|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2007 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_GOMORY_HU_TREE_H |
|
20 #define LEMON_GOMORY_HU_TREE_H |
|
21 |
|
22 #include <lemon/preflow.h> |
|
23 #include <lemon/concept_check.h> |
|
24 #include <lemon/concepts/maps.h> |
|
25 |
|
26 /// \ingroup min_cut |
|
27 /// \file |
|
28 /// \brief Gomory-Hu cut tree in undirected graphs. |
|
29 |
|
30 namespace lemon { |
|
31 |
|
32 /// \ingroup min_cut |
|
33 /// |
|
34 /// \brief Gomory-Hu cut tree algorithm |
|
35 /// |
|
36 /// The Gomory-Hu tree is a tree on the nodeset of the graph, but it |
|
37 /// may contain edges which are not in the original graph. It helps |
|
38 /// to calculate the minimum cut between all pairs of nodes, because |
|
39 /// the minimum capacity edge on the tree path between two nodes has |
|
40 /// the same weight as the minimum cut in the graph between these |
|
41 /// nodes. Moreover this edge separates the nodes to two parts which |
|
42 /// determine this minimum cut. |
|
43 /// |
|
44 /// The algorithm calculates \e n-1 distinict minimum cuts with |
|
45 /// preflow algorithm, therefore the algorithm has |
|
46 /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a |
|
47 /// rooted Gomory-Hu tree, the structure of the tree and the weights |
|
48 /// can be obtained with \c predNode() and \c predValue() |
|
49 /// functions. The \c minCutValue() and \c minCutMap() calculates |
|
50 /// the minimum cut and the minimum cut value between any two node |
|
51 /// in the graph. |
|
52 template <typename _UGraph, |
|
53 typename _Capacity = typename _UGraph::template UEdgeMap<int> > |
|
54 class GomoryHuTree { |
|
55 public: |
|
56 |
|
57 /// The undirected graph type |
|
58 typedef _UGraph UGraph; |
|
59 /// The capacity on undirected edges |
|
60 typedef _Capacity Capacity; |
|
61 /// The value type of capacities |
|
62 typedef typename Capacity::Value Value; |
|
63 |
|
64 private: |
|
65 |
|
66 UGRAPH_TYPEDEFS(typename UGraph); |
|
67 |
|
68 const UGraph& _ugraph; |
|
69 const Capacity& _capacity; |
|
70 |
|
71 Node _root; |
|
72 typename UGraph::template NodeMap<Node>* _pred; |
|
73 typename UGraph::template NodeMap<Value>* _weight; |
|
74 typename UGraph::template NodeMap<int>* _order; |
|
75 |
|
76 void createStructures() { |
|
77 if (!_pred) { |
|
78 _pred = new typename UGraph::template NodeMap<Node>(_ugraph); |
|
79 } |
|
80 if (!_weight) { |
|
81 _weight = new typename UGraph::template NodeMap<Value>(_ugraph); |
|
82 } |
|
83 if (!_order) { |
|
84 _order = new typename UGraph::template NodeMap<int>(_ugraph); |
|
85 } |
|
86 } |
|
87 |
|
88 void destroyStructures() { |
|
89 if (_pred) { |
|
90 delete _pred; |
|
91 } |
|
92 if (_weight) { |
|
93 delete _weight; |
|
94 } |
|
95 if (_order) { |
|
96 delete _order; |
|
97 } |
|
98 } |
|
99 |
|
100 public: |
|
101 |
|
102 /// \brief Constructor |
|
103 /// |
|
104 /// Constructor |
|
105 /// \param ugraph The undirected graph type. |
|
106 /// \param capacity The capacity map. |
|
107 GomoryHuTree(const UGraph& ugraph, const Capacity& capacity) |
|
108 : _ugraph(ugraph), _capacity(capacity), |
|
109 _pred(0), _weight(0), _order(0) |
|
110 { |
|
111 checkConcept<concepts::ReadMap<UEdge, Value>, Capacity>(); |
|
112 } |
|
113 |
|
114 |
|
115 /// \brief Destructor |
|
116 /// |
|
117 /// Destructor |
|
118 ~GomoryHuTree() { |
|
119 destroyStructures(); |
|
120 } |
|
121 |
|
122 /// \brief Initializes the internal data structures. |
|
123 /// |
|
124 /// Initializes the internal data structures. |
|
125 /// |
|
126 void init() { |
|
127 createStructures(); |
|
128 |
|
129 _root = NodeIt(_ugraph); |
|
130 for (NodeIt n(_ugraph); n != INVALID; ++n) { |
|
131 _pred->set(n, _root); |
|
132 _order->set(n, -1); |
|
133 } |
|
134 _pred->set(_root, INVALID); |
|
135 _weight->set(_root, std::numeric_limits<Value>::max()); |
|
136 } |
|
137 |
|
138 |
|
139 /// \brief Starts the algorithm |
|
140 /// |
|
141 /// Starts the algorithm. |
|
142 void start() { |
|
143 Preflow<UGraph, Capacity> fa(_ugraph, _capacity, _root, INVALID); |
|
144 |
|
145 for (NodeIt n(_ugraph); n != INVALID; ++n) { |
|
146 if (n == _root) continue; |
|
147 |
|
148 Node pn = (*_pred)[n]; |
|
149 fa.source(n); |
|
150 fa.target(pn); |
|
151 |
|
152 fa.runMinCut(); |
|
153 |
|
154 _weight->set(n, fa.flowValue()); |
|
155 |
|
156 for (NodeIt nn(_ugraph); nn != INVALID; ++nn) { |
|
157 if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
|
158 _pred->set(nn, n); |
|
159 } |
|
160 } |
|
161 if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
|
162 _pred->set(n, (*_pred)[pn]); |
|
163 _pred->set(pn, n); |
|
164 _weight->set(n, (*_weight)[pn]); |
|
165 _weight->set(pn, fa.flowValue()); |
|
166 } |
|
167 } |
|
168 |
|
169 _order->set(_root, 0); |
|
170 int index = 1; |
|
171 |
|
172 for (NodeIt n(_ugraph); n != INVALID; ++n) { |
|
173 std::vector<Node> st; |
|
174 Node nn = n; |
|
175 while ((*_order)[nn] == -1) { |
|
176 st.push_back(nn); |
|
177 nn = (*_pred)[nn]; |
|
178 } |
|
179 while (!st.empty()) { |
|
180 _order->set(st.back(), index++); |
|
181 st.pop_back(); |
|
182 } |
|
183 } |
|
184 } |
|
185 |
|
186 /// \brief Runs the Gomory-Hu algorithm. |
|
187 /// |
|
188 /// Runs the Gomory-Hu algorithm. |
|
189 /// \note gh.run() is just a shortcut of the following code. |
|
190 /// \code |
|
191 /// ght.init(); |
|
192 /// ght.start(); |
|
193 /// \endcode |
|
194 void run() { |
|
195 init(); |
|
196 start(); |
|
197 } |
|
198 |
|
199 /// \brief Returns the predecessor node in the Gomory-Hu tree. |
|
200 /// |
|
201 /// Returns the predecessor node in the Gomory-Hu tree. If the node is |
|
202 /// the root of the Gomory-Hu tree, then it returns \c INVALID. |
|
203 Node predNode(const Node& node) { |
|
204 return (*_pred)[node]; |
|
205 } |
|
206 |
|
207 /// \brief Returns the weight of the predecessor edge in the |
|
208 /// Gomory-Hu tree. |
|
209 /// |
|
210 /// Returns the weight of the predecessor edge in the Gomory-Hu |
|
211 /// tree. If the node is the root of the Gomory-Hu tree, the |
|
212 /// result is undefined. |
|
213 Value predValue(const Node& node) { |
|
214 return (*_weight)[node]; |
|
215 } |
|
216 |
|
217 /// \brief Returns the minimum cut value between two nodes |
|
218 /// |
|
219 /// Returns the minimum cut value between two nodes. The |
|
220 /// algorithm finds the nearest common ancestor in the Gomory-Hu |
|
221 /// tree and calculates the minimum weight edge on the paths to |
|
222 /// the ancestor. |
|
223 Value minCutValue(const Node& s, const Node& t) const { |
|
224 Node sn = s, tn = t; |
|
225 Value value = std::numeric_limits<Value>::max(); |
|
226 |
|
227 while (sn != tn) { |
|
228 if ((*_order)[sn] < (*_order)[tn]) { |
|
229 if ((*_weight)[tn] < value) value = (*_weight)[tn]; |
|
230 tn = (*_pred)[tn]; |
|
231 } else { |
|
232 if ((*_weight)[sn] < value) value = (*_weight)[sn]; |
|
233 sn = (*_pred)[sn]; |
|
234 } |
|
235 } |
|
236 return value; |
|
237 } |
|
238 |
|
239 /// \brief Returns the minimum cut between two nodes |
|
240 /// |
|
241 /// Returns the minimum cut value between two nodes. The |
|
242 /// algorithm finds the nearest common ancestor in the Gomory-Hu |
|
243 /// tree and calculates the minimum weight edge on the paths to |
|
244 /// the ancestor. Then it sets all nodes to the cut determined by |
|
245 /// this edge. The \c cutMap should be \ref concepts::ReadWriteMap |
|
246 /// "ReadWriteMap". |
|
247 template <typename CutMap> |
|
248 Value minCutMap(const Node& s, const Node& t, CutMap& cutMap) const { |
|
249 Node sn = s, tn = t; |
|
250 |
|
251 Node rn = INVALID; |
|
252 Value value = std::numeric_limits<Value>::max(); |
|
253 |
|
254 while (sn != tn) { |
|
255 if ((*_order)[sn] < (*_order)[tn]) { |
|
256 if ((*_weight)[tn] < value) { |
|
257 rn = tn; |
|
258 value = (*_weight)[tn]; |
|
259 } |
|
260 tn = (*_pred)[tn]; |
|
261 } else { |
|
262 if ((*_weight)[sn] < value) { |
|
263 rn = sn; |
|
264 value = (*_weight)[sn]; |
|
265 } |
|
266 sn = (*_pred)[sn]; |
|
267 } |
|
268 } |
|
269 |
|
270 typename UGraph::template NodeMap<bool> reached(_ugraph, false); |
|
271 reached.set(_root, true); |
|
272 cutMap.set(_root, false); |
|
273 reached.set(rn, true); |
|
274 cutMap.set(rn, true); |
|
275 |
|
276 for (NodeIt n(_ugraph); n != INVALID; ++n) { |
|
277 std::vector<Node> st; |
|
278 Node nn = n; |
|
279 while (!reached[nn]) { |
|
280 st.push_back(nn); |
|
281 nn = (*_pred)[nn]; |
|
282 } |
|
283 while (!st.empty()) { |
|
284 cutMap.set(st.back(), cutMap[nn]); |
|
285 st.pop_back(); |
|
286 } |
|
287 } |
|
288 |
|
289 return value; |
|
290 } |
|
291 |
|
292 }; |
|
293 |
|
294 } |
|
295 |
|
296 #endif |