__augment) { |
|
1027 |
|
1028 // __augment=false; |
|
1029 // //computing blocking flow with dfs |
|
1030 // typedef typename EAugGraph::NodeMap<bool> BlockingReachedMap; |
|
1031 // DfsIterator5< EAugGraph/*, EAugOutEdgeIt*/, BlockingReachedMap > |
|
1032 // dfs(res_graph); |
|
1033 // typename EAugGraph::NodeMap<EAugEdge> pred(res_graph, INVALID); |
|
1034 // //pred.set(s, EAugEdge(INVALID)); |
|
1035 // //invalid iterators for sources |
|
1036 |
|
1037 // typename EAugGraph::NodeMap<Number> free(res_graph); |
|
1038 |
|
1039 |
|
1040 // //typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
1041 // for(NodeIt s=G->template first<NodeIt>(); G->valid(s); G->next(s)) { |
|
1042 // if (S->get(s)) { |
|
1043 // Number u=0; |
|
1044 // for(OutEdgeIt e=G->template first<OutEdgeIt>(s); G->valid(e); G->next(e)) |
|
1045 // u+=flow->get(e); |
|
1046 // if (u<1) { |
|
1047 // dfs.pushAndSetReached(s); |
|
1048 // //pred.set(s, AugEdge(INVALID)); |
|
1049 // } |
|
1050 // } |
|
1051 // } |
|
1052 |
|
1053 |
|
1054 |
|
1055 // //dfs.pushAndSetReached(s); |
|
1056 // typename EAugGraph::Node n; |
|
1057 // while (!dfs.finished()) { |
|
1058 // ++dfs; |
|
1059 // if (res_graph.valid(EAugOutEdgeIt(dfs))) { |
|
1060 // if (dfs.isBNodeNewlyReached()) { |
|
1061 |
|
1062 // typename EAugGraph::Node v=res_graph.aNode(dfs); |
|
1063 // typename EAugGraph::Node w=res_graph.bNode(dfs); |
|
1064 |
|
1065 // pred.set(w, EAugOutEdgeIt(dfs)); |
|
1066 // if (res_graph.valid(pred.get(v))) { |
|
1067 // free.set(w, std::min(free.get(v), res_graph.free(dfs))); |
|
1068 // } else { |
|
1069 // free.set(w, res_graph.free(dfs)); |
|
1070 // } |
|
1071 |
|
1072 // n=w; |
|
1073 // if (T->get(w)) { |
|
1074 // Number u=0; |
|
1075 // for(InEdgeIt f=G->template first<InEdgeIt>(n); G->valid(f); G->next(f)) |
|
1076 // u+=flow->get(f); |
|
1077 // if (u<1) { |
|
1078 // __augment=true; |
|
1079 // _augment=true; |
|
1080 // break; |
|
1081 // } |
|
1082 // } |
|
1083 // } else { |
|
1084 // res_graph.erase(dfs); |
|
1085 // } |
|
1086 // } |
|
1087 |
|
1088 // } |
|
1089 |
|
1090 // if (__augment) { |
|
1091 // // typename EAugGraph::Node n=t; |
|
1092 // Number augment_value=free.get(n); |
|
1093 // while (res_graph.valid(pred.get(n))) { |
|
1094 // EAugEdge e=pred.get(n); |
|
1095 // res_graph.augment(e, augment_value); |
|
1096 // n=res_graph.tail(e); |
|
1097 // if (res_graph.free(e)==0) |
|
1098 // res_graph.erase(e); |
|
1099 // } |
|
1100 // } |
|
1101 |
|
1102 // } |
|
1103 |
|
1104 // return _augment; |
|
1105 // } |
|
1106 // void run() { |
|
1107 // //int num_of_augmentations=0; |
|
1108 // while (augmentOnShortestPath()) { |
|
1109 // //while (augmentOnBlockingFlow<MutableGraph>()) { |
|
1110 // //std::cout << ++num_of_augmentations << " "; |
|
1111 // //std::cout<<std::endl; |
|
1112 // } |
|
1113 // } |
|
1114 // // template<typename MutableGraph> void run() { |
|
1115 // // //int num_of_augmentations=0; |
|
1116 // // //while (augmentOnShortestPath()) { |
|
1117 // // while (augmentOnBlockingFlow<MutableGraph>()) { |
|
1118 // // //std::cout << ++num_of_augmentations << " "; |
|
1119 // // //std::cout<<std::endl; |
|
1120 // // } |
|
1121 // // } |
|
1122 // Number flowValue() { |
|
1123 // Number a=0; |
|
1124 // EdgeIt e; |
|
1125 // for(G->/*getF*/first(e); G->valid(e); G->next(e)) { |
|
1126 // a+=flow->get(e); |
|
1127 // } |
|
1128 // return a; |
|
1129 // } |
|
1130 // }; |
|
1131 |
|
1132 |
|
1133 |
|
1134 |
|
1135 |
|
1136 |
|
1137 // // template <typename Graph, typename Number, typename FlowMap, typename CapacityMap> |
|
1138 // // class MaxFlow2 { |
|
1139 // // public: |
|
1140 // // typedef typename Graph::Node Node; |
|
1141 // // typedef typename Graph::Edge Edge; |
|
1142 // // typedef typename Graph::EdgeIt EdgeIt; |
|
1143 // // typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
1144 // // typedef typename Graph::InEdgeIt InEdgeIt; |
|
1145 // // private: |
|
1146 // // const Graph& G; |
|
1147 // // std::list<Node>& S; |
|
1148 // // std::list<Node>& T; |
|
1149 // // FlowMap& flow; |
|
1150 // // const CapacityMap& capacity; |
|
1151 // // typedef ResGraphWrapper<Graph, Number, FlowMap, CapacityMap > AugGraph; |
|
1152 // // typedef typename AugGraph::OutEdgeIt AugOutEdgeIt; |
|
1153 // // typedef typename AugGraph::Edge AugEdge; |
|
1154 // // typename Graph::NodeMap<bool> SMap; |
|
1155 // // typename Graph::NodeMap<bool> TMap; |
|
1156 // // public: |
|
1157 // // MaxFlow2(const Graph& _G, std::list<Node>& _S, std::list<Node>& _T, FlowMap& _flow, const CapacityMap& _capacity) : G(_G), S(_S), T(_T), flow(_flow), capacity(_capacity), SMap(_G), TMap(_G) { |
|
1158 // // for(typename std::list<Node>::const_iterator i=S.begin(); |
|
1159 // // i!=S.end(); ++i) { |
|
1160 // // SMap.set(*i, true); |
|
1161 // // } |
|
1162 // // for (typename std::list<Node>::const_iterator i=T.begin(); |
|
1163 // // i!=T.end(); ++i) { |
|
1164 // // TMap.set(*i, true); |
|
1165 // // } |
|
1166 // // } |
|
1167 // // bool augment() { |
|
1168 // // AugGraph res_graph(G, flow, capacity); |
|
1169 // // bool _augment=false; |
|
1170 // // Node reached_t_node; |
|
1171 |
|
1172 // // typedef typename AugGraph::NodeMap<bool> ReachedMap; |
|
1173 // // BfsIterator4< AugGraph, AugOutEdgeIt, ReachedMap > bfs(res_graph); |
|
1174 // // for(typename std::list<Node>::const_iterator i=S.begin(); |
|
1175 // // i!=S.end(); ++i) { |
|
1176 // // bfs.pushAndSetReached(*i); |
|
1177 // // } |
|
1178 // // //bfs.pushAndSetReached(s); |
|
1179 |
|
1180 // // typename AugGraph::NodeMap<AugEdge> pred(res_graph); |
|
1181 // // //filled up with invalid iterators |
|
1182 |
|
1183 // // typename AugGraph::NodeMap<Number> free(res_graph); |
|
1184 |
|
1185 // // //searching for augmenting path |
|
1186 // // while ( !bfs.finished() ) { |
|
1187 // // AugOutEdgeIt e=/*AugOutEdgeIt*/(bfs); |
|
1188 // // if (e.valid() && bfs.isBNodeNewlyReached()) { |
|
1189 // // Node v=res_graph.tail(e); |
|
1190 // // Node w=res_graph.head(e); |
|
1191 // // pred.set(w, e); |
|
1192 // // if (pred.get(v).valid()) { |
|
1193 // // free.set(w, std::min(free.get(v), e.free())); |
|
1194 // // } else { |
|
1195 // // free.set(w, e.free()); |
|
1196 // // } |
|
1197 // // if (TMap.get(res_graph.head(e))) { |
|
1198 // // _augment=true; |
|
1199 // // reached_t_node=res_graph.head(e); |
|
1200 // // break; |
|
1201 // // } |
|
1202 // // } |
|
1203 |
|
1204 // // ++bfs; |
|
1205 // // } //end of searching augmenting path |
|
1206 |
|
1207 // // if (_augment) { |
|
1208 // // Node n=reached_t_node; |
|
1209 // // Number augment_value=free.get(reached_t_node); |
|
1210 // // while (pred.get(n).valid()) { |
|
1211 // // AugEdge e=pred.get(n); |
|
1212 // // e.augment(augment_value); |
|
1213 // // n=res_graph.tail(e); |
|
1214 // // } |
|
1215 // // } |
|
1216 |
|
1217 // // return _augment; |
|
1218 // // } |
|
1219 // // void run() { |
|
1220 // // while (augment()) { } |
|
1221 // // } |
|
1222 // // Number flowValue() { |
|
1223 // // Number a=0; |
|
1224 // // for(typename std::list<Node>::const_iterator i=S.begin(); |
|
1225 // // i!=S.end(); ++i) { |
|
1226 // // for(OutEdgeIt e=G.template first<OutEdgeIt>(*i); e.valid(); ++e) { |
|
1227 // // a+=flow.get(e); |
|
1228 // // } |
|
1229 // // for(InEdgeIt e=G.template first<InEdgeIt>(*i); e.valid(); ++e) { |
|
1230 // // a-=flow.get(e); |
|
1231 // // } |
|
1232 // // } |
|
1233 // // return a; |
|
1234 // // } |
|
1235 // // }; |
|
1236 |
|
1237 |
|
1238 } // namespace hugo |
|
1239 |
|
1240 #endif //HUGO_EDMONDS_KARP_H |